
Configuration Manual

MSc Research Project

Data Analytics

Tulio Begena Araujo
Student ID: 22133721

School of Computing

National College of Ireland

Supervisor: Musfira Jilani

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Tulio Begena Araujo

Student ID: 22133721

Programme: Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Musfira Jilani

Submission Due Date: 14/12/2023

Project Title: Configuration Manual

Word Count: 957

Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Tulio Begena Araujo

Date: 30th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Tulio Begena Araujo
22133721

1 Introduction

This manual has the software requirements to fully implement the project it is attached to.
The code was written in Python language using the open-source IDE Jupyter Notebook.
The following sections present the main steps on how to run the code.

2 Requirements

In this project, the experiments were ran using a hardware with the following specifica-
tions: AMD Ryzen 5 2500U with Radeon Vega Mobile Gfx, 2.00 GHz, and 8 GB RAM.
The use of more computer power than this is recommended, since the data processed
consists in more than 1.5 million observations and the runtime for some models was up
to 48 hours.

A Python 3 kernel in Jupyter Notebook App was used to load the data, starting with
the reading of dataset’s CSV file through Pandas library, and its conversion to dataframe
format.

2.1 Libraries

The Python version, as the versions of the libraries used in this project are listed below:
Python version: 3.9.13 (main, Aug 25 2022, 23:51:50) [MSC v.1916 64 bit (AMD64)]
Pandas version: 1.4.4
Numpy version: 1.24.3
Seaborn version: 0.11.2
Scikit-learn version: 1.0.2
TensorFlow version: 2.13.0
Keras version: 2.13.1
The installation of these libraries can be done using the code showed in Figure 1.
To load the libraries, the commands are shown in Figure 2

3 Data Collection and Preparation

The dataset used was made available by Davari et al. (2021) and it is available for
download in http://www.archive.ics.uci.edu/dataset/791/metropt+3+dataset.

It needs to be extracted and the archive with the data is in CSV format. The data
can be loaded as showed in Figure 3. In this figure the format of the data can be seen.

1

http://www.archive.ics.uci.edu/dataset/791/metropt+3+dataset


Figure 1: Commands to install required libraries.

Figure 2: Commands to load required libraries.

2



Figure 3: Command to load the data and its format.

3.1 Resampling

The data needs to be resampled aiming to regularize the time frequency and decrease
the amount of processed data loaded into models. In Figure 4 are the commands used to
perform the resampling.

Figure 4: Commands to resample data.

The resampling process creates rows with missing values. To deal with them, some
rows were filled with the next non-null values and others were dropped, according to the
criteria specified in the project. Figures 5 displays the commands used to perform these
processes.

4 Defining Models Architecture

To build the models tested in the project, first it is needed to define the hyperparameters,
as shown in Figure 6.

3



Figure 5: Commands to deal with null values.

Figure 6: Commands to define hyperparameters.

4



Different models are trained for different types of sensors and different frequencies of
the observations. To define dataframes for each case, the dataset is splitted using the iloc
command from pandas library, as displayed in Figure 7.

Figure 7: Commands to define dataframes for analog and digital sensors.

A total of 24 models are tested with these dataframes. 8 models with one lstm layer
in encoder and decoder, 8 with two layers, and 8 with three layers. The decoder have the
same number of layers as the encoder in every model. For each category one function is
defined having the parameters of training size, number of features, and size of the layers
as parameters. The Figures 8, 9, and 10 show the functions and parameters to define the
models’ architecture.

Figure 8: Commands to define function and architectures for models with one layer in
encoder.

5 Creating the Sliding Windows

This part is the instructions to create different windows from the same dataframe. In
order to do that, a function was create that returns a list with the data corresponding to
each window, as can be seen in Figure 11.

5



Figure 9: Commands to define function and architectures for models with two layers in
encoder.

Figure 10: Commands to define function and architectures for models with three layers
in encoder.

6



Figure 11: Commands to define a function to create sliding windows.

Figure 12: Commands to create the sliding windows.

7



Figure 12 show the creation of sliding windows and a list with one set of windows to
each model.

The last step before training the models is to define the training and tests sets for
each window and to reshape the data into a three dimensional format, as required to
train LSTM models. The way to perform this step is displayed in Figure 13

Figure 13: Commands to create the sliding windows.

6 Training and Results

The training of the models are made using loops. The code to run the loop is showed
below, divided into three figures (Figures 14, 15, and 16.

There are several steps in the loops. For each model, a scaler (MinMaxScaler from
-1 to 1) is fitted and applied to the training set, then applied to the test set. The data
is reshaped and fed to the model. Then, the model is used to make predictions and the
mean absolute error is computed for the training and the test. This results are used to
compute the evaluation metrics.

To conclude, the top-performing models are assessed based on their predictive capabil-
ities for forecasting failures across various time windows. This evaluation involves testing
the models with prediction windows of one (as done for every model), two, and three
days. This multi-window evaluation provides a comprehensive understanding of how well
the models can anticipate failures over different temporal scopes. The additional codes
for two and three days windows are showed in Figures 17 and 18.

8



Figure 14: Training loop part 1.

9



Figure 15: Training loop part 2.

10



Figure 16: Training loop part 3.

11



Figure 17: Code to evaluate best models’ predictions for two days time window.

12



Figure 18: Code to evaluate best models’ predictions for three days time window.

13



References

Davari, N., Veloso, B., Ribeiro, R. P., Pereira, P. M. and Gama, J. (2021). Predictive
maintenance based on anomaly detection using deep learning for air production unit
in the railway industry, 2021 IEEE 8th International Conference on Data Science and
Advanced Analytics (DSAA), IEEE, pp. 1–10.

14


	Introduction
	Requirements
	Libraries

	Data Collection and Preparation
	Resampling

	Defining Models Architecture
	Creating the Sliding Windows
	Training and Results

