~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Pavithra Ashokan
Student ID: 22133992

School of Computing
National College of Ireland

Supervisor: Prof. Hicham Rifai

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Pavithra Ashokan
Student ID: 22133992
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Prof. Hicham Rifai
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 596
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Pavithra Ashokan

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Pavithra Ashokan
22133992

1 Introduction

Crime detection model is designed to ensure the public safety through the advanced image
based classification. Crime is an act that is intended to cause harm either physically or
psychologically, that also includes property damage or loss. This leads to punishment by
a state or any other authority with respect to the severity of the crime. [Shah et al.| (2021)).
This manual is a comprehensive guide to assist users in setting up, configuring and in
optimizing the crime detection model for their specific requirements. This configuration
manual also aims to empower the users, with all the required information to integrate
and utilize the crime detection model.

2 System Requirements

System requirements include hardware and software requirements, that are given in the
table below.

2.1 Hardware requirements

OS Microsoft Windows 11

Processor 12th Gen Intel(R) Core(TM) i5-1235U
RAM 16.0 GB

Storage 256 GB

2.2 Software requirements

Programming Language Python 3
Tools Google Colab

3 Dataset Requirements

Dataset consists of train and test datasets, which each 14 categories, Abuse, Arrest,
Arson, Assault, Burglary, Explosion, Fighting, Normal videos, Road accidents, Robbery,
Shooting, Shoplifting, Stealing and Vandalism.

1

Displaying: /content/drive/MyDrive/Data Thesis/Test/Arson/Arson@4l x264 1128.png
Arson041 x264 1120.png

Displaying: /content/drive/MyDrive/Data Thesis/Test/Arson/Arson@@7_x264_2958.png
Arson007_x264_2950.png

Figure 1: Arson

Displaying: /content/drive/MyDrive/Data Thesis/Train/shoplifting/Shoplifting@14 x264 5113@.png

Displaying: /content/drive/MyDrive/Data Thesis/Train/Shoplifting/Shoplifting@12 x264 1575@.png
Shoplifting012 x264 15750.png

Figure 2: Shoplifting

Uploaded the dataset to the Google Colab environment and pre-processed the Crime
dataset, by resizing and normalizing the images. Customized and tailored the parameters
of the model to the required requirements, with the Google Colab environment.

Displaying: /content/drive/MyDrive/Data Thesis/Test/Shooting/Shooting@ll_x264_3140.png
Shooting011 x264 3140.png

Displaying: /content/drive/MyDrive/Data Thesis/Test/Shooting/Shooting®32 %264 18158.png
Shooting032_x264_18150.png

Figure 3: Shooting

4 Model Architecture

The required libraries are installed to evaluate, visualize and to build the layers of the
neural networks, such as Pandas, NumPy, Matplotlib, Seaborn, TensorFlow, Keras and

more.

from google.colab import drive
drive.mount (" /content/drive’, force_remount=True)

Mounted at /content/drive

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

import plotly.express as px
import os

import tensorflow as tf
from tensorflow.keras.preprocessing import image dataset_from_directory

from tensorflow.keras.applications import DenseMet121

from sklearn.preprocessing import LabelBinarizer

from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout,MaxPooling2D , Conv2D,Flatten
from tensorflow.keras.models import Sequential

from sklearn.metrics import roc_curve, auc, roc_auc_score

from sklearn.metrics import classification report

from IPython.display import clear_output
import warnings
warnings.filterwarnings(‘ignore")

Figure 4: Importing Libraries

Next step involves splitting the training and validation datasets from the training
directory and the test dataset are loaded from the separate directory. The image datasets

are then batched to the required batch size and resized to desired dimensions, and the
output is obtained containing the file information.

Found 345018 files belonging to 14 classes.
Using 276008 files for training.
Found 345010 files belonging to 14 classes.
Using 69002 files for validation.
Found 111308 files belonging to 14 classes.

Figure 5: Dataset categories

The Transfer learning model is then developed, using the DenseNet121 architecture
as pre-trained model and then the Global Average Pooling 2D layer is added. The final
dense layer consists of 'n’ units with Softmax activation for the multi-class classification.
The model is then compiled using the Adam optimizer.

def transfer learning()
base model=DenseNet121(include top=False,input_shape=INPUT SHAPE,weights="imagenet™)

thr=149
for layers in base model.layers[:thr]:

layers.trainable=False

for layers in base model.layers[thr:]:
layers.trainable=True

return base_model

def create model()
model=Sequential()

base model=transfer learning()
model.add(base model)

model.add(GlobalAveragePooling2D())

model.add(Dense(128, activation="relu"))
model.add(Dropout(@.2))

model.add(Dense(n,activation="softmax",name="classification"))
model. summary ()

return model

Figure 6: Transfer Learning Model

5 Model Training

The next step is training the model on the training set and validating it on the validation
set. The model training is performed for a specified number of epochs. After this, the
true labels ('y_true’) and the predicted probabilities ("y_pred’) are obtained, for test set.
These values are used to evaluate the performance of the model.

model=create_model()
model.compile(optimizer="adam",
loss="categorical crossentropy’,

metrics = [tf.keras.metrics.Auc()])

Model: "sequential”

Layer (type) Output Shape Param #
densenet121 (Functional) (Mone, 2, 2, 1024) 7037504
global average pooling2d ((None, 1024) 5}

GlobalaveragePooling2D)

dense (Dense) (None, 128) 131200
dropout (Dropout) (None, 128) 5}
classification (Dense) (None, 14) 1806

Total params: 717651@ (27.35 MB)
Trainable params: 5586254 (21.31 MB)
Non-trainable params: 1584256 (6.84 MB)

Figure 7: Model output

history = model.fit(x = train_set,validation_data=val_set,epochs = EPOCHS)

4313/4313 [1 - 139155 3s/step - loss: ©.1914 - auc: ©.9972 - val loss: ©.0898 - val auc: 0.9988

y_true = np.array([])

for x, y in test_set:
y_true = np.concatenate([y_true, np.argmax(y.numpy(), axis=-1)])

y_pred=model.predict(test_set)

1740/1748 [] - 68s 33ms/step

Figure 8: Model Training

y_pred

array([[4.5902032e-02, 1.7751265e-02, 9.4060982e-03,
6.9584459e-02, 1.7148598e-082],
[1.6762480e-02, 8.9247664e-03, 4.2186431e-03,
1
5
1

“
[y

.3542435e-03,

.9362811e-04,

-
[=¢]

1.4209105e-01, 1.0222074e-02],
[4.6308540e-02, 5.8252241e-02, 1.5701249e-02, ...,
5.1227458e-02, 1.86900572-02],

[y

.8073161e-03,

ey
[3.8555425¢e-06,
1.3541766e-06, 2.1836685e-08],

[5.4894554e-06, 7.4061792e-09, 4.9845465e-07, ...,
1

1.4509319e-08, 4.6502296e-07, ...,
2
7
.5264775e-06, 1,3480203e-08],
6
1

w

.0748265e-05,

[y

.8170034e-04,

[1.55041012-04, 6.1160634e-08, 4.57553732-06, ..., 6.1018923e-04,
.84092252-06, 1.9498280e-07]], dtype=float32)

[o¥]

array([., ©@., ©., ..., 13., 13., 13.])

Figure 9: y_pred & y_true

6 Model Evaluation

The model is evaluated with the custom CNN layer on top of the Transfer learning base
model. An initial model with limited layers is built and evaluated, as the results are
not more efficient. The CNN model is built with additional layers and evaluated with
the Adam optimizer. By performing further fine-tuning, the model’s best accuracy is
obtained.

Create a custom CNN model on top of the transfer learning base model
def create_custom_cnn_model(base_model)

model = Sequential()

Add the base model

model.add(base_model)
model.add(GlobalAveragePooling2D())
model.add(Dense(128, activation="relu"))
model.add(Dropout(0.2))

output layer
model.add(Dense(n, activation="softmax', name='classification'))

model. summary()
return model

Define and compile the base model (transfer learning)
base_model = transfer_learning()

Update the IMG_HEIGHT and IMG_WIDTH to 64
IMG_HEIGHT = 64

IMG_WIDTH = 64

IMG_SHAPE = (IMG_HEIGHT, IMG_WIDTH, 3)
INPUT_SHAPE = (IMG_HEIGHT, IMG_WIDTH, 3)

Create a new custom CNN model on top of the transfer learning base model
custom_model = create_custom cnn_model(base_model)

Compile the custom model
custom_model.compile(optimizer="adam", loss="categorical_crossentropy’, metrics=[tf.keras.metrics.Auc()])

fine_tune_epochs = 3
custom_model .fit(train_set, validation_data=val_set, epochs=fine_tune_epochs)

Figure 10: Custom CNN Model

Model: “"sequential 2"

Layer (type) Output Shape Param #
densenet121 (Functional) (None, 2, 2, 1024) 7037504
global_average_pooling2d_2 (None, 1824)]

(GlobalAveragePooling2D)

dense_2 (Dense) (None, 128) 131200
dropout_2 (Dropout) (None, 128) 2]
classification (Dense) (None, 14) 1806

Total params: 7170510 (27.35 MB)
Trainable params: 5586254 (21.31 MB)
Non-trainable params: 1584256 (6.04 MB)

Epoch 1/3
4313/4313 [] - 367s 77ms/step - loss: 0.1901 - auc_3: ©.9973 - val_loss: ©.0913 - val_auc_3: 0.999@
Epoch 2/3
4313/4313 [1 - 3365 78ms/step - loss: 0.0935 - auc_3: ©.9990 - val_loss: ©.8799 - val auc_3: 0.9994
Epoch 3/3
4313/4313 [1 - 334s 77ms/step - loss: 0.8776 - auc_3: 0.9993 - val_loss: ©.8675 - val_auc_3: 0.9995

<keras.src.callbacks.History at ex799bs52148beo>

Figure 11: Model Fine-tuning

The ROC curve is obtained which distinguishes between the different classes and the
confusion matrix was also obtained that shows the number of cases for each category of
crime for both the actual and predicted.

True

Receiver Operating Characteristic (ROC) Curve

1.0 4
7
"
4
/g
p/
0.8 1 y
/’
’
s
’
) /,
a V4
T 0.6 - ’
o ’
y
=
§ s
,/
[
2 0.4 P
= 0. ’
’
’
7
/’
7’
,l
0.2 ’
7
’
7’
7
’
P —— ROC curve (area = 0.42)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Figure 12: ROC Curve
Confusion Matrix
Abuse- 0 39 0 0 0 0 0 0 0 59 ©0 ©0 199 0
Vandalism - 0 1701 1 0 0 386 0 o o 660 4] 4] 617 0
Shooting- 0 1631 18 0O 0 59 o0 4 1 126 © 1 953 0
Stealing- 0 740 0 0 0o 4 7 0 0 1203 o0 1 661 0
Explosion- 0 1048 5 0 0 62 25 0 0 2802 2 27 3686 O
Assault- 0 3790 34 0 0 146 19 15 0 857 0 8 1641 0
Robbery - 0 233 0 0 0 1 0 1 0 600 O O 396 O
Arson - 0 JEEFE] 296 O 1 388 15 4 0 27 325 pEINE O
shoplifting - 0 1102 2 0 0 4 0 4 0 926 ©0 5 620 O
Burglary- 0 334 0 0 0 1 0 0 0D 198 4 0 298 O
RoadAccidents - 0 2484 109 0O 0o 21 4 1 0 1126 ©0 35 3850 O
Fighting- 0 747 5 0 0 53 367 0 5486 22 13 930 O
NormalVideos- 0 855 0O 0 0 0 0 0 456 0 673
Arest- 0 389 434 0 0 0 0 0 0D 190 ©o ©0 98 0
| | | | | | | | | | | | | \
u o = c o > v =
s 5§ £ £ 8 = § §8 £ § 2 2 & &
2 =® 2 o =] o 2 = > H54 £ E X
T 2 & = < s 5 G 2 =
= 5 8 8 & o & 5 T
s @ 3 E
@ [}
-] 2
Predicted

Figure 13: Confusion Matrix

25000

20000

15000

- 10000

- 5000

References

Shah, N., Bhagat, N. and Shah, M. (2021). Crime forecasting: A machine learning and
computer vision approach to crime prediction and prevention, Visual Computing for
Industry, Biomedicine, and Art 4(1): 9.

	Introduction
	System Requirements
	Hardware requirements
	Software requirements

	Dataset Requirements
	Model Architecture
	Model Training
	Model Evaluation

