

Configuration Manual

MSc Research Project Data Analytics

Vasit Ali Student ID: x22144170

School of Computing National College of Ireland

Supervisor: Abid Yaqoob

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Vasit Ali
Student ID:	x22144170
Programme:	Data Analytics
Year:	2023
Module:	MSc Research Project
Supervisor:	Abid Yaqoob
Submission Due Date:	31/01/2024
Project Title:	Configuration Manual
Word Count:	618
Page Count:	24

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Vasit Ali
Date:	31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Vasit Ali x22144170

1 Introduction

This manual illustrates how to execute and configure the implementation code for the current research project. This document provides specified details about the machine hardware as well as the programs to run. Following the below steps will enable the users to generate summaries of the research papers.

2 System Specification

2.1 Hardware Specification

Following are the hardware specifications of the system that was used to develop the project:

Component	Specifications
Processor	12th Generation Intel® Core [™] i9-12900H processor
RAM	16 Gb/s, NVMe
Storage	1 TB SSD, PCIe Gen4
Graphics Card	NVIDIA® GeForce RTX 3060 with 6 GB of dedicated GDDR6 VRAM
Operating System	Windows 11 Home 64-bit

 Table 1: Hardware Specifications

2.2 Software Specification

Following are the software specifications of the system that was used to develop the project:

Software	Specifications
Operating System	Windows 11 Home 64-bit
IDE	Jupyter Notebook
Scripting Language	Python 3.7

Table 2: Software Specifications

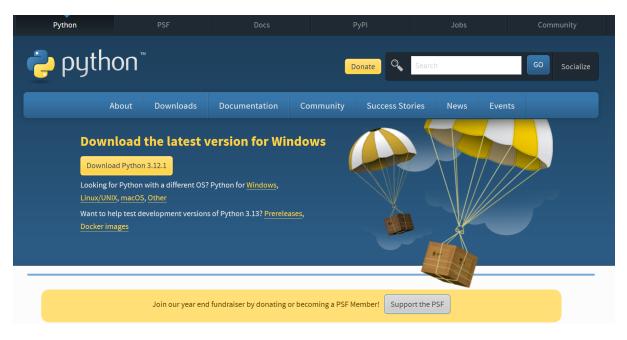


Figure 1: Python's Official Website Page

3 Software Tools

Following are the software tools that were used to implement the project.

3.1 Python

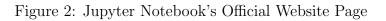
Python programming language was used to develop the project. The main reason to choose Python was its useful libraries for Data cleaning, visualization, and deep learning models. Python was downloaded from the main website¹. Figure 1 shows the download page of Python's official website.

3.2 Jupyter Notebook

Jupyter Notebook was used as a compiler to run the code as it allows the users to implement all the code in one place and execute the codes in small parts like cells to allow the audience to check the output of each code with ease. Jupyter Notebook was downloaded from its official website² and Figure 2 illustrates its download page

4 Packages and Libraries

4.1 Python Packages


Following are the Python packages which were installed using pip and used to implement the project as shown in Figure 3 and Figure 4

• scikit-learn

¹https://www.python.org/downloads/

²https://jupyter.org/

B A C	He being way H + X C C + R C Harkburn -		Pythen3 C	JupyterLab: A Next-Generation Notebook Interface
n valor nagas chal-igenti	regression limits. Such models are popular because they can be	n Classificative) is a good starting pairt for standitistical lands, leave regression-models are a goo for Strary quickly, and are very histoprobalis. Yes are polyably having out the simplest form of a		JupyterLab is the latest web-based interactive development environment for notebooks, code, and
San Jawaki Into Jayah Into Jayah Uris Jayah Pener Regenselara Jayah	(Le., Nong a straight fire to data (sub such models can be extended to a state of the social sector of the social sector of the social sector of the social permitties in account for more complicated patterns in data we begin at the social sector of the social sector. Sector Sect	of the mathematics behind this well-known problem, before seeing how before incuring is to see to	toe losar roodes can be	Its flexible interface allows users to configure and arrange workflows in data science, scientific
Paul Augustation (2016) anance pyrels anance pyrels anance pyrels Lipyrels collised also	the set of the se	E tavener X	Abir layes E Dujed thre X Events Weather: Birld Birls R ;	computing, computational journalism, and machine learning. A modular design invites extensions t expand and enrich functionality.
ethad da ethad da ethad da ethad da ethad da ethad da	Simple e We then a store a si Constant Constituent Server Adversed Task			Try it in your browser Install JupyterLab
	Manager Strategy			
	Paraliterizery careful (Paralla Sagetteri Paralla Sagetteri Paralla Sagetteri Paralla Sagetteri Paralla Sagetteri Paralla Sagetteri Paralla Sagetteri Paralla Sagetteri Paralla Sagetteri Paralla Sagetteri	Julia python	notebook R Initian pro lagare sensation, first	
Pyther 31Mm	We are an (1)- March and 3 (1)- March and 1 March and and 1 March and 1 Mar		$ \begin{array}{c} \mathbf{k} = a(\mathbf{y} + \mathbf{x}) \\ \mathbf{k} = a(\mathbf{y} - \mathbf{x}) \\ \mathbf{k} = a(\mathbf{x} - \mathbf{x}) $ (b) (\mathbf{k} - \mathbf{x}) \\ \mathbf{k} = a(\mathbf{x} - \mathbf{x}) \\	
		(1) equation (1) from target and (1) equation (1) for the target and (1) equation (1) for the target and (1) equation (1)	Adapti solice, Jonano Karing Santa	

In [43]: !pip install scikit-learn pandas

Figure 3: Python Package scikit-learn

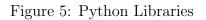
- Keras
- tensorflow

4.2 Python Libraries

Following are the Python libraries which were installed and used to implement the project as shown in Figure 5 $\,$

5 Implementation

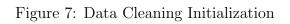
Pandas library was used to load and check the dataset as can be seen in Figure 6


• Data Cleaning

References

```
In [47]: 1pip install keras
Requirement already satisfied: keras in c:\users\alivasit\anaconda3\lib\site-packages (2.14.0)
In [48]: 1pip install tensorflow
```

Figure 4: Python Package Keras and tensorflow



In [1]:	imp imp	port pand port nump port matp port seab	y as np lotlib.py	yplot as p ns	olt											
In [2]:	fi]	le = r"C:	\Users\A	liVasit\De	esktop\RI	C Final :	Sem 2.xl	sx"								
In [3]:	dat	ta = pd.r	ead_exce	l(file)												
In [4]:	data.head()															
Out[4]:		Start Date	End Date	Response Type	Progress	Duration (in seconds)	Finished	Recorded Date	Response ID	Distribution Channel	User Language		Please feel free to give us any feedback or impression regarding this survey.	Timing - First Click.8	Timing - Last Click.8	Tim F Subr
	0	1/29/2022 15:34	1/29/2022 15:37	IP Address	100	161	True	1/29/2022 15:37	R_2ziifm5KCPkSdac	anonymous	EN		NaN	1.703	1.703	17
	1	1/29/2022 15:34	1/29/2022 15:40	IP Address	100	406	True	1/29/2022 15:40	R_CgipvsIKNyNWOuB	anonymous	EN		NaN	1.166	13.832	16
	2	1/29/2022 15:40	1/29/2022 15:44	IP Address	100	247	True	1/29/2022 15:44	R_116JaS9DQYURFIc	anonymous	EN		NaN	2.131	2.131	34
	3	1/29/2022 15:42	1/29/2022 15:46	IP Address	100	247	True	1/29/2022 15:46	R_3noq7XhdlfQwqxV	anonymous	EN		NaN	2.220	2.220	44
	4	1/29/2022 15:36	1/29/2022 15:48	IP Address	100	666	True	1/29/2022 15:48	R_1fme33nwji8nGa8	anonymous	EN		NaN	1.190	4.132	11
	5 ro	ows × 129	columns													

Figure 6: Loaded Dataset

	Data Clea	ning													
In [5]:	df = pd.D	DataFrame	e(data)												
In [6]:			= [' <mark>Start Dat</mark> columns_to_dr				ise Typ	e','Progress','Duration	(in se	econds)','	Finished',	'Record	led Date	e','Respo	ons
In [7]:	df.head())													
Out[7]:	In what year you born? - Year born	In which state do you live? - State	Over the last 30 days approximately how many survey have you completed?	Timing - First Click	Timing - Last Click	- Page	Timing - Ciick Count	Welcome! We are researchers affiliated with LMU Munich, Tel Aviv University, and EIEF and we are running a survey about health perceptions and behaviors_x0000_inYtou will survey_x0000_inYtou will receive standard compensation from the panel provider for your participation. x0000_inYtou responses will be completely include a Prolific ID associated with your profile, but they will not contain any Information that may personality identify you. _x0000_inThere are no known or anticipated risks to you participation in - This study is completely voluntary. You are free to decline to participate in this study will not affect your relationship with LMU, Tel Aviv University, or EIEF _x0000_intf you have any questions about this study, vou war contact the	- First	Timing - Last Click.1	Please feel free to give us any feedback or impression regarding this survey.	- First	Timing - Last Click.8	Timing - Page Submit.8	

In [25]:	df. col	drop(d	columns=c	columns_to_	drop, inpl t question	ace=True)					this survey. es like ours	_	-		
				= ['Over the columns_to_			oximately	how many s	survey have	you compl	eted?']				
In [27]:	df.	head())												
Out[27]:		In what year were you born? - Year born	In which state do you live? - State	Considering your age, how would you describe your general health?	Over the last two weeks, how often have you bethered by the following problems? - Little interest of pleasure in doing things?	Over the last two weeks, how often have you been bothered by the following problems? - Feeling down, depressed, or hopeless?	Over the last two weeks, how often have you bothered by the following problems? - Trouble falling or saleep, or sleeping too much?	Over the last two weeks, how often have you bethered by the following problems? - Feeling tired or having little energy?	Over the last two weeks, how often have you been bothered bothered following problems? - Poor appetite or overeating?	Over the last two weeks, how often have you been bothered by the followins? - Feeling bad about yourself ae" or that you are la yourself or your family down?	Over the last two weeks, how often have you been bothered by the following problems? - Trouble concentrating on things, such as reading the newspaper or watching television?		Within the last 12 months, had any of the following? Depression	Within the last 12 months, have you had any of the following? - High blood pressure	Within the last 12 months, had any of the following? - High cholesterol
	0	2000	Virginia	Good	More than half of the days	Several days	Several days	Several days	Several days	More than half of the days	Several days		Yes	No	No
	1	1997	California	Excellent	Not at all	Not at all	Not at all	Several days	Several days	Not at all	Not at all		No	No	No
	2	2000	Maryland	Very Good	Several days	Several days	Not at all	Several days	Not at all	Not at all	More than half of the days		No	No	No
	3	2001	South Carolina	Good	More than half of the	More than half of the	Nearly every day	Nearly everv dav	Nearly every dav	Several davs	Nearly every dav		Yes	No	No

Figure 8: Dropping Unnecessary Columns

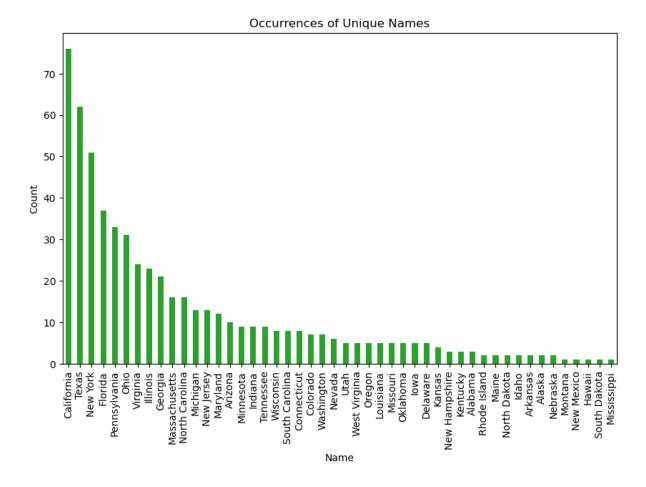


Figure 9: Pre-Visualisation

In [32]:	import matplotlib.pyplot as plt import seaborn as sns
	<pre>gender_counts = df['What is your sex?'].value_counts() df['What is your sex?'].replace({0: 'Male', 1: 'Female'}, inplace=True)</pre>
	custom_colors = ['#D62728', '#2CA02C']
	<pre># Set up a 1x2 grid for subplots fig, axes = plt.subplots(1, 2, figsize=(15, 7))</pre>
	<pre># Plot a countplot with custom colors sns.countplot(x='What is your sex?', data=df, palette=custom_colors, ax=axes[0]) axes[0].set_xlabel('Gender') axes[0].set_ylabel('(count') axes[0].set_title('Gender Distribution')</pre>
	<pre># Plot a pie plot with custom colors and explode # Replace the integers with strings in the 'What is your sex?' column df['What is your sex?'].replace({0: 'Male', 1: 'Female'}, inplace=True)</pre>
	<pre>axes[1].pie(gender_counts, labels=gender_counts.index, autopct='%1.1f%%', startangle=90, colors=custom_colors, explode=[0, 0.1]) axes[1].axis('equal') # Equal aspect ratio ensures that the pie is drawn as a circle. axes[1].set_title('Gender Distribution')</pre>
	<pre># Annotate count on top of each bar in the countplot for p in axes[0].patches: axes[0].annotate(f'{p.get_height()}', (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0,</pre>
	<pre># Adjust Layout plt.tight_layout() plt.show()</pre>

Figure 10: Gender Distribution Code

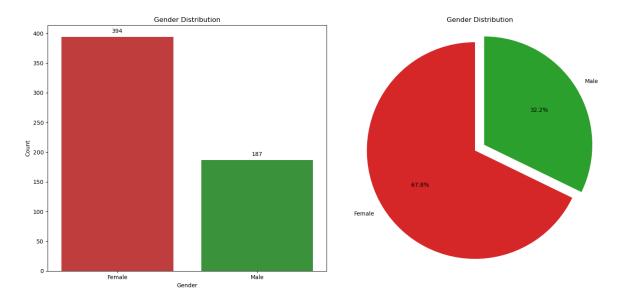


Figure 11: Bar Chart and Pie Plot of Gender Distribution

In [33]:	from sklearn.preprocessing import LabelEncoder											
In [34]:	label_encoder = LabelEncoder()											
	columns_to_encode = ['In which state do you live? - State','Considering your age, how would you describe your general health?'.											
	'Within the last 12 months how many times have you: - Felt overwhelmed by all you had to do',											
	'Within the last 12 months how many times have you: - Felt exhausted (not from physical activity)',											
	'Within the last 12 months how many times have you: - Felt very sad',											
	'Within the last 12 months how many times have you: - Felt so depressed that it was difficult to function',											
	'Within the last 12 months how many times have you: - Seriously considered attempting suicide',											
	'Within the last 12 months how many times have you: - Attempted suicide', 'Have you ever been diagnosed with depression?',											
	'If your answer to the previous question is yes, then: - Have you been diagnosed with depression within the last 12 months?',											
	'If your answer to the previous question is yes, then: - Are you currently in therapy for depression?',											
	'If your answer to the previous question is yes, then: - Are you currently taking medication for depression?',											
	'Within the last 12 months, have you had any of the following? - Allergy problems',											
	'Within the last 12 months, have you had any of the following? - Anorexia',											
	'Within the last 12 months, have you had any of the following? - Anxiety Disorder',											
	'Within the last 12 months, have you had any of the following? - Chronic Fatigue Syndrom',											
	'Within the last 12 months, have you had any of the following? - Depression',											
	'Within the last 12 months, have you had any of the following? - High blood pressure',											
	'Within the last 12 months, have you had any of the following? - High cholesterol',											
	'Within the last 12 months, have you had any of the following? - Repetitive stress injury (e.g. carpal tunnel syndrome)',											
	'Within the last 12 months, have you had any of the following? - Seasonal Affect Disorder',											
	'Within the last 12 months, have you had any of the following? - Substance abuse problem',											
	'Within the last 12 months, have you had any of the following? - Back pain',											
	'What is your sex?',											
	'Are you a full time student?',											
	'Are you an international student?']											

Figure 12: Label Encoding

In [35]:	-	head() were you born? - Year born	do you live? - State	you describe your general health?	by the following problems? - Little interest or pleasure in doing things?	by the following problems? - Feeling down, depressed, or hopeless?	by the following problems? - Trouble falling or staying asleep, or sleeping too much?	by the following problems? - Feeling tired or having little energy?	bothered by the following problems? - Poor appetite or overeating?	- Feeling bad about yourself ă€" or that you are a failure or have let yourself or your family down?	problems? - Trouble concentrating on things, such as reading the newspaper or watching television?	 had any of the following? Depression	had any of the following? - High blood pressure	had any of the following? - High cholesterol
	0	2000	44	2	0	3	3	3	3	0	3	 1	0	0
	1	1997	4	0	2	2	2	3	3	2	2	 0	0	0
	2	2000	19	4	3	3	2	3	2	2	0	 0	0	0
	3	2001	39	2	0	0	1	1	1	3	1	 1	0	0
	4	2000	8	2	0	0	0	0	3	0	3	 1	0	0
In [36]:			3 columns = df['I		ear were y	/ou born?	- Year bor	n']						
	Cor	relatio	n Matrix											
In [38]:	plt sns plt	.figur .heatm	e(figsiz ap(corre ('Correl		0))		cmap='cool	warm', lin	newidths=0.	5)				

Figure 13: Label Encoded data and Correlation Matrix

1	-0.38	-0.34	-0.24	0.068
-0.38	1	0.9	0.87	0.027
-0.34	0.9	1	0.9	0.031
-0.24	0.87	0.9	1	0.079
0.068	0.027	0.031	0.079	1

Figure 14: Correlated Variables

1	0.21	-0.2	0.051	-0.0015
0.21	1	-0.12	-0.017	0.058
-0.2	-0.12	1	-0.24	0.068
0.051	-0.017	-0.24	1	0.079
-0.0015	0.058	0.068	0.079	1

Figure 15: Correlation Removed

Descriptive Statistics

	tive_stats = df.describe(include='all') escriptive_stats)	
1	In what year were you born? - Year born	\
count	581.00000	
mean	1998.406196	
std	5.395422	
min	1971.000000	
25%	1998.00000	
50%	2000.000000	
75%	2001.000000	
max	2003.000000	
1	In which state do you live? - State \	
count	581.00000	
mean	23.981067	
std	14.802539	
min	0.00000	
25%	8.00000	
50%	28.00000	
75%	37.00000	
max	47.00000	

Figure 16: Descriptive Statistics

Data Splitting and Modelling

```
In [44]: !pip install scikit-learn pandas
                  Requirement already satisfied: scikit-learn in c:\users\alivasit\anaconda3\lib\site-packages (1.0.2)
                 Requirement already satisfied: schlichean in C. (users/alivasit/anaconda3/lib/site-packages (1.6.2)
Requirement already satisfied: joblib>=0.11 in c:\users/alivasit/anaconda3/lib/site-packages (1.6.4)
Requirement already satisfied: numpy>=1.14.6 in c:\users/alivasit/anaconda3/lib/site-packages (from scikit-learn) (1.1.0)
Requirement already satisfied: hreadpoolctl>=2.0.0 in c:\users/alivasit/anaconda3/lib/site-packages (from scikit-learn) (1.24.4)
                  0)
                 0)
Requirement already satisfied: scipy>=1.1.0 in c:\users\alivasit\anaconda3\lib\site-packages (from scikit-learn) (1.9.1)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\alivasit\anaconda3\lib\site-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in c:\users\alivasit\anaconda3\lib\site-packages (from pandas) (2022.1)
Requirement already satisfied: six>=1.5 in c:\users\alivasit\anaconda3\lib\site-packages (from python-dateutil>=2.8.1->pandas)
                  (1.16.0)
In [45]: import pandas as pd
from sklearn.model selection import train_test_split
                 from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier
                  from sklearn.metrics import accuracy_score, classification_report
                  Case Study 1 : Demographic Information
                 Decision Tree and Random Forrest
In [46]: X = df[['In what year were you born? - Year born', 'In which state do you live? - State', 'What is your sex?', 'Are you a full to
y = df['Have you ever been diagnosed with depression?']
                 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
                  dt_classifier = DecisionTreeClassifier()
                 dt_classifier.fit(X_train, y_train)
dt_predictions = dt_classifier.predict(X_test)
                 rf_classifier = RandomForestClassifier()
rf_classifier.fit(X_train, y_train)
rf_predictions = rf_classifier.predict(X_test)
```

Figure 17: Data Splitting and Case study 1

Decision Tree Accuracy: 0.9 Classificatio	57 on Report:			
	precision	recall	f1-score	support
0	0.65	0.74	0.69	76
1	0.35	0.27	0.31	41
accuracy			0.57	117
-	0.50	0 50		
macro avg	0.50	0.50	0.50	117
weighted avg	0.55	0.57	0.56	117
Random Forest Accuracy: 0.5 Classificatio	59			
	precision	recall	f1-score	support
0	0.65	0.79	0.71	76
1	0.36	0.22	0.27	41
accuracy			0.59	117
macro avg	0.51	0.50	0.49	117
weighted avg	0.55	0.59	0.56	117
neighten avg	0.00	0.00	0.50	±±/

Figure 18: Accuracy scores of Decision Tree and Random Forest

Support Vector Machine

accuracy macro avg weighted avg

0.53 0.57 0.51 0.62

In [47]:	from sklearn.svm import SVC from sklearn.metrics import accuracy_score, classification_report									
	<pre>svm_classifier = SVC(kernel='linear')</pre>									
	svm_classifier	.fit(X_train	n, y_train)							
	svm_prediction	s = svm_clas	sifier.predi	ct(X_tes	t)					
	<pre>svm_accuracy = accuracy_score(y_test, svm_predictions) svm_report = classification_report(y_test, svm_predictions)</pre>									
	<pre>print("Support print(f"Accura print("Classif print(svm_repo</pre>	cy: {svm_acc ication Repo	curacy:.2f}")		:")					
	Support Vector Accuracy: 0.62 Classification	Report:								
		precision	recall f1-	score	support					
	0	0.66	0.88	0.75	76					
	1	0.40	0.15	0.21	41					

117 117 117

0.62 0.48 0.56

Figure 19: SVM with scores

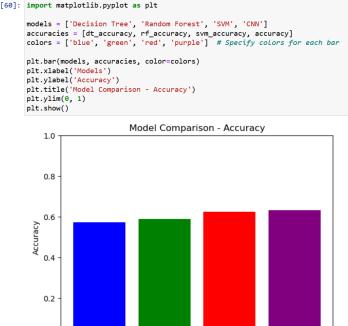
In [50]:	<pre>import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from keras.models import Sequential from keras.layers import Dense from sklearn.metrics import accuracy_score, classification_report</pre>
In [51]:	<pre># Standardize the feature data scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)</pre>
In [52]:	<pre>model = Sequential([Dense(units=64, activation='relu', input_dim=X_train.shape[1]), Dense(units=32, activation='relu'), Dense(units=1, activation='sigmoid')]) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) </pre>
	<pre>history = model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2) Epoch 1/10 12/12 [====================================</pre>

Figure 20: Convolutional Neural Network (CNN)

Epoch 1/10 12/12 [=========================] - 1s 27ms/step - loss: 0.6952 - accuracy: 0.4636 - val_loss: 0.6909 - val_accuracy: 0.54 84
Epoch 2/10 12/12 [========================] - 0s 7ms/step - loss: 0.6547 - accuracy: 0.6873 - val_loss: 0.6659 - val_accuracy: 0.580 6
epoch 3/10
12/12 [=========================] - 0s 6ms/step - loss: 0.6290 - accuracy: 0.6900 - val_loss: 0.6552 - val_accuracy: 0.591 4
Epoch 4/10
12/12 [==========================] - 0s 6ms/step - loss: 0.6121 - accuracy: 0.6927 - val_loss: 0.6574 - val_accuracy: 0.580
o Epoch 5/10
1/12 [====================================
6
Epoch 6/10
12/12 [====================================
6 Epoch 7/10
epoch //10 12/12 [====================================
4
Epoch 8/10
12/12 [====================================
4
Epoch 9/10
12/12 [==========================] - 0s 6ms/step - loss: 0.5856 - accuracy: 0.6954 - val_loss: 0.6717 - val_accuracy: 0.591
+ Epoch 10/10
L2/12 [====================================
4

Figure 21: CNN Epochs

In [53]:	<i># Evaluate th</i> loss, accurac				t)				
	<pre># Print the accuracy print(f"Accuracy on test data: {accuracy * 100:.2f}%")</pre>								
	from sklearn.metrics import classification_report								
		<pre># Make predictions on the test data y_pred = (model.predict(X_test) > 0.5).astype(int)</pre>							
	<pre># Generate th report = clas</pre>				, target_name	s=['Negative	', 'Positive	'])	
	<pre># Print the c print(report)</pre>		n report						
	4/4 [======= Accuracy on t 4/4 [=======	est data: 63	. 25% =====]	- 0s 2ms	/step	0.6163 - ac	curacy: 0.63	25	
	Negative	0.66	0.89	0.76	76				
	Positive	0.43	0.15	0.22	41				
	accuracy			0.63	117				
	macro avg	0.54	0.52	0.49	117				
	weighted avg		0.63	0.57	117				
	0 0								


Figure 22: CNN scores

0.0

Decision Tree

In [60]: import matplotlib.pyplot as plt

Random Forest Models

Figure 23: Model Comparison Case Study 1

CNN

svм

	Case Study 2 : General Health and Mental Health Assessment
In [62]:	X = df[['Considering your age, how would you describe your general health?','Over the last two weeks, how often have you been bot
	'Over the last two weeks, how often have you been bothered by the following problems? - Feeling down, depressed, or hopeless?',
	'Over the last two weeks, how often have you been bothered by the following problems? - Trouble falling or staying asleep, or sle
	'Over the last two weeks, how often have you been bothered by the following problems? - Feeling tired or having little energy?',
	'Over the last two weeks, how often have you been bothered by the following problems? - Poor appetite or overeating?',
	'Over the last two weeks, how often have you been bothered by the following problems? - Feeling bad about yourself â€" or that you
	'Over the last two weeks, how often have you been bothered by the following problems? - Trouble concentrating on things, such as
	'Over the last two weeks, how often have you been bothered by the following problems? - Moving or speaking so slowly that other p
	'Over the last two weeks, how often have you been bothered by the following problems? - Thoughts that you would be better off dea
	'Over the last two weeks, how often have you been bothered by the following problems? - Feeling nervous, anxious, or on edge',
	'Over the last two weeks, how often have you been bothered by the following problems? - Not being able to stop or control worryir
	'Over the last two weeks, how often have you been bothered by the following problems? - Worrying too much about different things'
	'Over the last two weeks, how often have you been bothered by the following problems? - Trouble relaxing',
	'Over the last two weeks, how often have you been bothered by the following problems? - Becoming easily annoyed or irritable',
	'Over the last two weeks, how often have you been bothered by the following problems? - Feeling afraid as if something awful migh
	<pre>y = df['Have you ever been diagnosed with depression?']</pre>
	Decision Tree And Random Forrest
In [64]:	dt_classifier = DecisionTreeClassifier()
	dt_classifier.fit(X_train, y_train)
	<pre>dt_predictions = dt_classifier.predict(X_test)</pre>
	rf classifier = RandomForestClassifier()
	rr_classifier = KandomrorestLlassifier() rf classifier.fit(x train, y train)
	rr_classifier.fit(A_frain, y_frain) rf predictions = rf classifier.predict(X test)
	rt_predictions = rt_classifier.predict(x_test)
	dt accuracy = accuracy score(y test, dt predictions)
	dt report = classification report(y test, dt predictions)
	<pre>rf_accuracy = accuracy_score(y_test, rf_predictions)</pre>
	<pre>rf_report = classification_report(y_test, rf_predictions)</pre>
	print("Decision Tree Classifier:")
	print(f"Accuracy: {dt accuracy:.2f}")

Figure 24: Case Study 2

Decision Tree And Random Forrest

```
In [64]: dt_classifier = DecisionTreeClassifier()
    dt_classifier.fit(X_train, y_train)
    dt_predictions = dt_classifier.predict(X_test)
    rf_classifier = RandomForestClassifier()
    rf_classifier.fit(X_train, y_train)
    rf_predictions = rf_classifier.predict(X_test)
    dt_accuracy = accuracy_score(y_test, dt_predictions)
    dt_report = classification_report(y_test, dt_predictions)
    rf_accuracy = accuracy_score(y_test, rf_predictions)
    rf_report = classification_report(y_test, rf_predictions)
    print("Decision Tree Classifier:")
    print("Classification Report:")
    print("NRandom Forest Classifier:")
    print("Accuracy: (ff_accuracy:.2f)")
    print("Classification Report:")
    print("freport)
```

Figure 25: Decision Tree and Random Forest Case study 2

Decision Tree Classifier: Accuracy: 0.59 Classification Report:				
	precision	recall	f1-score	support
	p			
0	0.67	0.72	0.70	76
1	0.40	0.34	0.37	41
accuracy			0.59	117
macro avg	0.54	0.53	0.53	117
weighted avg	0.58	0.59	0.58	117
Random Forest	Classifier:			
Accuracy: 0.6	6			
Classificatio	n Report:			
	precision	recall	f1-score	support
0	0.68	0.88	0.77	76
1	0.53	0.24	0.33	41
accuracy			0.66	117
macro avg	0.60	0.56	0.55	117
weighted avg	0.63	0.66	0.62	117

Figure 26: Random Forest and Decision Tree Scores

Support Vector Machine - SVM

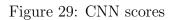
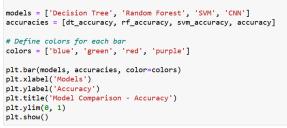

In [65]:			m import S trics impo		cy_score, d	lassification	n_report	
	svm_class	ifier	= SVC(kern	el='linea	r')			
	<pre>svm_classifier.fit(X_train, y_train)</pre>							
	svm_predi	ctions	s = svm_cla	ssifier.p	redict(X_te	est)		
	<pre>svm_accuracy = accuracy_score(y_test, svm_predictions) svm_report = classification_report(y_test, svm_predictions)</pre>							
	print(f"A	ccurac assifi	Vector Mac y: {svm_ac cation Rep	curacy:.2		er:")		
	Support V Accuracy:		Machine (S	VM) Class	ifier:			
	Classific		Report					
	010001110		precision	recall	f1-score	support		
		0	0.65	1.00	0.79	76		
		1	0.00			41		
		-	0.00	0.00	0.00			
	accur	acy			0.65	117		
	macro		0.32	0.50	0.39	117		
			0.42	0.65	0.51	117		

Figure 27: Support Vector Machine (SVM) with scores

	Neural Network - CNN
In [66]:	<pre>scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)</pre>
In [67]:	<pre>model = Sequential([Dense(units=64, activation='relu', input_dim=X_train.shape[1]), Dense(units=32, activation='relu'), Dense(units=1, activation='sigmoid')])</pre>
	<pre>model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)</pre>
	Epoch 1/10 12/12 [========] - 1s 24ms/step - loss: 0.6846 - accuracy: 0.5606 - val_loss: 0.6655 - val_accuracy: 0.58 06 Epoch 2/10
	<pre>Lpcin 2/10 [====================================</pre>
	12/12 [====================================
	Epoch 4/10 12/12 [=========================] - 0s 6ms/step - loss: 0.6033 - accuracy: 0.6631 - val_loss: 0.6501 - val_accuracy: 0.612 9
	Epoch 5/10 12/12 [====================================
	Epoch 6/10 12/12 [====================================
	Epoch 7/10 12/12 [====================================
	Epoch 8/10 12/12 [==========] - 0s 6ms/step - loss: 0.5645 - accuracy: 0.7251 - val_loss: 0.6505 - val_accuracy: 0.580 6



# Evaluate the					
loss, accuracy					
<pre># Print the acc print(f"Accurac</pre>		data: {accu	racy * 100	.2f}%")	
from sklearn.me	etrics impor	rt classifi	cation_rep	rt	
<pre># Make predicti y_pred = (model</pre>			5).astype(nt)	
# Generate the report = classi				target_names=['Negative', 'Positive'];	,
<pre># Print the cla print(report)</pre>	assification	n report			
4/4 [===================================	st data: 72	.65%		tep - loss: 0.5856 - accuracy: 0.7265	
4/4 [===================================	st data: 72	.65% =====]	- 0s 2ms/	tep	
4/4 [======= Accuracy on tes 4/4 [=========	st data: 72	.65% =======] recall f	- 0s 2ms/ 1-score	tep	
4/4 [======== Accuracy on tes 4/4 [========= P Negative	st data: 72 precision	.65% ========] recall f 0.97	- 0s 2ms/ 1-score 0.82	tep upport	
4/4 [======== Accuracy on tes 4/4 [========= P Negative	st data: 72 precision 0.71	.65% ========] recall f 0.97	- 0s 2ms/ 1-score 0.82	tep Jpport 76	
4/4 [===================================	st data: 72 precision 0.71	.65% ======] recall f 0.97 0.27	- 0s 2ms/ 1-score 0.82 0.41 0.73	tep upport 76 41	

In

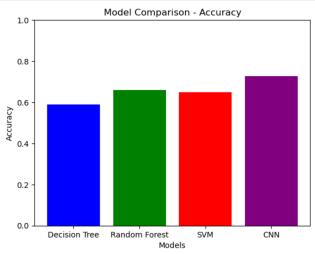


Figure 30: Case study 2 - Accuracy scores

Decision Tree Classifier:									
Accuracy: 0.74									
Classification Report:									
		precision	recall	f1-score	support				
	0	0.79	0.80	0.80	76				
	1	0.62	0.61	0.62	41				
accura	асу			0.74	117				
macro a	avg	0.71	0.71	0.71	117				
weighted a	avg	0.73	0.74	0.73	117				
0									
Random For	rest	Classifier:							
Accuracy:	0.7	7							
Classifica									
		precision	recall	f1-score	support				
		p. 0020200			Suppor c				
	0	0.78	0.89	0.83	76				
	1	0.73	0.54	0.62	41				
	-			0102					
accura	асу			0.77	117				
	-	0.76	0.72	0.73	117				
macro a	-								
weighted a	avg	0.76	0.77	0.76	117				

Figure 31: Case Study 3

Decision Tree Classifier: Accuracy: 0.74 Classification Report:								
Classificat		cision	recall	f1-score	support			
	P							
	0	0.79	0.80	0.80	76			
	1	0.62	0.61	0.62	41			
accurac	;y			0.74	117			
macro av	g	0.71	0.71	0.71	117			
weighted av	g	0.73	0.74	0.73	117			
Random Fore		ssifier:						
Accuracy: 6								
Classificat		•						
	pre	cision	recall	f1-score	support			
	0	0.78	0.89	0.83	76			
	1	0.73	0.54	0.62	41			
	-	01/2	0.01	0.02				
accurac	y			0.77	117			
macro av	g	0.76	0.72	0.73	117			
weighted av	g	0.76	0.77	0.76	117			

Figure 32: Scores of Random Forest and Decision Tree

Support Vector Machine - SVM

In [80]:	from sklearn.svm import SVC from sklearn.metrics import accuracy_score, classification_report											
	<pre>svm_classifier = SVC(kernel='linear')</pre>											
	<pre>svm_classifier.fit(X_train, y_train)</pre>											
	<pre>svm_predictio</pre>	ns = svm_cla	ssifier.pr	redict(X_te	est)							
		<pre>svm_accuracy = accuracy_score(y_test, svm_predictions) svm_report = classification_report(y_test, svm_predictions)</pre>										
	<pre>print("Suppor print(f"Accur print("Classi print(svm_rep</pre>	acy: {svm_ac fication Rep	curacy:.2		er:")							
	Accuracy: 0.6	Support Vector Machine (SVM) Classifier: Accuracy: 0.68 Classification Report:										
		precision	recall	f1-score	support							
	0	0.68	0.97	0.80	76							
	1	0.75	0.15	0.24	41							
	accuracy			0.68	117							
	macro avg	0.71	0.56	0.52	117							
	weighted avg	0.70	0.68	0.61	117							

Figure 33: SVM with scores

Neural N	etwork	-	CNN
----------	--------	---	-----

In [81]:	<pre>scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)</pre>
In [82]:	<pre>model = Sequential([Dense(units=64, activation='relu', input_dim=X_train.shape[1]), Dense(units=32, activation='relu'), Dense(units=1, activation='sigmoid')])</pre>
	<pre>model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])</pre>
	history = model.fit(X train, y train, epochs=10, batch size=32, validation split=0.2)
	Epoch 1/10 12/12 [========================] - 1s 21ms/step - loss: 0.7102 - accuracy: 0.4609 - val_loss: 0.6668 - val_accuracy: 0.62 37
	Epoch 2/10 12/12 [========================] - 0s 7ms/step - loss: 0.6313 - accuracy: 0.6819 - val_loss: 0.6326 - val_accuracy: 0.623 7
	Epoch 3/10 12/12 [====================================
	Epoch 4/10
	12/12 [========] - 0s 6ms/step - loss: 0.5904 - accuracy: 0.6658 - val_loss: 0.6205 - val_accuracy: 0.645
	Epoch 5/10 12/12 [====================================
	2
	Epoch 6/10 12/12 [=========================] - 0s 6ms/step - loss: 0.5748 - accuracy: 0.7089 - val_loss: 0.6245 - val_accuracy: 0.645
	2
	Epoch 7/10
	12/12 [====================================
	Epoch 8/10
	12/12 [====================================
	9

Figure 34: CNN with Epochs

In [83]:	# Evaluate the model on the test data loss, accuracy = model.evaluate(X_test, y_test)									
	<pre># Print the accuracy print(f"Accuracy on test data: {accuracy * 100:.2f}%")</pre>									
	from sklearn.metrics import classification_report									
	<pre># Make predictions on the test data y_pred = (model.predict(X_test) > 0.5).astype(int) # Generate the classification report report = classification_report(y_test, y_pred, target_names=['Negative', 'Positive'])</pre>									
	<pre># Print the c print(report)</pre>	lassificatio	n report							
	4/4 [====== Accuracy on t 4/4 [=======	est data: 66 ======	.67%	- 0s 2ms/	step	: 0.5577 - accuracy:	0.6667			
	Negative	0.69	0.88	0.77	76					
	Positive	0.55	0.27	0.36	41					
	accuracy macro avg weighted avg	0.62 0.64	0.57 0.67	0.67 0.57 0.63	117 117 117					

Figure 35: CNN scores

```
Case Study 4: Depression Diagnosis and Other Health Related Variables
In [92]: X = df[['Within the last 12 months, have you had any of the following? - Allergy problems',
'Within the last 12 months, have you and any of the following? - Annexta's
'Within the last 12 months, have you had any of the following? - Annexta's
'Within the last 12 months, have you had any of the following? - Annexta's
'Within the last 12 months, have you had any of the following? - Chronic Fatigue Syndrom',
'Within the last 12 months, have you had any of the following? - Chronic Fatigue Syndrom',
'Within the last 12 months, have you had any of the following? - Hepetitive Stress injury (e.g. carpal tunnel syndrome)',
'Within the last 12 months, have you had any of the following? - Sestonal Affect Disorder',
'Within the last 12 months, have you had any of the following? - Substance abuse problem',
'Within the last 12 months, have you had any of the following? - Substance abuse problem',
'Within the last 12 months, have you had any of the following? - Back pan']]
y = df['Have you ever been diagnosed with depression?']
In [93]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
Decision Tree and Random Forrest
In [94]: dt_classifier = DecisionTreeClassifier()
dt_classifier.fit(X_train, y_train)
dt_predictions = dt_classifier.predict(X_test)
rf_classifier.fit(X_train, y_train)
rf_predictions = rf_classifier.predict(X_test)
dt_accuracy = accuracy_score(y_test, dt_predictions)
rf_accuracy = accuracy_score(y_test, dt_predictions)
rf_report = classification_report(y_test, dt_predictions)
print("Decision Tree classifier:")
print("Idstingtion Report:")
print("Classifient Report:")
print("Idstingtion Report:")
print("Idstingtion Report:")
print("Idstingtion Report:")
print("Idstingtion Report:")
```

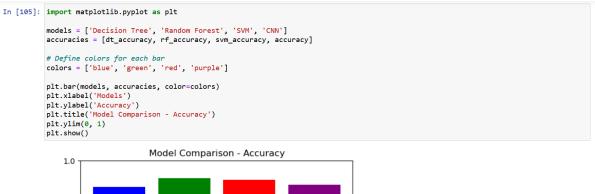
Figure 36: Case Study 4

Decision Tree Classifier: Accuracy: 0.87 Classification Report:								
	precision	recall	f1-score	support				
0	0.89	0.92	0.90	76				
1	0.84	0.78	0.81	41				
accuracy			0.87	117				
macro avg	0.86	0.85	0.86	117				
weighted avg	0.87	0.87	0.87	117				
Random Forest Classifier: Accuracy: 0.91 Classification Report:								
	precision	recall	f1-score	support				
0	0.95	0.92	0.93	76				
1	0.86	0.90	0.88	41				
accuracy			0.91	117				
macro avg	0.90	0.91	0.91	117				
weighted avg	0.92	0.91	0.91	117				

Figure 37: Decision Tree and Random forest scores

Support Vector Machine - SVM

```
In [95]: from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
            svm_classifier = SVC(kernel='linear')
            svm_classifier.fit(X_train, y_train)
            svm_predictions = svm_classifier.predict(X_test)
            svm_accuracy = accuracy_score(y_test, svm_predictions)
svm_report = classification_report(y_test, svm_predictions)
            print("Support Vector Machine (SVM) Classifier:")
print(f"Accuracy: {svm_accuracy:.2f}")
print("Classification Report:")
print(svm_report)
            Support Vector Machine (SVM) Classifier:
            Accuracy: 0.91
Classification Report:
                                                recall f1-score support
                               precision
                           0
1
                                      0.99
0.80
                                                 0.87
0.98
                                                                 0.92
0.88
                                                                                  76
41
                                                                  0.91
                                                                                 117
                  accuracy
            macro avg
weighted avg
                                      0.89
                                                    0.92
                                                                  0.90
                                                                                 117
                                      0.92
                                                    0.91
                                                                  0.91
                                                                                 117
```


Figure 38: SVM with scores

	Neural Network - CNN							
	<pre>scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)</pre>							
	<pre>model = Sequential([Dense(units=64, activation='relu', input_dim=X_train.shape[1]), Dense(units=32, activation='relu'), Dense(units=1, activation='sigmoid')])</pre>							
<pre>model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) bistory = model.fit(X train, y train, enochs=10, batch size=32, validation split=0.2)</pre>								
	Epoch 1/10 12/12 [========] - 1s 23ms/step - loss: 0.6823 - accuracy: 0.6469 - val_loss: 0.6482 - val_accuracy: 0.64 52 Epoch 2/10 12/12 [=======] - 0s 6ms/step - loss: 0.5870 - accuracy: 0.7547 - val_loss: 0.5735 - val_accuracy: 0.731 2 Epoch 3/10 12/12 [======] - 0s 7ms/step - loss: 0.5235 - accuracy: 0.8113 - val_loss: 0.5224 - val_accuracy: 0.795 7 Epoch 4/10 12/12 [========] - 0s 7ms/step - loss: 0.4732 - accuracy: 0.8248 - val_loss: 0.4883 - val_accuracy: 0.795							
	7 Epoch 5/10 12/12 [====================================							
	Epoch 6/10 12/12 [====================================							
	Epoch 7/10 12/12 [====================================							
	1/12[===================] - 0s 7ms/step - loss: 0.3911 - accuracy: 0.8383 - val_loss: 0.4318 - val_accuracy: 0.806 5							
	Dense(units=1, activation='sigmoid')]) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2) Epoch 1/10 12/12 [=========] - 1s 23ms/step - loss: 0.6823 - accuracy: 0.6469 - val_loss: 0.6482 - val_accuracy: 2 Epoch 2/10 12/12 [=========] - 0s 6ms/step - loss: 0.5870 - accuracy: 0.7547 - val_loss: 0.5735 - val_accuracy: 2 Epoch 3/10 12/12 [==========] - 0s 7ms/step - loss: 0.5235 - accuracy: 0.8113 - val_loss: 0.5224 - val_accuracy: 7 Epoch 4/10 12/12 [===============] - 0s 7ms/step - loss: 0.4405 - accuracy: 0.8248 - val_loss: 0.4883 - val_accuracy: 7 Epoch 5/10 12/12 [==========] - 0s 7ms/step - loss: 0.4162 - accuracy: 0.8362 - val_loss: 0.4483 - val_accuracy: 5 Epoch 6/10 12/12 [=========] - 0s 7ms/step - loss: 0.4162 - accuracy: 0.8362 - val_loss: 0.4483 - val_accuracy: 5 Epoch 7/10 12/12 [=========] - 0s 7ms/step - loss: 0.4034 - accuracy: 0.8362 - val_loss: 0.4353 - val_accuracy: 5 Epoch 8/10 12/12 [===============] - 0s 7ms/step - loss: 0.4034 - accuracy: 0.8363 - val_loss: 0.4353 - val_accuracy: 5 Epoch 8/10 12/12 [===============] - 0s 7ms/step - loss: 0.3911 - accuracy: 0.8363 - val_loss: 0.4318 - val_accuracy: 5 Epoch 8/10 12/12 [==============] - 0s 7ms/step - loss: 0.3911 - accuracy: 0.8363 - val_loss: 0.4318 - val_accuracy: 5 Epoch 8/10 12/12 [=============] - 0s 7ms/step - loss: 0.3911 - accuracy: 0.8363 - val_loss: 0.4318 - val_accuracy: 5 Epoch 8/10 12/12 [=======================] - 0s 7ms/step - loss: 0.3911 - accuracy: 0.8363 - val_loss: 0.4318 - val_accuracy: 5 Epoch 8/10 12/12 [====================================							

Figure 39: CNN with Epochs

In [98]:	# Evaluate the model on the test data loss, accuracy = model.evaluate(X test, y test)									
	<pre># Print the accuracy print(f"Accuracy on test data: {accuracy * 100:.2f}%")</pre>									
	from sklearn.metrics import classification_report									
	<pre># Make predictions on the test data y_pred = (model.predict(X_test) > 0.5).astype(int)</pre>									
	<pre># Generate the classification report report = classification_report(y_test, y_pred, target_names=['Negative', 'Positive'])</pre>									
	<pre># Print the clas print(report)</pre>	# Print the classification report print(report)								
	<pre>4/4 [===================================</pre>									
	Negative	0.91	0.91	0.91	76					
	Positive	0.83	0.83	0.83	41					
	accuracy			0.88	117					
	macro avg	0.87	0.87	0.87	117					
	weighted avg	0.88	0.88	0.88	117					

Figure 40: CNN scores

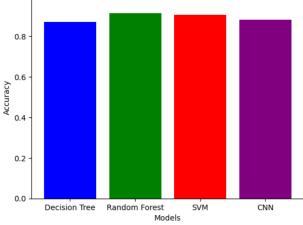


Figure 41: Case Study 4 - Accuracy comparison