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Configuration Manual

Melvin Akash Ambrose MohanDoss
Student ID: x22152601

1 Introduction

This Configuration Manual contains a list of all the requirements needed to replicate the
study and its findings in a personal setting. All models constructed, data import and
exploratory data analysis, data augmentation, and software and hardware requirements are
covered.

2 System Specifications

This section covers Hardware and Software requirements.

2.1 Hardware Requirements

MacBook Air

Chip Apple M1
Memory 8 GB
Startup disk Macintosh HD
Serial number C17G459FQé6L4
macOS Ventura 13.4.1

Fig 1: Hardware requirement

2.2 Software Requirements

Jupyter Notebook (Version 6.5.2) or Google Colab
Python (Version 3.10)

MySql server (Version 8)

Mysql Workbench

3 Data Collection



The Data is sourced from the UK government website.

Website link :
https://admin.opendatani.gov.uk/dataset?organization=police-service-of-northern-
ireland&tags=injury+collisions

4 Data Pre-processing
The total 9 datasets from the years 2020, 2021, 2022 are merged using Mysql and Python.

First , the 9 datasets are loaded into MySql workbench and is merged year wise.

SELECT

FROM casualty2020

LEFT JOIN collision2020 ON casualty2020.a_ref = collision2020.a_ref
LEFT JOIN vehicle2020 ON casualty2020.a_ref = vehicle2020.a_ref;

SELECT *

FROM casualty2021

LEFT JOIN collision2021 ON casualty2021.a_ref = collision202l.a_ref
LEFT JOIN vehicle2021 ON casualty2021l.a_ref = vehicle2021.a_ref;

SELEECITRE

FROM casualty2021

LEFT JOIN collision2021 ON casualty2@2l.a_ref = collision2021.a_ref
LEFT JOIN vehicle2021 ON casualty2021l.a_ref = vehicle2021.a_ref;

Fig 2: Merging the datasets year wise.

The merged datasets from Mysql are then concatenated vertically in python.

In [2]: dataset_path 2020 = '/Users/melvinakash/Desktop/NCI/ric/datasets/merged 2020.csv'
dataset_path_ 2021 ' /Users/melvinakash/Desktop/NCI/ric/datasets/merged 2021.csv'
dataset_path 2022 = '/Users/melvinakash/Desktop/NCI/ric/datasets/merged 2022.csv'

In [3]: pd.set_option('display.max_columns',None)

data_2020 pd.read_csv(dataset_path 2020)
data_2021 pd.read_csv(dataset_path 2021)
data_2022 = pd.read_csv(dataset_path_2022)

In [4]: # Concatenate the DataFrames vertically (along rows)
df = pd.concat([data_2020, data 2021 , data_2022], ignore_index=True)

Fig 3: Concatenated vertically.



5 Project Development

5.1 Importing Libraries

List of python libraries used :

In [29]: 1 import pandas as pd
) import numpy as np
import missingno as msno
from sklearn.model selection import train_test split
5 from sklearn.preprocessing import StandardScaler
> from imblearn.over_ sampling import SMOTE
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from xgboost import XGBClassifier
2> from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
from sklearn.neural network import MLPClassifier
from sklearn.metrics import confusion matrix
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

[y

Fig 4: Libraries used

Some of the main Libraries used in this project were Pandas , Numpy, Matplotlib and
SMOTE.

5.2 Processing

e Treatment of Missing Values: The pattern is MCAR and 90% data were missing so
the columns were deleted. .

o Feature selection: Generated histograms of all the data , and removed features which
were unbalanced and could potentially lead to biasing.

¢ Encoding : One hot encoding and ordinal encoding are done to two variables
a_District and a_wkday.

e The final subset of the filtered variables is shown in Figure 5.

In [10]: 1 #taking subset of necessary data after eval of columns
2 data_subset = df[[ 'a_ref',6 'a District', 'a_type', 'a_veh', 'a_cas', 'a_wkday',
! 'a_day', 'a_month', 'a_hour', 'a min', 'a_gdl', 'a_gd2', 'a_ctype',
'a_speed', 'c_class', 'c_sex', 'c_agegroup',
'c_school', 'c_vtype', 'v_type', 'v_tow', 'v_man',

'v_loc', 'v_impact',
'v_sex', 'v_agegroup', 'v_hitr']]

Fig 5: Subset of variables to ML models.

e Correlation was checked with the target variable a_type.
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The Data is split into train and test with a 80:20 split.
In [6]: #over sampling using smote

In [7]: pd.set_option('display.max columns', None)
# Extract features and target variable

X data.drop('a_type', axis=1) # Features
y data['a_type']l # Target variable

# Split the data into training and testing sets
X_train, X test, y train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Apply SMOTE only to the training data

smote = SMOTE(sampling_strategy='auto', random_state=42)

X_train_synthetic, y_train_synthetic = smote.fit_resample(X_ train, y_train)
# Combine the synthetic training data with the original training data

X_train combined = pd.concat([X_train, X_train_synthetic])
y_train combined = pd.concat([y_train, y train_synthetic])

Fig 5: SMOTE oversampler and test, train split.

e The packages or libraries to perform the above tasks are shown in the Figure 4.

5.3 Modelling

e Oversampling and test, train split: The target variable is imbalanced , so we take
samples of minority class and oversamples it . This is done using the SMOTE
oversampler.

e The following code snippets contains implementation of four machine learning and
one deep learning models.

e Each model is tuned with the best hyperparameters.

5.3.1 Case Study 1 : Random Forest Classifier.



6 # RandomForestClassifier
7 model = RandomForestClassifier()
8

9 # Defining the hyperparameters and their possible values for grid search
10 param grid = {

11 'n_estimators': [50, 100, 200],
12 'max_depth': [None, 10, 20, 30],
13 'min_samples_split': [2, 5, 10],
14 'min_samples_leaf': [1, 2, 4]
15 |}

16

17 # Performing Grid Search
18 grid_search = GridSearchCV(model, param grid, cv=5, scoring='accuracy')
19 grid_search.fit(X_train combined, y train_combined)

21 # Getting the best hyperparameters
22 best_params = grid_search.best_params_

24 # Training the model with the best hyperparameters
25 best_model = RandomForestClassifier(**best_params)
26 best_model.fit(X_train_combined, y_train combined)

28 # Making predictions on the test set
29 y_pred = best_model.predict(X_test)

31 # Evaluating the model
32 accuracy = accuracy_score(y_test, y pred)
33 print(f"Accuracy with the best hyperparameters: {accuracy:.4£f}")

35 # Performing Randomized Search (alternative to Grid Search)
36 random search = RandomizedSearchCV(model, param distributions=param grid, n_iter=10, cv=5,

37 scoring='accuracy', random_state=42)
38 random search.fit(X_train_combined, y_train combined)
39

40 # best hyperparameters from randomized search
41 best_params_random = random_ search.best_ params_

43 # Train the model with the best hyperparameters from randomized search
44 best_model random = RandomForestClassifier(**best_params_random)
45 best_model_ random.fit(X_train combined, y train_combined)

47 # Making predictions on the test set
48 y_pred random = best_model_random.predict(X_test)

50 # Evaluating the model
51 accuracy_random = accuracy_score(y_test, y pred_random)
52 report random = classification_report(y_test, y_ pred_random)

Accuracy with the best hyperparameters: 0.9849
Fig 6: Code snippet of Random Forest Classifier.

#Confusion Matrix for RandomForestClassifier():

confusion _mat = confusion_matrix(y_test, y_ pred random)

print (f"Confusion Matrix for RandomForestClassifier():\n")

# Visualize the confusion matrix as a heatmap

plt.figure(figsize=(6, 4))

sns .heatmap(confusion_mat, annot=True, fmt="d", cmap="Blues",
xticklabels=[ 'Class 1', 'Class 2', 'Class 3'],
yticklabels=[ 'Class 1', 'Class 2', 'Class 3'])

9 plt.title(f'Confusion Matrix for RandomForestClassifier()')

10 plt.xlabel('Predicted')

11 plt.ylabel( ' 'Actual’)

12 plt.show()

oD WNME

14 print('=' * 40)

Fig 7: Code snippet of Confusion matrix.



In [25]: 1 print(f"Best Hyperparameters for Decision Tree: {best_params}")

Best Hyperparameters for Decision Tree: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split

ors': 200}

Fig 8: Code snippet of Best Hyperparameters.

5.3.2 Case Study 2 : Decision Tree Classifier.

In [12]: 1 # Decision Tree
2 dt_model = DecisionTreeClassifier()
3
4 # Defining hyperparameters for Decision Tree
5 param grid_dt = {
6 'max_depth': [Nomne, 5, 10, 15],
7 'min_samples_split': [2, 5, 10],
8 'min_samples_leaf': [1, 2, 4]
9}
10

11 # Performing Grid Search for Decision Tree

‘s 2,

12 grid_search_dt = GridSearchCV(dt_model, param grid_dt, cv=5, scoring='accuracy')

13 grid_search dt.fit(X_train_combined, y_train_combined)
14

15 # Getting the best hyperparameters for Decision Tree

16 best_params_dt = grid_search_dt.best_params_

17

18 # Training the Decision Tree model with the best hyperparameters
19 best_dt_model = DecisionTreeClassifier(**best_params_dt)
20 best_dt_model.fit(X_train_combined, y_ train combined)

21

22 # Making predictions on the test set using Decision Tree
23 y_pred dt = best_dt_model.predict(X_test)

24

25 # Evaluating the Decision Tree model

26 accuracy_dt = accuracy_score(y_test, y pred_dt)

27 report_dt = classification_report(y_test, y_pred_dt)

28

29 # Evaluating the model

30 print(f"Accuracy for Decision Tree with hyperparameter tuning: {accuracy dt:.4f}")

31 print(f"Best Hyperparameters for Decision Tree: {best_params_dt}")

'n_estimat

32 print(f"Classification Report for Decision Tree with hyperparameter tuning:\n{report_dt}")

88

Accuracy for Decision Tree with hyperparameter tuning: 0.9697

Fig 9: Code snippet of Decision Tree Classifier.

5.3.3 Case Study 3 : K-Nearest Neighbors



In [13]: # K-Nearest Neighbors (KNN)

knn_model = KNeighborsClassifier()

1
2
3
4 # Defining hyperparameters for KNN
5 param_grid_knn = {

6 'n_neighbors': [3, 5, 7],

7 'weights': ['uniform', ‘'distance'],
8 'p':s [1, 2]

9 }

11 # Performing Grid Search for KNN
12 grid_search_knn = GridSearchCV(knn_model, param grid knn, cv=5, scoring='accuracy')
13 grid_search _knn.fit(X_train_combined, y_train_combined)

15 # Get the best hyperparameters for KNN
16 best_params_knn = grid_search_knn.best_params_

18 # Training the KNN model with the best hyperparameters
19 best_knn_model = KNeighborsClassifier(**best_params_knn)

20 best_knn_model.fit(X_train_combined, y_train_combined)

22 # Making predictions on the test set using KNN
23 y_pred_knn = best_knn_model.predict(X_test)

25 # Evaluating the KNN model

26 accuracy_knn = accuracy_score(y_ test, y_pred_knn)

27 report_knn = classification_report(y_test, y_pred knn)

29 # Evaluating the model

30 print(f"Accuracy for K-Nearest Neighbors with hyperparameter tuning: {accuracy_knn:.4f}")

31 print(f"Best Hyperparameters for K-Nearest Neighbors: {best_params_knn}")
32 print(f"Classification Report for K-Nearest Neighbors with hyperparameter tuning:\n{report_knn}")

Accuracy for K-Nearest Neighbors with hyperparameter tuning: 0.9901
Fig 10: Code snippet of K-Nearest Neighbors.

5.3.4 Case Study 4 : Artificial Neural Network

In [14]: 1 # Artificial Neural Network (ANN)

2 ann_model = MLPClassifier()

3

4 # Defining hyperparameters for ANN

5 param grid_ann = {

6 'hidden_layer_sizes': [(50, 25), (100, 50), (150, 75)],
7 ‘alpha': [0.0001, 0.001, 0.01]

8 }

9

10 # Performing Grid Search for ANN

11 grid_search ann = GridSearchCV(ann_model, param grid_ann, cv=5, scoring='accuracy')
12 grid search_ann.fit(X_train combined, y_train combined)

13

14 # Getting the best hyperparameters for ANN

15 best_params_ann = grid_search_ann.best_ params_

16

17 # Train the ANN model with the best hyperparameters

18 best_ann_model = MLPClassifier(**best_params_ann)

19 best_ann_model.fit(X_train_combined, y_train_combined)

20

21 # Making predictions on the test set using ANN

22 y pred_ann = best_ann_model.predict(X_test)

23

24 # Evaluating the ANN model

25 accuracy_ann = accuracy score(y_test, y pred ann)

26 report_ann = classification_report(y_test, y_pred_ann)

27

28 # Evaluating the model

29 print(f"Accuracy for Artificial Neural Network with hyperparameter tuning: {accuracy_ann:.4f}")
30 print(f"Best Hyperparameters for Artificial Neural Network: {best_params_ann}")

31 print(f"Classification Report for Artificial Neural Network with hyperparameter tuning:\n{report_ann}")

Accuracy for Artificial Neural Network with hyperparameter tuning: 0.8382

Fig 11: Code snippet of ANN.



