*
\ National

Collegef
Ireland

Configuration Manual

MSc Research Project
Msc. in Data Analytics

Melvin Akash Ambrose MohanDoss
Student ID: x22152601

School of Computing
National College of Ireland

Supervisor: Dr. Anu Sahni

‘*
National College of Ireland \ National

College
Ireland

MSc Project Submission Sheet
School of Computing

Student Name: Melvin Akash AmbroseDoss

Student ID: x22152601
Programme: Msc in Data Analytics
Year: 2023 -2024
Module: Msc Research Project
Lecturer: Dr. Anu Sahni

Submission Due
Date: 14/12/2023

Project Title: Implementing Machine Learning Models for Predicting Road
Accident Severity in Northern Ireland

Word Count: 730 Page Count: 7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Melvin Akash Ambrose MohanDoss

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Sighature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Melvin Akash Ambrose MohanDoss
Student ID: x22152601

1 Introduction

This Configuration Manual contains a list of all the requirements needed to replicate the
study and its findings in a personal setting. All models constructed, data import and
exploratory data analysis, data augmentation, and software and hardware requirements are
covered.

2 System Specifications

This section covers Hardware and Software requirements.

2.1 Hardware Requirements

MacBook Air

Chip Apple M1
Memory 8 GB
Startup disk Macintosh HD
Serial number C17G459FQé6L4
macOS Ventura 13.4.1

Fig 1: Hardware requirement

2.2 Software Requirements

Jupyter Notebook (Version 6.5.2) or Google Colab
Python (Version 3.10)

MySql server (Version 8)

Mysql Workbench

3 Data Collection

The Data is sourced from the UK government website.

Website link :
https://admin.opendatani.gov.uk/dataset?organization=police-service-of-northern-
ireland&tags=injury+collisions

4 Data Pre-processing
The total 9 datasets from the years 2020, 2021, 2022 are merged using Mysql and Python.

First , the 9 datasets are loaded into MySql workbench and is merged year wise.

SELECT

FROM casualty2020

LEFT JOIN collision2020 ON casualty2020.a_ref = collision2020.a_ref
LEFT JOIN vehicle2020 ON casualty2020.a_ref = vehicle2020.a_ref;

SELECT *

FROM casualty2021

LEFT JOIN collision2021 ON casualty2021.a_ref = collision202l.a_ref
LEFT JOIN vehicle2021 ON casualty2021l.a_ref = vehicle2021.a_ref;

SELEECITRE

FROM casualty2021

LEFT JOIN collision2021 ON casualty2@2l.a_ref = collision2021.a_ref
LEFT JOIN vehicle2021 ON casualty2021l.a_ref = vehicle2021.a_ref;

Fig 2: Merging the datasets year wise.

The merged datasets from Mysql are then concatenated vertically in python.

In [2]: dataset_path 2020 = '/Users/melvinakash/Desktop/NCI/ric/datasets/merged 2020.csv'
dataset_path_ 2021 ' /Users/melvinakash/Desktop/NCI/ric/datasets/merged 2021.csv'
dataset_path 2022 = '/Users/melvinakash/Desktop/NCI/ric/datasets/merged 2022.csv'

In [3]: pd.set_option('display.max_columns',None)

data_2020 pd.read_csv(dataset_path 2020)
data_2021 pd.read_csv(dataset_path 2021)
data_2022 = pd.read_csv(dataset_path_2022)

In [4]: # Concatenate the DataFrames vertically (along rows)
df = pd.concat([data_2020, data 2021 , data_2022], ignore_index=True)

Fig 3: Concatenated vertically.

5 Project Development

5.1 Importing Libraries

List of python libraries used :

In [29]: 1 import pandas as pd
) import numpy as np
import missingno as msno
from sklearn.model selection import train_test split
5 from sklearn.preprocessing import StandardScaler
> from imblearn.over_ sampling import SMOTE
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from xgboost import XGBClassifier
2> from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
from sklearn.neural network import MLPClassifier
from sklearn.metrics import confusion matrix
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

[y

Fig 4: Libraries used

Some of the main Libraries used in this project were Pandas , Numpy, Matplotlib and
SMOTE.

5.2 Processing

e Treatment of Missing Values: The pattern is MCAR and 90% data were missing so
the columns were deleted. .

o Feature selection: Generated histograms of all the data , and removed features which
were unbalanced and could potentially lead to biasing.

¢ Encoding : One hot encoding and ordinal encoding are done to two variables
a_District and a_wkday.

e The final subset of the filtered variables is shown in Figure 5.

In [10]: 1 #taking subset of necessary data after eval of columns
2 data_subset = df[['a_ref',6 'a District', 'a_type', 'a_veh', 'a_cas', 'a_wkday',
! 'a_day', 'a_month', 'a_hour', 'a min', 'a_gdl', 'a_gd2', 'a_ctype',
'a_speed', 'c_class', 'c_sex', 'c_agegroup',
'c_school', 'c_vtype', 'v_type', 'v_tow', 'v_man',

'v_loc', 'v_impact',
'v_sex', 'v_agegroup', 'v_hitr']]

Fig 5: Subset of variables to ML models.

e Correlation was checked with the target variable a_type.

3

The Data is split into train and test with a 80:20 split.
In [6]: #over sampling using smote

In [7]: pd.set_option('display.max columns', None)
Extract features and target variable

X data.drop('a_type', axis=1) # Features
y data['a_type']l # Target variable

Split the data into training and testing sets
X_train, X test, y train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Apply SMOTE only to the training data

smote = SMOTE(sampling_strategy='auto', random_state=42)

X_train_synthetic, y_train_synthetic = smote.fit_resample(X_ train, y_train)
Combine the synthetic training data with the original training data

X_train combined = pd.concat([X_train, X_train_synthetic])
y_train combined = pd.concat([y_train, y train_synthetic])

Fig 5: SMOTE oversampler and test, train split.

e The packages or libraries to perform the above tasks are shown in the Figure 4.

5.3 Modelling

e Oversampling and test, train split: The target variable is imbalanced , so we take
samples of minority class and oversamples it . This is done using the SMOTE
oversampler.

e The following code snippets contains implementation of four machine learning and
one deep learning models.

e Each model is tuned with the best hyperparameters.

5.3.1 Case Study 1 : Random Forest Classifier.

6 # RandomForestClassifier
7 model = RandomForestClassifier()
8

9 # Defining the hyperparameters and their possible values for grid search
10 param grid = {

11 'n_estimators': [50, 100, 200],
12 'max_depth': [None, 10, 20, 30],
13 'min_samples_split': [2, 5, 10],
14 'min_samples_leaf': [1, 2, 4]
15 |}

16

17 # Performing Grid Search
18 grid_search = GridSearchCV(model, param grid, cv=5, scoring='accuracy')
19 grid_search.fit(X_train combined, y train_combined)

21 # Getting the best hyperparameters
22 best_params = grid_search.best_params_

24 # Training the model with the best hyperparameters
25 best_model = RandomForestClassifier(**best_params)
26 best_model.fit(X_train_combined, y_train combined)

28 # Making predictions on the test set
29 y_pred = best_model.predict(X_test)

31 # Evaluating the model
32 accuracy = accuracy_score(y_test, y pred)
33 print(f"Accuracy with the best hyperparameters: {accuracy:.4£f}")

35 # Performing Randomized Search (alternative to Grid Search)
36 random search = RandomizedSearchCV(model, param distributions=param grid, n_iter=10, cv=5,

37 scoring='accuracy', random_state=42)
38 random search.fit(X_train_combined, y_train combined)
39

40 # best hyperparameters from randomized search
41 best_params_random = random_ search.best_ params_

43 # Train the model with the best hyperparameters from randomized search
44 best_model random = RandomForestClassifier(**best_params_random)
45 best_model_ random.fit(X_train combined, y train_combined)

47 # Making predictions on the test set
48 y_pred random = best_model_random.predict(X_test)

50 # Evaluating the model
51 accuracy_random = accuracy_score(y_test, y pred_random)
52 report random = classification_report(y_test, y_ pred_random)

Accuracy with the best hyperparameters: 0.9849
Fig 6: Code snippet of Random Forest Classifier.

#Confusion Matrix for RandomForestClassifier():

confusion _mat = confusion_matrix(y_test, y_ pred random)

print (f"Confusion Matrix for RandomForestClassifier():\n")

Visualize the confusion matrix as a heatmap

plt.figure(figsize=(6, 4))

sns .heatmap(confusion_mat, annot=True, fmt="d", cmap="Blues",
xticklabels=['Class 1', 'Class 2', 'Class 3'],
yticklabels=['Class 1', 'Class 2', 'Class 3'])

9 plt.title(f'Confusion Matrix for RandomForestClassifier()')

10 plt.xlabel('Predicted')

11 plt.ylabel(' 'Actual’)

12 plt.show()

oD WNME

14 print('=' * 40)

Fig 7: Code snippet of Confusion matrix.

In [25]: 1 print(f"Best Hyperparameters for Decision Tree: {best_params}")

Best Hyperparameters for Decision Tree: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split

ors': 200}

Fig 8: Code snippet of Best Hyperparameters.

5.3.2 Case Study 2 : Decision Tree Classifier.

In [12]: 1 # Decision Tree
2 dt_model = DecisionTreeClassifier()
3
4 # Defining hyperparameters for Decision Tree
5 param grid_dt = {
6 'max_depth': [Nomne, 5, 10, 15],
7 'min_samples_split': [2, 5, 10],
8 'min_samples_leaf': [1, 2, 4]
9}
10

11 # Performing Grid Search for Decision Tree

‘s 2,

12 grid_search_dt = GridSearchCV(dt_model, param grid_dt, cv=5, scoring='accuracy')

13 grid_search dt.fit(X_train_combined, y_train_combined)
14

15 # Getting the best hyperparameters for Decision Tree

16 best_params_dt = grid_search_dt.best_params_

17

18 # Training the Decision Tree model with the best hyperparameters
19 best_dt_model = DecisionTreeClassifier(**best_params_dt)
20 best_dt_model.fit(X_train_combined, y_ train combined)

21

22 # Making predictions on the test set using Decision Tree
23 y_pred dt = best_dt_model.predict(X_test)

24

25 # Evaluating the Decision Tree model

26 accuracy_dt = accuracy_score(y_test, y pred_dt)

27 report_dt = classification_report(y_test, y_pred_dt)

28

29 # Evaluating the model

30 print(f"Accuracy for Decision Tree with hyperparameter tuning: {accuracy dt:.4f}")

31 print(f"Best Hyperparameters for Decision Tree: {best_params_dt}")

'n_estimat

32 print(f"Classification Report for Decision Tree with hyperparameter tuning:\n{report_dt}")

88

Accuracy for Decision Tree with hyperparameter tuning: 0.9697

Fig 9: Code snippet of Decision Tree Classifier.

5.3.3 Case Study 3 : K-Nearest Neighbors

In [13]: # K-Nearest Neighbors (KNN)

knn_model = KNeighborsClassifier()

1
2
3
4 # Defining hyperparameters for KNN
5 param_grid_knn = {

6 'n_neighbors': [3, 5, 7],

7 'weights': ['uniform', ‘'distance'],
8 'p':s [1, 2]

9 }

11 # Performing Grid Search for KNN
12 grid_search_knn = GridSearchCV(knn_model, param grid knn, cv=5, scoring='accuracy')
13 grid_search _knn.fit(X_train_combined, y_train_combined)

15 # Get the best hyperparameters for KNN
16 best_params_knn = grid_search_knn.best_params_

18 # Training the KNN model with the best hyperparameters
19 best_knn_model = KNeighborsClassifier(**best_params_knn)

20 best_knn_model.fit(X_train_combined, y_train_combined)

22 # Making predictions on the test set using KNN
23 y_pred_knn = best_knn_model.predict(X_test)

25 # Evaluating the KNN model

26 accuracy_knn = accuracy_score(y_ test, y_pred_knn)

27 report_knn = classification_report(y_test, y_pred knn)

29 # Evaluating the model

30 print(f"Accuracy for K-Nearest Neighbors with hyperparameter tuning: {accuracy_knn:.4f}")

31 print(f"Best Hyperparameters for K-Nearest Neighbors: {best_params_knn}")
32 print(f"Classification Report for K-Nearest Neighbors with hyperparameter tuning:\n{report_knn}")

Accuracy for K-Nearest Neighbors with hyperparameter tuning: 0.9901
Fig 10: Code snippet of K-Nearest Neighbors.

5.3.4 Case Study 4 : Artificial Neural Network

In [14]: 1 # Artificial Neural Network (ANN)

2 ann_model = MLPClassifier()

3

4 # Defining hyperparameters for ANN

5 param grid_ann = {

6 'hidden_layer_sizes': [(50, 25), (100, 50), (150, 75)],
7 ‘alpha': [0.0001, 0.001, 0.01]

8 }

9

10 # Performing Grid Search for ANN

11 grid_search ann = GridSearchCV(ann_model, param grid_ann, cv=5, scoring='accuracy')
12 grid search_ann.fit(X_train combined, y_train combined)

13

14 # Getting the best hyperparameters for ANN

15 best_params_ann = grid_search_ann.best_ params_

16

17 # Train the ANN model with the best hyperparameters

18 best_ann_model = MLPClassifier(**best_params_ann)

19 best_ann_model.fit(X_train_combined, y_train_combined)

20

21 # Making predictions on the test set using ANN

22 y pred_ann = best_ann_model.predict(X_test)

23

24 # Evaluating the ANN model

25 accuracy_ann = accuracy score(y_test, y pred ann)

26 report_ann = classification_report(y_test, y_pred_ann)

27

28 # Evaluating the model

29 print(f"Accuracy for Artificial Neural Network with hyperparameter tuning: {accuracy_ann:.4f}")
30 print(f"Best Hyperparameters for Artificial Neural Network: {best_params_ann}")

31 print(f"Classification Report for Artificial Neural Network with hyperparameter tuning:\n{report_ann}")

Accuracy for Artificial Neural Network with hyperparameter tuning: 0.8382

Fig 11: Code snippet of ANN.

