~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Tulio Begena Araujo
Student ID: 22133721

School of Computing
National College of Ireland

Supervisor: Musfira Jilani

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Tulio Begena Araujo
Student ID: 22133721
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Mustfira Jilani
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 957
Page Count: [14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Tulio Begena Araujo

Date: 30th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Tulio Begena Araujo
22133721

1 Introduction

This manual has the software requirements to fully implement the project it is attached to.
The code was written in Python language using the open-source IDE Jupyter Notebook.
The following sections present the main steps on how to run the code.

2 Requirements

In this project, the experiments were ran using a hardware with the following specifica-
tions: AMD Ryzen 5 2500U with Radeon Vega Mobile Gfx, 2.00 GHz, and 8 GB RAM.
The use of more computer power than this is recommended, since the data processed
consists in more than 1.5 million observations and the runtime for some models was up
to 48 hours.

A Python 3 kernel in Jupyter Notebook App was used to load the data, starting with
the reading of dataset’s CSV file through Pandas library, and its conversion to dataframe
format.

2.1 Libraries

The Python version, as the versions of the libraries used in this project are listed below:
Python version: 3.9.13 (main, Aug 25 2022, 23:51:50) [MSC v.1916 64 bit (AMDG64)]
Pandas version: 1.4.4
Numpy version: 1.24.3
Seaborn version: 0.11.2
Scikit-learn version: 1.0.2
TensorFlow version: 2.13.0
Keras version: 2.13.1
The installation of these libraries can be done using the code showed in Figure [I}
To load the libraries, the commands are shown in Figure

3 Data Collection and Preparation

The dataset used was made available by Davari et al| (2021) and it is available for
download in http://www.archive.ics.uci.edu/dataset /791 /metropt+3-+dataset.

It needs to be extracted and the archive with the data is in CSV format. The data
can be loaded as showed in Figure 3] In this figure the format of the data can be seen.

http://www.archive.ics.uci.edu/dataset/791/metropt+3+dataset

#pandas and numpy
Ipip install pandas numpy

#matplotlib and seaborn
I'pip install matplotlib seaborn

#scikit-Learn
I'pip install scikit-learn

#TensorFlow
Ipip install tensorflow

#Keras
I'pip install keras

Figure 1: Commands to install required libraries.

import pandas as pd
import numpy as np

from matplotlib import pyplot as plt
import seaborn as sns

from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScal
import tensorflow as tf

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

from keras.layers import RepeatVector

from keras.layers import TimeDistributed

Figure 2: Commands to load required libraries.

In [2]: |#import dataset
df = pd.read_csv("MetroPT3{AirCompressor).csv")
df

Out[2]: Unnamed:
o fmestamp TP2 TP3 H1 DV_pressure Reservoirs Oll_temperature Motor_current COMP DV_eletric Towers MPG LPS Pressure

2020-02-

L] 1] 01 -0.012 9358 9.340 -0.024 9.358 53.600 00400 10 00 10 10 00
00:00:00
2020-02-

1 10 01 -0.014 9343 0332 -0.022 9.348 53.675 0.0400 1.0 0.0 10 10 00
00:00:10
2020-02-

2 20 01 -0.012 9338 9322 -0.022 9.338 53.600 0.0425 10 00 10 10 00
00:00:19
2020-02-

3 30 01 -0.012 9328 9312 -0.022 9.328 53.425 0.0400 10 0.0 10 10 00
00:00:29
2020-02-

4 40 01 -0.012 9318 9302 -0.022 9.318 53.475 0.0400 1.0 0.0 10 10 00
00:00:39

2020-08-
1516943 15169430 01 -0.014 8913 8.906 -0.022 8.918 59.675 0.0425 10 0.0 10 10 00
03:59:10

2020-08-
1516944 15169440 01 -0.014 8.904 B3.888 -0.020 2.904 59.600 0.0450 1.0 0.0 10 10 00
03:59:20

2020-09-
1516945 15169450 01 -0014 83890 8876 -0.022 8.892 59.600 00425 10 0.0 10 10 00
03:59:30

2020-08-
1516946 15169460 01 -0.012 8.876 8.864 -0.022 8.878 59.550 0.0450 10 0.0 10 10 00
03:59:40

2020-08-
1516947 15169470 01 -0.014 8860 8848 -0.022 8.864 59 475 0.0425 10 00 10 10 00
03:59:50

1516948 rows x 17 columns

Figure 3: Command to load the data and its format.

3.1 Resampling

The data needs to be resampled aiming to regularize the time frequency and decrease
the amount of processed data loaded into models. In Figure 4| are the commands used to
perform the resampling.

#resampling to regularize the time frequency and decrease data size

#resample to each 20 minutes by the mean
df_28min = df.resample(12685').mean()

#resample to each 28 minutes by the mean

df_eBmin = df.resample(360885").mean()

Figure 4: Commands to resample data.

The resampling process creates rows with missing values. To deal with them, some
rows were filled with the next non-null values and others were dropped, according to the
criteria specified in the project. Figures |5| displays the commands used to perform these
processes.

4 Defining Models Architecture

To build the models tested in the project, first it is needed to define the hyperparameters,
as shown in Figure [0

#ill null rows with the next mon-null, if there are no consecutive null
#otherwise it is considered another trip and just drop the rows

def fill_df(df):
for column in df.columns:
consecutive nulls = @
for i in range(len(df)):
if pd.isnull{df[column].iloc[i])}:
consecutive_nulls += 1 #interval of null rows
else;
if consecutive nulls » 8 and consecutive nulls <= 2:
#Fill with next non-null value
df [column].iloc[i - consecutive_nulls:i] = df[column].iloc[i]
consecutive_nulls = @
return df

Figure 5: Commands to deal with null values.

#time windows for each frequency
#n_train ==> no of observations using for training
#n_test ==> no of observations using for testing and step size to create another window

#2 min resample
#n_train_2min = 58408 #1 week
#n_test 2min = 720 #1 day

#20 min resample
n_train_20min = 584 #I week
n_test_28min = 72 #I day

#60 min resample
n_train_6@min = 168 #I week
n_test_68min = 24 #I day

#define dataframes for different types of sensors and frequencies
df_28min_analog = df_28min.iloc[:, 1:8]
df_28min_digital = df_2@min.iloc[:, 8:]

df_&@min_analog = df_6@min.iloc[:, 1:8]
df_&8min_digital = df_é@min.iloc[:, 8:]

n_features_analog = 7
n_features_digital = &

Figure 6: Commands to define hyperparameters.

Different models are trained for different types of sensors and different frequencies of
the observations. To define dataframes for each case, the dataset is splitted using the iloc
command from pandas library, as displayed in Figure [7]

#define dataframes for different types of sensors and frequencies

df_28min_analog = df_28min.iloc[:, 1:8]
df_28min_digital = df 28min.iloc[:, 8:]

df_é&8min_analog = df_6@min.iloc[:, 1:8]
df_6emin_digital = df_68min.iloc[:, &:]

n_features_analog = 7
n_features_digital = 8

Figure 7: Commands to define dataframes for analog and digital sensors.

A total of 24 models are tested with these dataframes. 8 models with one lstm layer
in encoder and decoder, 8 with two layers, and 8 with three layers. The decoder have the
same number of layers as the encoder in every model. For each category one function is
defined having the parameters of training size, number of features, and size of the layers
as parameters. The Figures[§] [0 and [I0]show the functions and parameters to define the
models’ architecture.

def create_model_11(n_train, n_features, layerl):

model = Sequential()

model.add{L5TM(layerl, activation="relu’, input_shape=(n_train,n_features), return_sequences=False))
model.add(RepeatVector{n_train))

model.add(LSTM(layerl, activation='relu’, return_sequences=True))
model.add(TimeDistributed(Dense(n_features)))

model.compile(optimizer="adam", loss='mae"')

model.summary ()

models 11 list.append(model)

#oomin
##analog

create_model_11(n_train_éemin, n_features_analog, 128)
create_model_11(n_train_éemin, n_features_analog, 4)

##digital

create_model_11(n_train_éemin, n_features_digital, 128)
create_model_11(n_train_é@min, n_features_digital, 4)

#20min
##analog

create_model 11(n_train_2@min, n_features_analog, 128)
create_model_11(n_train_2@min, n_features_analog, 4)

##digital

create_model 11(n_train_2@min, n_features_digital, 128)
create_model_11(n_train_2@min, n_features_digital, 4)

Figure 8: Commands to define function and architectures for models with one layer in

encoder.

5 Creating the Sliding Windows

This part is the instructions to create different windows from the same dataframe. In
order to do that, a function was create that returns a list with the data corresponding to
each window, as can be seen in Figure (11}

def create_model 22(n_train, n_features, layerl, layer2):

model = Sequential()

model.add(L5TM({layerl, activation='relu’, input_shape=(n_train,n_features}, return_sequences=True))
model.add(LSTM({layer2, activation='relu’, return_sequences=False})

model.add(RepeatVector(n_train))

model.add(LSTM(layer2, activation="relu’, return_sequences=True))

model.add(LSTM(layerl, activation="relu’, return_sequences=True))
model.add(TimeDistributed(Dense(n_features)))

model.compile(optimizer="adam’, loss="mae')

model. summary ()

models 22 list.append(model)

#68min

##tanalog

create_model 22(n_train_6@min, n_features_analog, 128, 64)
create_model _22(n_train_s6emin, n_features_analog, 4, 2)
##digital

create_model _22(n_train_s@min, n_features_digital, 128, &4)
create_model_22(n_train_semin, n_features_digital, 4, 2)

#28min

##tanalog

create_model 22(n_train_2@min, n_features_analog, 128, 64)
create_model _22(n_train_2emin, n_features_analog, 4, 2)
##digital

create_model_22(n_train_28min, n_features_digital, 128, &4)
create_model_22(n_train_2@min, n_features_digital, 4, 2)

Figure 9: Commands to define function and architectures for models with two layers in
encoder.

def create_model_33(n_train, n_features, layerl, layer2, layer3):
model = Sequential()
model.add(LSTM({layerl, activation="relu’', input_shape=(n_train,n_features), return_sequences=True))
model.add(LSTM(layer2, activation="'relu’, return_sequences=True))
model.add(LSTM(layer3, activation="relu’, return_sequences=False))
model.add(RepeatVector(n_train))
model.add(LSTM(layer3, activation="relu’, return_sequences=True))
model.add(LSTM(1layer2, activation="'relu’, return_sequences=True))
model.add(LSTM(layerl, activation="'relu’, return_sequences=True))
model.add(TimeDistributed(Dense(n_features)))
model.compile(optimizer="adam’, loss="mae")
model.summary ()
models_33 list.append(model)

#eOmin

##analog

create_model 33(n_train_e@min, n_features_analog, 128, 64, 32)
create_model 33(n_train_&@min, n_features_analog, &, 4, 2)
##digital

create_model 33(n_train_&@min, n_features_digital, 128, &4, 32)
create_model 33(n_train_&8min, n_features digital, 8, 4, 2)

#28min

##analog

create_model_33(n_train_28min, n_features_analog, 128, 64, 32)
create_model_33(n_train_28min, n_features_analog, 8, 4, 2)
##digital

create_model 33(n_train_2@min, n_features_digital, 123, 64, 32)
create_model 33(n_train_2@min, n_features_digital, 8, 4, 2)

Figure 10: Commands to define function and architectures for models with three layers
in encoder.

#creating windows (splitting df)

def split_df(df, n_train, n_test):
X, vy, T = 1list(), list(), list()

#creating train and test
for train_start in range(@, len{df) - n_train - n_test + 1, n_test): #move window with step = n_test
train_end = train_start + n_train
test_end = train_end + n_test
if test_end + n_test » len(df):
break

train, test = df.iloc[train_start:train_end, :], df.iloc[train_end:test_end, :]
X.append{train)
y.append(test)

#creating failure index

failure = False

for start_failure, end_failure in zip(failure_times['start_times'], failure_times['end_times']):
if (start_failure <= df.index[test_end + n_test]) and (end_failure »= df.index[test_end]}:

failure = True

if failure:
f.append(1)

else:
f.append(@)

return X, y, T

Figure 11: Commands to define a function to create sliding windows.

#analog sensors

##68min

train, test, failures_indexé@ = split_df(df_eéemin_analog,n_train_66min, n_test_6&min)
analogt® = (train,test)

##28min

train, test, failures_index2@ = split_df(df_2emin_analog,n_train_28min, n_test_28min)
analog2® = (train,test)

#digital sensors

##68min

train, test, failures_index6@ = split_df{(df_6emin_digital,n_train_66min, n_test_6@min)
digitalee = (train,test)

##28 min

train, test, failures_index2@ = split_df(df_2emin_digital,n_train_2emin, n_test_2@min)
digital2e = (train,test)

#creagting windows List corresponding to the models List

windows_list = [analog6é, analog6d, digitalé®, digitalee, analog2@, analog2e, digital2?e, digital2e]
windows_list = windows_list*3

Figure 12: Commands to create the sliding windows.

Figure [12| show the creation of sliding windows and a list with one set of windows to
each model.

The last step before training the models is to define the training and tests sets for
each window and to reshape the data into a three dimensional format, as required to
train LSTM models. The way to perform this step is displayed in Figure

#checking reshaping dimensions o68min

X _train = windows list[8][@][@].copy()

X _test = windows list[@][1][e].copy()

#reshape arrays

X_train, X_test = X train.values, X test.values

¥_train = X_train.reshape({1, X_train.shape[8], X _train.shape[1])})
X_test = X_test.reshape((1l, X _test.shape[8], X test.shape[l]))
¥X_train.shape, X _test.shape

((1, 168, 7), (1, 24, 7))

#checking reshaping dimensions 28min

X _train = windows list[4][@][@].copy()

X_test = windows_list[4][1][e].copy()

#reshape arrays

X_train, X_test = X _train.values, X test.values

¥X_train = X_train.reshape(({1, X_train.shape[8], X_train.shape[1])})
X_test = X_test.reshape((1l, X _test.shape[8], X test.shape[l]))
¥X_train.shape, X _test.shape

((1, 584, 7), (1, 72, 7))

Figure 13: Commands to create the sliding windows.

6 Training and Results

The training of the models are made using loops. The code to run the loop is showed
below, divided into three figures (Figures , , and .

There are several steps in the loops. For each model, a scaler (MinMaxScaler from
-1 to 1) is fitted and applied to the training set, then applied to the test set. The data
is reshaped and fed to the model. Then, the model is used to make predictions and the
mean absolute error is computed for the training and the test. This results are used to
compute the evaluation metrics.

To conclude, the top-performing models are assessed based on their predictive capabil-
ities for forecasting failures across various time windows. This evaluation involves testing
the models with prediction windows of one (as done for every model), two, and three
days. This multi-window evaluation provides a comprehensive understanding of how well
the models can anticipate failures over different temporal scopes. The additional codes
for two and three days windows are showed in Figures [17] and [I§]

#learning rate
reduce_lr = tf.keras.callbacks.LearningRateScheduler(lambda x: 1e-3 * @.9@ ** x)

#looping through models and windows

#models

for i in range(2, len(models_list)):
train = train_list[i]
test = test_list[i]
model = models_list[i]

START MODEL {i} ========")
starting evalugtion records FERSEEERssaaiss

print(f'=
===========

#start lists and variables to record results
anomalies_list, anomalies_index = list(), list()
mae_train_list, mae_test_list = list(), list()
TP, TN, FP, FN = 8, @, 8, @

BEEEREEERREEERE training and prediction FRgEfEsgsiEssss

#windows
for w in range(@, len(train)):

#scaling

X_train = train[w].copy()

columns = X_train.columns.tolist()

scalers={}

for i in columns:
scaler = MinMaxScaler(feature range=(-1,1))
s_s = scaler.fit_transform(X_train[i].values.reshape(-1,1))
s_s=np.reshape(s_s,len(s_s))
scalers['scaler_"+ i] = scaler
X_train[i]=s_s

X_test = test[w].copy()
for i in columns:
scaler = scalers['scaler "+i]
s_s = scaler.transform(X_test[i].values.reshape(-1,1))
s_s=np.reshape(s_s,len(s_s))
scalers['scaler_'+i] = scaler
X_test[i]=s_s

#reshape arrays
X_train, X test = X_train.values, X test.values
X_train = X_train.reshape((1, X_train.shape[@], X_train.shape[1]))
X_test = X_test.reshape((1, X_test.shape[0], X_test.shape[1]))
X_test_padded = np.pad(X_test, ((@, @), (©, X _train.shape[1] - X_test.shape[1]), (@, @)), mode='constant', constant_walue

Figure 14: Training loop part 1.

#training model
history_l=model.fit(X_train,X_train,epochs=25,validation_data=(X_train,X_train),batch_size=32,verbose=8,callbacks=[reduce

#predictions
pred_train_l=model.predict(X_train)
pred_test_l=model.predict(X_test_padded)
pred_test_1 = pred_test_1[:, :X_test.shape[1], :]

#inverse scaling
for index,i in enumerate(columns):
scaler = scalers['scaler_"+i]
pred_train_1[:,:,index]=scaler.inverse_transform{pred_train_1[:,:,index])
pred_test_1[:,:,index]=scaler.inverse_transform(pred_test_1[:,:,index])

#computing error
mae_train = np.mean(np.abs{X_train - pred_train_1))
mae_test = np.mean{np.abs(X_test - pred_test_1})
mae_train_list.append(mae_train)
mae_test_list.append(mae_test)

#train Loss
train_loss = model.evaluate(X_train, X_train)

#test loss
test_loss = model.evaluate(X_test_padded, X_test_padded)

print()
print(f'{w}/{len(train)}:")
print(f'Train loss: {train_loss}')
print(f'Test loss: {test_loss}"')
print(f'Train MAE: {mae_train}")
print(f'Test MAE: {mae_test}')

#preliminar anomaly detection
if mae_test > mae_train:
anomalies_list.append(w)
anomalies_index.append(1)
print(f 'Anomaly detected in test {w}!')
else:
anomalies_index.append(@)

#verify if result is TP, FP, TN, or TP
if len(train) == len(failures_index68):
failures_index = failures_index6@
else:
failures_index = failures_index20

Figure 15: Training loop part 2.

10

if failures_index[w] and anomalies_index[w]:
TP +=1

elif not failures_index[w] and anomalies_index[w]:
FPo+= 1

elif failures_index[w] and not anomalies_index[w]:
FN += 1

else:
TN +=1

print(f'======== RESULTS ========")

print()

print(f'TP: {TP}, TH: {TN}, FP: {FP}, FN:{FN}")
print()

try:

recall = (TP/(TP+FN))*188
precision = (TP/(TP+FP))*1@@
1 = 2*precision*recall/(precision+recall)
print(f'Recall: {recall}")
print(f'Precision: {precision}')
print(f'F1 score: {f1}')

except ZeroDivisionError:
print(‘'No TP to calculate metrics.')

#plotting difference between mae_train and mae_test
#reported failures in red

differences = [(vall - wal2) for vall, val2 in zip(mae_train_list, mae_test_list)]
plt.figure(figsize=(18, 5))

blue = differences.copy()
red = differences.copy()
for i in range(len(differences)):
if failures_index[i]:
blue[i] = np.nan
else:
red[i] = np.nan

plt.bar(range{len(differences)), blue, color="blue")
plt.bar{range{len(differences)), red, color="red")
plt.xlabel('Index')

plt.ylabel('Absolute Difference")
plt.title(’'Differences between mae_train and mae_test')
plt.show()

Figure 16: Training loop part 3.

11

#2 days
TP, TN, FP, FN = 8, 8, 8, @
for w in range(@, len(train)-1):
if failures_index[w] and anomalies index[w]:
TP +=1
elif failures_index[w+l] and anomalies index[w]:
TP +=1
elif ancmalies index[w]:
FP += 1
elif failures_index68[w] and not anomalies_index[w]:
FHM += 1
else:
TH +=1

REFRAFRARFREFRE printing metrics and results #FREFHHFFREFRERSE

prnE(E ———— REaNTe =y

primt()

print(f'TP: {TP}, TH: {TN}, FP: {FP}, FN:{FN}')
print()

try:

recall = (TP/(TP+FN))*108
precision = (TP/(TP+FP))*108
f1 = 2®*precision®*recall/(precision+recall)
print(f'Recall: {recall}')
print(f'Precision: {precision}')
print(f'F1 score: {f1}'}

except ZeroDivisionError:
print("No TP to calculate metrics.')

Figure 17: Code to evaluate best models’ predictions for two days time window.

12

#3 days
TP, TN, FP, FN = 8, @, 8, @
for w in range(e, len(train)-2):
if failures_index[w] and anomalies index[w]:
TP +=1
elif failures_index[w+1] and anomalies_index[w]:
TP +=1
elif failures_index[w+2] and anomalies index[w]:
TP +=1
elif anomalies_index[w]:
FP += 1
elif failures_index&8[w] and not anomalies_index[w]:
FN += 1
else:
TH +=1

FRFAHFRREERERAE printing metrics and results #FHSFHREFREEHEEE

print(f'======== RESULTS ========")

print()

print(f'TP: {TP}, TN: {TN}, FP: {FP}, FN:{FN}")
print()

try:

recall = (TP/(TP+FN))*10@
precision = (TP/(TP+FP))*1e@
f1 = 2*precision*recall/(precision+recall)
print(f'Recall: {recall}")
print(f'Precision: {precision}')
print(f'F1 score: {f1}")

except ZeroDivisionError:
print('No TP to calculate metrics.')

Figure 18: Code to evaluate best models’ predictions for three days time window.

13

References

Davari, N., Veloso, B., Ribeiro, R. P., Pereira, P. M. and Gama, J. (2021). Predictive
maintenance based on anomaly detection using deep learning for air production unit

in the railway industry, 2021 IEEFE Sth International Conference on Data Science and
Advanced Analytics (DSAA), IEEE, pp. 1-10.

14

	Introduction
	Requirements
	Libraries

	Data Collection and Preparation
	Resampling

	Defining Models Architecture
	Creating the Sliding Windows
	Training and Results

