~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Vasit Ali
Student ID: x22144170

School of Computing
National College of Ireland

Supervisor: Abid Yaqoob

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Vasit Ali
Student ID: x22144170
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Abid Yaqoob
Submission Due Date: 31/01/2024
Project Title: Configuration Manual
Word Count: 618
Page Count: P4

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Vasit Ali

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Vasit Ali
x22144170

1 Introduction

This manual illustrates how to execute and configure the implementation code for the
current research project. This document provides specified details about the machine
hardware as well as the programs to run. Following the below steps will enable the users
to generate summaries of the research papers.

2 System Specification

2.1 Hardware Specification

Following are the hardware specifications of the system that was used to develop the
project:

Component Specifications

Processor 12th Generation Intel®) Core™ i9-12900H processor

RAM 16 Gb/s, NVMe

Storage 1 TB SSD, PCle Gen4

Graphics Card NVIDIA®) GeForce RTX 3060 with 6 GB of dedicated GDDR6 VRAM
Operating System | Windows 11 Home 64-bit

Table 1: Hardware Specifications

2.2 Software Specification

Following are the software specifications of the system that was used to develop the
project:

Software Specifications
Operating System | Windows 11 Home 64-bit
IDE Jupyter Notebook
Scripting Language | Python 3.7

Table 2: Software Specifications

Python

& python’ o I -

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows /{‘“

Download Python 3.12.1

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, macOS, Other

Want to help test development versions of Python 3.13? Prereleases,

Docker images

Join our year end fundraiser by donating or becoming a PSF Member! | Support the PSF

Figure 1: Python’s Official Website Page

3 Software Tools

Following are the software tools that were used to implement the project.

3.1 Python

Python programming language was used to develop the project. The main reason to
choose Python was its useful libraries for Data cleaning, visualization, and deep learning
models. Python was downloaded from the main websitd] Figure [1] shows the download
page of Python’s official website.

3.2 Jupyter Notebook

Jupyter Notebook was used as a compiler to run the code as it allows the users to
implement all the code in one place and execute the codes in small parts like cells to
allow the audience to check the output of each code with ease. Jupyter Notebook was
downloaded from its official websitd’] and Figure [illustrates its download page

4 Packages and Libraries

4.1 Python Packages

Following are the Python packages which were installed using pip and used to implement
the project as shown in Figure 3] and Figure [

e scikit-learn

"https://www.python.org/downloads/
Znttps://jupyter.org/

https://www.python.org/downloads/
https://jupyter.org/

JupyterLab: A Next-Generation Notebook Interface

JupyterLab is the latest web-based interactive development environment for notebooks, code, and data.
Its flexible interface allows users to configure and arrange workflows in data science, scientific
computing, computational journalism, and machine learning. A modular design invites extensions to
expand and enrich functionality.

- e e 66 | i
| s e @ | R i Try itin your browser Install JupyterL.ab
|] | - p—

Figure 2: Jupyter Notebook’s Official Website Page

In [43]: !pip install scikit-learn pandas

Figure 3: Python Package scikit-learn

e Keras

e tensorflow

4.2 Python Libraries

Following are the Python libraries which were installed and used to implement the project
as shown in Figure

5 Implementation
Pandas library was used to load and check the dataset as can be seen in Figure [

e Data Cleaning

References

In [47]: !pip install keras

Requirement already satisfied: keras in c:\users\alivasit\anaconda3\lib\site-packages (2.14.0)

In [48]: !pip install tensorflow

Figure 4: Python Package Keras and tensorflow

In [1]: import pandas as pd

In [1]:

In [2]:

In [3]:

In [4]:

out[4]:

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.svm import SVC

from sklearn.metrics import (
accuracy_score,
classification_report,
confusion_matrix,
roc_curve,
auc,
precision_recall_curve,
average_precision_score,

)

from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import learning_curve

from keras.models import Sequential
from keras.layers import Dense

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

Figure 5: Python Libraries

file = r"C:\Users\Alivasit\Desktop\RIC Final Sem 2.xlsx"

data = pd.read_excel(file)

data.head()

Please feel
free to give
us any
Duration it feedback Timing Timing Tim
Start Response " - Recorded Distribution User :
End Date Progress (in Finished Response ID or -First -Last F
Date Type seconds) pate Ghannel Language ™ .. eccion Click8 Click8 Subt
regarding
this
survey.
1/29/2022 1/29/2022 P 1/29/2022 q
0 1534 1537 Address 100 161 True 1537 R_2zifm5KCPkSdac anonymous EN NaN 1703 1.703 17
1/29/2022 1/29/2022 P 1/29/2022 :
1 15:34 15:40 Address 100 406 True 15:40 R_CgipvsIKNyNWOuB anonymous EN NaN 1.166 13.832 1€
1/29/2022 1/29/2022 P 1/29/2022
2 15:40 15:44 AGEEES 100 247 True 15:44 R_116JaS9DQYURFIc anonymous EN NaN 2131 2131 34
1/29/2022 1/29/2022 P 1/29/2022
3 15:42 15:46 Address 100 247 True 15:46 R_3noq7XhdlifQwqxV anonymous EN NaN 2220 2220 44
1/29/2022 1/29/2022 P 1/29/2022 9
15:36 15:48 RS 100 666 True 15:48 R_1fme33nwji8nGa8 anonymous EN NaN 1190 4.132 "

5 rows x 129 columns

Figure 6:

Loaded Dataset

In [5]:

In [6]:

In [7]:

out[7]:

In [24]:

In [25]:

In [26]:

In [27]:

out[27]:

Data Cleaning

df = pd.DataFrame(data)

columns_to_drop = ['Start Date','End Date','Response Type','Progress','Duration (in seconds)','Finished','Recorded Date', 'Respons
df.drop(columns=columns_to_drop, inplace=True)

df.head()
In

Over the last

w::: In which 30 days
\xere state do approximately Timing
ou you how many - First
bo\:n’i live? - survey have Click

N Yea-r State you

born completed?

Timing Timing Timing
-Last -Page -Click
Click Submit Count

Welcome! We are
researchers affiliated with
LMU Munich, Tel Aviv
University, and EIEF and we
are running a survey about
health perceptions and
behaviors._x000D_\nThe
study consists of a 5-minute
survey. _x000D_\nYou will
receive standard
compensation from the
panel provider for your
participation.
x000D\nYour responses
will be completely
anonymous: all datasets will
include a Prolific ID
associated with your profile,
but they will not contain any
information that may
personally identify you.
x000D\nThere are no
known or anticipated risks
to you participating.
x000D\nParticipation in
this study is completely
voluntary. You are free to
decline to participate, to end
participation at any time for
any reason. Your decision
whether or not to participate
in this study will not affect
your relationship with LMU,
Tel Aviv University, or EIEF.
x000D\nif you have any
questions about this study,
vou mav contact the

Timing Timing
-First -Last
Click.1 Click.1

Figure 7: Data Cleaning Initialization

columns_to_drop = ['Over the last 3@ days approximately how many survey have you completed?"']
df.drop(columns=columns_to_drop, inplace=True)

Please feel
free to give
us any
feedback
or
impression

survey.

Timing Timing Timing- 1
-First -Last Page .
Click.8 Click.8 Submit8 C:

columns_to_drop = ['Please feel free to give us any feedback or impression regarding this survey.','Thank you for taking your tin
df.drop(columns=columns_to_drop, inplace=True)

columns_to_drop = ['The next question is about the following problem. In questionnaires like ours, sometimes there are participar
df.drop(columns=columns_to_drop, inplace=True)

Figure

8: Dropping Unnecessary Columns

df.head()
Over the
last two
weeks,
Over the Over the ?;’:trmg Over the how often O:‘:L‘:Z;;zt
last two last two weeks last two Over the have you how oftel:
weeks, weeks, how oﬂen’ weeks, last two been have you Within the
In Considerin how often how often have you how often weeks, how bothered bZen Within the last 12 Within the
what our a 3 have you have you b‘e’en have you oﬂen,have by the bothered b; last 12 months last 12
year N Which how woutd been been sthered been .y oubeen folowing .. folluwin; months, . oveyou Months,
state do bothered bothered bothered problems? have you have you
were you you by the by the by the by the bothered - Feeling problems? - had any of had any of had any of
you live? describe N N following N by the bad about Trouble th the th
born? ive? - your 4 =4 ? 4 following ad abou concentrating _the following? _the
Ye State problems? problems? F problems? yourself ; following? h following?
- Year general P " = Trouble " problems? __;, on things, = High "
born health? - Little - Feeling falingor ~ Feeling - Poor € Or that such as - blood - High
° interest or down, stayin tired or appetite or you are a reading the Dep
pleasure depressed, ying having ppetit , failure or 9 F
in doing or aslleep,_ or little overeating? have let newspatpt:lr_ or
P-4 , sleeping o watching
things? hopeless? © "3 energy? yourself television?
or your
family
down?
oS Several Several Several Several I
0 2000 Virginia Good half of the half of the Several days Yes No No
days days days days days days
S Several Several
1997 California Excellent Not at all Not at all Not at all days days Not at all Not at all No No No
Several Several Several More than half
2 2000 Maryland Very Good days days Not at all days Not at all Not at all of the days No No No
More than More than
3 2001 Sogth Good half of the half of the Nearly Nearly Nearly every Several Nearly every Yes No No
Sarolina - everv dav everv dav dav davs dav

Count

Occurrences of Unique Names

70 A

60

50 A

40 1

30 A

20+

10 A

Missouri
Oklahoma

Hawaii
South Dakota

Ohio
New Mexico

Virginia
lowa

Utah
Delaware

West Virginia

Texas
Mississippi

New York
llinois

Maine

North Dakota
Idaho
Arkansas
Alaska
Nebraska

Georgia

Massachusetts
North Carolina
Kansas

Florida
MNew Hampshire

Pennsylvania
Arizona
Minnesota
Indiana
Tennessee
Colorado
Washington
Nevada
Oregon
Louisiana
Montana

California
Michigan

New |ersey
Maryland
Wisconsin
South Carolina
Connecticut
Kentucky
Alabama
Rhode Island

Name

Figure 9: Pre-Visualisation

In [32]: import matplotlib.pyplot as plt
import seaborn as sns

gender_counts = df['What is your sex?'].value_counts()
df['What is your sex?'].replace({@: 'Male', 1: 'Female'}, inplace=True)

custom_colors = ['#D62728', '#2CA62C']

Set up a 1x2 grid for subplots
fig, axes = plt.subplots(l, 2, figsize=(15, 7))

Plot a countplot with custom colors

sns.countplot(x="What is your sex?', data=df, palette=custom_colors, ax=axes[8])
axes[@].set_xlabel('Gender')

axes[@].set_ylabel('Count")

axes[@].set_title('Gender Distribution')

Plot a pie plot with custom colors and explode
Replace the integers with strings in the 'What is your sex?' column
df['What is your sex?'].replace({@: 'Male', 1: 'Female'}, inplace=True)

axes[1].pie(gender_counts, labels=gender_counts.index, autopct='%1.1f%%', startangle=90, colors=custom_colors, explode=[8, ©.1])
axes[1].axis('equal') # Equal aspect ratio ensures that the pie is drawn as a circle.
axes[1].set_title('Gender Distribution')

Annotate count on top of each bar in the countplot
for p in axes[@].patches:
axes[@].annotate(f'{p.get_height()}', (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(e,

Adjust Llayout

plt.tight_layout()
plt.show()

Figure 10: Gender Distribution Code

Count

Gender Distribution Gender Distribution

400

350 4

300

250

2004

150 A

100 1

50 4

Gender

Figure 11: Bar Chart and Pie Plot of Gender Distribution

Label Encoding
In [33]: from sklearn.preprocessing import LabelEncoder

In [34]: label_encoder = LabelEncoder()

columns_to_encode = ['In which state do you live? - State’,'Considering your age, how would you describe your general health?','C
'Within the last 12 months how many times have you: - Felt overwhelmed by all you had to do’,

'Within the last 12 months how many times have you: - Felt exhausted (not from physical activity)"’,

'Within the last 12 months how many times have you: - Felt very sad',

'Within the last 12 months how many times have you: - Felt so depressed that it was difficult to function’,

'Within the last 12 months how many times have you: - Seriously considered attempting suicide’,

'Within the last 12 months how many times have you: - Attempted suicide®,'Have you ever been diagnosed with depression?’,

'If your answer to the previous question is yes, then: - Have you been diagnosed with depression within the last 12 months?’,
'If your answer to the previous question is yes, then: - Are you currently in therapy for depression?’,

'If your answer to the previous question is yes, then: - Are you currently taking medication for depression?’,

'Within the last 12 months, have you had any of the following? - Allergy problems’,

'Within the last 12 months, have you had any of the following? - Anorexia’,

'Within the last 12 months, have you had any of the following? - Anxiety Disorder',

'Within the last 12 months, have you had any of the following? - Chronic Fatigue Syndrom',
'Within the last 12 months, have you had any of the following? - Depression',

'Within the last 12 months, have you had any of the following? - High blood pressure',
'Within the last 12 months, have you had any of the following? - High cholesterol',

'Within the last 12 months, have you had any of the following? - Repetitive stress injury (e.g. carpal tunnel syndrome)',
'"Within the last 12 months, have you had any of the following? - Seasonal Affect Disorder',
'Within the last 12 months, have you had any of the following? - Substance abuse problem',
'Within the last 12 months, have you had any of the following? - Back pain',

'What is your sex?',

'Are you a full time student?’',

'Are you an international student?']

for col in columns_to_encode:
df[col] = label_encoder.fit_transform(df[col])

Figure 12: Label Encoding

In [35]: df.head()
were do 70! by the by the by .[e by the bothiered - Feeling problems?= had any of fad-any of had any of
you you describe . N g N by the bad about Trouble the the the
born? live? your roblemsg roblems: problems? roblems: following ourself concentrating following? following? following?
- Year - general P . Littl(.e P N Feelin. -Trouble P N Feelin. problems? aex or that on things, g i - High . ig'
born state health? interest or down? fasllti:gi:r tired 02 a '“::g: you are a rea:;uht:: Depression rezls‘:lor: cholesterol
pleasure depressed, asleey Dgr having szr:aﬁ" ., failure or newspal gror P
in doing slee:'i"g little 97 have let vfat‘;‘;i"g
things? hopeless? energy? yourself N
too much? or your television?
family
down?
0 2000 44 2 3 3 3 3 0 3 1 0 0
1 1997 4 0 2 2 2 3 3 2 2 0 0 0 |
2 2000 19 4) &) 2 3 2 2 0 0 0 0
3 2001 39 2 0 0 1 1 1 3 1 1 0 0 ‘
4 2000 8 2 0 0 0 0 3 0 3 1 0 0
5 rows x 43 columns J
In [36]: year_born = df['In what year were you born? - Year born']
Correlation Matrix
In [38]: correlation_matrix = df.corr()

plt.figure(figsize=(40, 48))

sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm', linewidths=8.5)
plt.title('Correlation Matrix Heatmap')

plt.show()

Figure 13: Label Encoded data and Correlation Matrix

0.068 0.027 0.031 0.079

Figure 14: Correlated Variables

In [41]:

Figure 15: Correlation Removed

Descriptive Statistics

descriptive_stats = df.describe(include="all")
print(descriptive_stats)

In what year were you born? - Year born \

count 581.000000
mean 1998.406196
std 5.395422
min 1971.000000
25% 1998.000000
50% 2000.000000
75% 2001.000000
max 2003 .000000

In which state do you live? - State \

count 581.000000
mean 23.981067
std 14.802539
min ©.000000
25% 8.000000
50% 28 .000000
75% 37 .008000
max 47 .000000

Figure 16: Descriptive Statistics

Data Splitting and Modelling

In [44]: !pip install scikit-learn pandas

Requirement already satisfied: scikit-learn in c:\users\alivasit\anaconda3\lib\site-packages (1.8.2)

Requirement already satisfied: pandas in c:\users\alivasit\anaconda3\lib\site-packages (1.4.4)

Requirement already satisfied: joblib>=@.11 in c:\users\alivasit\anaconda3\lib\site-packages (from scikit-learn) (1.1.8)
Requirement already satisfied: numpy>=1.14.6 in c:\users\alivasit\anaconda3\lib\site-packages (from scikit-learn) (1.24.4)
Requirement already satisfied: threadpoolctl>=2.8.8 in c:\users\alivasit\anaconda3\lib\site-packages (from scikit-learn) (2.2.
e)

Requirement already satisfied: scipy»>=1.1.8 in c:\users\alivasit\anaconda3\lib\site-packages (from scikit-learn) (1.9.1)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\alivasit\anaconda3\lib\site-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in c:\users\alivasit\anaconda3\lib\site-packages (from pandas) (2022.1)
Requirement already satisfied: six»>=1.5 in c:\users\alivasit\anaconda3\lib\site-packages (from python-dateutil>=2.8.1->pandas)
(1.16.8)

In [45]: import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report

Case Study 1 : Demographic Information

Decision Tree and Random Forrest

In [46]: X = df[['In what year were you born? - Year born', 'In which state do you live? - State', 'What is your sex?', 'Are you a full tj
y = df['Have you ever been diagnosed with depression?']

=

train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

dt_classifier = DecisionTreeClassifier()
dt_classifier.fit(X_train, y_train)
dt_predictions = dt_classifier.predict(X_test)

rf_classifier = RandomForestClassifier()
rf_classifier.fit(X_train, y_train)
rf_predictions = rf_classifier.predict(X_test)

Figure 17: Data Splitting and Case study 1

10

Decision Tree Classifier:
Accuracy: .57
Classification Report:

precision recall fl-score support

e 0.65 e.74 8.69 76

1 ©.35 e.27 8.31 41

accuracy e.57 117
macro avg 0.50 e.50 8.5e 117
weighted avg ©.55 8.57 0.56 117

Random Forest Classifier:
Accuracy: .59
Classification Report:

precision recall fl-score support

e 0.65 e.79 8.71 76

1 0.36 e.22 e.27 41

accuracy 8.59 117
macro avg ©.51 e.50 8.49 117
weighted avg ©.55 .59 .56 117

Figure 18: Accuracy scores of Decision Tree and Random Forest

11

In [47]:

In [5@]:

In [51]:

In [52]:

Support Vector Machine

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, classification_report
svm_classifier = SVC(kernel='linear')

svm_classifier.fit(X_train, y_train)

svm_predictions = svm_classifier.predict(X_test)

svm_accuracy = accuracy_score(y_test, svm_predictions)
svm_report = classification_report(y_test, svm_predictions)

print("Support Vector Machine (SVM) Classifier:")
print(f"Accuracy: {svm_accuracy:.2f}")
print("Classification Report:")

print(svm_report)

Support Vector Machine (SVM) Classifier:
Accuracy: 0.62
Classification Report:

precision recall fl-score support

[} 0.66 08.88 @.75 76

1 8.40 8.15 9.21 41

accuracy 0.62 117
macro avg ©.53 .51 9.48 117
weighted avg 8.57 .62 9.56 117

Figure 19: SVM with scores

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from keras.models import Sequential

from keras.layers import Dense

from sklearn.metrics import accuracy_score, classification_report

Standardize the feature data

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

model = Sequential([
Dense(units=64, activation='relu', input_dim=X_train.shape[1]),
Dense(units=32, activation='relu'),
Dense(units=1, activation='sigmoid")

bl
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=18, batch_size=32, validation_split=0.2)

Epoch 1/1@

12/12 [] -1
34

Epoch 2/1@

12/12 [
[

Epoch 3/18

12/12 []-e
4

Epoch 4/1e

12/12 [
6

Epoch 5/1@
12/12 [
6

»

[
»

7ms/step - loss: ©.6547 - accuracy: ©.6873

®

6éms/step - loss: ©.6290 - accuracy: @.690@

o
«

6ms/step - loss: ©.6121 - accuracy: ©.6927

[
»

7ms/step - loss: ©.6012 - accuracy: @.6927

Epoch 6/1@
12/12 []-eo

o

7ms/step - loss: ©.5953 - accuracy: 8.6873

Figure 20: Convolutional Neural Network (CNN)

12

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

©.6659

©.6552

©.6574

©8.6599

6.6642

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

27ms/step - loss: 8.6952 - accuracy: 0.4636 - val_loss: ©.6989 - val_accuracy: ©.54

©.580

8.591

©0.580

©.580

©.580

Epoch
12/12
84

Epoch
12/12

Epoch
12/12

Epoch
12/12

Epoch
12/12

Epoch
12/12

Epoch
12/12

Epoch
12/12

Epoch
12/12

Epoch
12/12

In [53]:

1/1e

2/10

3/1e

4/10

5/18

6/1e

7/1e

8/1e

9/1e

1e/1e

Evaluate the model on the test data
loss, accuracy = model.evaluate(X_test, y_test)

Print the accuracy
print(f"Accuracy on test data: {accuracy * 100:.2f}%")

from sklearn.metrics import classification_report

Make predictions on the test data
y_pred = (model.predict(X_test) > ©.5).astype(int)

Generate the classification report

report = classification_report(y_test, y_pred, target_names=['Negative',

Print the classification report

print(report)

4/4 [

Accuracy on test data: 63.25%

a/a [

Negative
Positive

accuracy
macro avg
weighted avg

precision

27ms/step - loss: ©.6952 - accuracy: 9.4636 - val_loss: ©.6989 - val_accuracy: 8.54

7ms/step

ems/step

6éms/step

7ms/step

7ms/step

ems/step

ems/step

6ms/step

éms/step

Figure 21:

recall fl-score

9.66 .89 0.76
9.43 6.15 8.22
e.63

9.54 e.52 .49
9.58 8.63 8.57

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

] - ©s 2ms/step
support

76
41

117
117
117

]

e.

8.

e.

e.

Q.

e.

Q.

e.

.6547

6290

6121

6012

5953

5%09

5886

5856

5844

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

0.6873

e.6960

8.6927

©.6927

©.6873

0.6954

©.6927

0.6954

0.6954

CNN Epochs

'Positive’])

] - s 3ms/step - loss: ©.6163 - accuracy: ©.6325

Figure 22: CNN scores

13

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

0.

Q.

0.

e.

Q.

0.

e.

o.

o.

6659

6552

6574

6599

6642

6677

6666

6717

6759

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

©.580

9.591

8.580

©.580

©.580

©.591

©.591

©.591

©.591

Model Comparison

In [60]: import matplotlib.pyplot as plt
models = ['Decision Tree', 'Random Forest', *'SVM', 'CNN']
accuracies = [dt_accuracy, rf_accuracy, svm_accuracy, accuracy]
colors = ['blue’, 'green', 'red', 'purple'] # Specify colors for each bar
plt.bar(models, accuracies, color=colors)
plt.xlabel('Models")
plt.ylabel('Accuracy")
plt.title('Model Comparison - Accuracy')
plt.ylim(e, 1)
plt.show()
Model Comparison - Accuracy
1.0
0.8 4
0.6 1
>
v
e
S
g
0.4 1
0.2 1
0.0 -
Decision Tree Random Forest SVM CNN
Models
Figure 23: Model Comparison Case Study 1
Case Study 2 : General Health and Mental Health Assessment
In [62]: X = df[['Considering your age, how would you describe your general health?','Over the last two weeks, how often have you been bot
‘Over the last two weeks, how often have you been bothered by the following problems? - Feeling down, depressed, or hopeless?’,
'Over the last two weeks, how often have you been bothered by the following problems? - Trouble falling or staying asleep, or sle
‘Over the last two weeks, how often have you been bothered by the following problems? - Feeling tired or having little energy?’,
'Over the last two weeks, how often have you been bothered by the following problems? - Poor appetite or overeating?',
'Over the last two weeks, how often have you been bothered by the following problems? - Feeling bad about yourself 3€” or that yc
‘Over the last two weeks, how often have you been bothered by the following problems? - Trouble concentrating on things, such as
'Over the last two weeks, how often have you been bothered by the following problems? - Moving or speaking so slowly that other g
'Over the last two weeks, how often have you been bothered by the following problems? - Thoughts that you would be better off dez
'Over the last two weeks, how often have you been bothered by the following problems? - Feeling nervous, anxious, or on edge’,
'Over the last two weeks, how often have you been bothered by the following problems? - Not being able to stop or control worryir
‘Over the last two weeks, how often have you been bothered by the following problems? - Worrying too much about different things'
'Over the last two weeks, how often have you been bothered by the following problems? - Trouble relaxing',
'Over the last two weeks, how often have you been bothered by the following problems? - Becoming easily annoyed or irritable’,
‘Over the last two weeks, how often have you been bothered by the following problems? - Feeling afraid as if something awful migk
y = df['Have you ever been diagnosed with depression?']
In [63]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
D 1 Tree And Random Forrest
In [64]: dt_classifier = DecisionTreeClassifier()

dt_classifier.fit(X_train, y_train)
dt_predictions =

rf_classifier = RandomForestClassifier()
rf_classifier.fit(X_train, y_train)
rf_predictions =

dt_classifier.predict(X_test)

rf_classifier.predict(X_test)

dt_accuracy = accuracy_score(y_test, dt_predictions)

dt_report =

classification_report(y_test, dt_predictions)

rf_accuracy = accuracy_score(y_test, rf_predictions)

rf_report =

print("Decision Tree Classifier:")
orint(f"Accuracv: {dt accuracv:.2f}")

Figure 24:

classification_report(y_test, rf_predictions)

Case Study 2

14

Decision Tree And Random Forrest

In [64]: dt_classifier = DecisionTreeClassifier()
dt_classifier.fit(X_train, y_train)
dt_predictions = dt_classifier.predict(X_test)

rf_classifier = RandomForestClassifier()
rf_classifier.fit(X_train, y_train)
rf_predictions = rf_classifier.predict(X_test)

dt_accuracy = accuracy_score(y_test, dt_predictions)

dt_report = classification_report(y_test, dt_predictions)

rf_accuracy = accuracy_score(y_test, rf_predictions)

rf_report = classification_report(y_test, rf_predictions)

print("Decision Tree Classifier:")
print(f"Accuracy: {dt_accuracy:.2f}")
print("Classification Report:")

print(dt_report)

print("\nRandom Forest Classifier:")
print(f"Accuracy: {rf_accuracy:.2f}")
print("Classification Report:")

print(rf_report)

Figure 25: Decision Tree and Random Forest Case study 2

Decision Tree Classifier:

Accuracy: ©.59
Classification

=

accuracy
macro avg
weighted avg

Random Forest Classifier:

Accuracy: ©.66
Classification

accuracy
macro avg
weighted avg

Figure 26: Random Forest and Decision Tree Scores

Report:
precision

Report:
precision

©.68
©.53

©.60
0.63

recall

recall

15

©.88
e.24

.56
.66

fl-score

©.59
©.53
©.58

fl-score

0.77
©.33

©.66
©.55
0.62

support

76
41

117
117
117

support

76
41

117
117
117

In [65]:

In [66]:

In [67]:

Support Vector Machine - SVM

from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report

svm_classifier = SVC(kernel='linear')
svm_classifier.fit(X_train, y_train)
svm_predictions = svm_classifier.predict(X_test)

svm_accuracy = accuracy_score(y_test, svm_predictions)
svm_report = classification_report(y_test, svm_predictions)

print("Support Vector Machine (SVM) Classifier:")
print(f"Accuracy: {svm_accuracy:.2f}")
print("Classification Report:")

print(svm_report)

Support Vector Machine (SVM) Classifier:
Accuracy: ©.65
Classification Report:

precision recall fl-score support

-] 8.65 1.e0 8.79 76

1 0.e0 8.e8 8.00 41

accuracy 0.65 117
macro avg 9.32 6.50 0.39 117
weighted avg 0.42 8.65 8.51 117

Figure 27: Support Vector Machine (SVM) with scores

Neural Network - CNN

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

model = Sequential([
Dense(units=64, activation='relu', input_dim=X_train.shape[1]),
Dense(units=32, activation='relu'),
Dense(units=1, activation='sigmoid')

1
model.compile(loss='binary_crossentropy’, optimizer='adam’, metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=18, batch_size=32, validation_split=8.2)

Epoch 1/1@
12/12 [
ee6
Epoch 2/1@

12/12 [1-e0
9

Epoch 3/1e

12/12 [] - es éms/step - loss: ©.6188 - accuracy:
9

Epoch 4/18

12/12 [1- e
9

Epoch 5/18

12/12 [1- e
9

—
'
=
»

®

»

éms/step - loss: ©.6356 - accuracy: ©.6388

®

.6469

"
®
®

6ms/step - loss: ©.6033 - accuracy: ©.6631

[
©
®

eéms/step - loss: ©.5932 - accuracy: @.6819
Epoch 6/18

12/12 [
7

Epoch 7/10

12/12 [1- e
2

Epoch 8/18

12/12 [
6

Epoch 9/18

©
©

.7008

—
'
o
[

6ms/step - loss: ©.5832 - accuracy:

7
©
©

7ms/step - loss: 8.5733 - accuracy: €.7170

—
'
[
7
©
©

6ms/step - loss: 8.5645 - accuracy: ©.7251

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

.6585

.6491

.6501

.6532

.6543

.6531

.6505

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

24ms/step - loss: ©.6846 - accuracy: ©.5606 - val_loss: ©.6655 - val_accuracy: ©.58

0.612

9.612

9.612

9.612

9.623

0.662

0.580

Figure 28: CNN and Epochs

16

In [68]: # Evaluate the model on the test data
loss, accuracy = model.evaluate(X_test, y_test)

Print the accuracy
print(f"Accuracy on test data: {accuracy * 108:.2f}%")

from sklearn.metrics import classification_report

Make predictions on the test data
y_pred = (model.predict(X_test) > ©.5).astype(int)

Generate the classification report
report = classification_report(y_test, y_pred, target_names=['Negative', 'Positive'])

Print the classification report

print(report)
4/4 [] - @s 2ms/step - loss: ©.5856 - accuracy: ©.7265
Accuracy on test data: 72.65%
4/4 [1 - @s 2ms/step
precision recall fl-score support
Negative e.71 e.97 9.82 76
Positive 0.85 8.27 0.41 41
accuracy 0.73 117
macro avg 0.78 8.62 @.61 117
weighted avg 8.76 8.73 0.68 117

Figure 29: CNN scores

In [75]: import matplotlib.pyplot as plt

models = ['Decision Tree', 'Random Forest®, 'SVM", 'CNN']
accuracies = [dt_accuracy, rf_accuracy, svm_accuracy, accuracy]

Define colors for each bar
colors = ['blue', 'green', 'red', 'purple']

plt.bar(models, accuracies, color=colors)
plt.xlabel('Models')
plt.ylabel('Accuracy")

plt.title('Model Comparison - Accuracy')
plt.ylim(e, 1)

plt.show()

Model Comparison - Accuracy
1.0

0.8

Accuracy

Decision Tree Random Forest SVM CNN
Models

Figure 30: Case study 2 - Accuracy scores

17

Decision Tree Classifier:
Accuracy: .74
Classification Report:

precision recall
e 8.79 e.80
1 8.62 8.6l

accuracy
macro avg 8.71 e.71
weighted avg .73 .74

Random Forest Classifier:
Accuracy: .77
Classification Report:

precision recall
e 0.78 .89
1 8.73 e.54

accuracy
macro avg 8.76 8.72
weighted avg .76 0.77

fl-score

0.80
0.62

0.74
0.71
8.73

fl-score

e.77
e.73
0.76

Figure 31: Case Study 3

18

support

76
41

117
117
117

support

76
41

117
117
117

Decision Tree Classifier:
Accuracy: 8.74
Classification Report:

precision recall

e 8.79 0.80
1 0.62 .61

accuracy
macro avg 8.71 e.71
weighted avg .73 .74

Random Forest Classifier:
Accuracy: .77
Classification Report:

precision recall

accuracy
macro avg 8.76 e.72
weighted avg .76 8.77

fl-score

©.80
0.62

0.74

0.71
e.73

fl-score

support

76
41

117
117
117

support

76
41

117
117
117

Figure 32: Scores of Random Forest and Decision Tree

Support Vector Machine - SVM

In [8@]: from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, classification_report

svm_classifier = SVC(kernel='linear")
svm_classifier.fit(X_train, y_train)
svm_predictions = svm_classifier.predict(X_test)

svm_accuracy = accuracy_score(y_test, svm_predictions)
svm_report = classification_report(y_test, svm_predictions)

print("Support Vector Machine (SVM) Classifier:")
print(f"Accuracy: {svm_accuracy:.2f}")
print("Classification Report:")

print(svm_report)

Support Vector Machine (SVM) Classifier:
Accuracy: ©.68
Classification Report:

precision recall fil-score support

(-] 0.68 8.97 e.8e 76

1 0.75 .15 0.24 41

accuracy 0.68 117
macro avg e.71 .56 0.52 117
weighted avg 8.70 8.68 8.61 117

Figure 33: SVM with scores

19

In [81]:

In [82]:

Neural Network - CNN

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

model = Sequential([
Dense(units=64, activation='relu’', input_dim=X_train.shape[1]),
Dense(units=32, activation='relu'),
Dense(units=1, activation="sigmoid")

1

model.compile(loss="binary_crossentropy', optimizer="adam’, metrics=['accuracy'])

history = model.fit(X_train, y_train, epochs=18, batch_size=32, validation_split=e.2)

Epoch 1/1@

12/12 [] - 1s 21ms/step - loss: ©.7102 - accuracy: ©.4609 - val_loss: 0.6668 - val_accuracy: 0.62
37

Epoch 2/1@
12/12 [
7
Epoch 3/1@

12/12 [1-e0
2

—
©
w

w

Epoch 4/1@
12/12 [
2
Epoch 5/1@

12/12 [1-e
2

—
©
w

w

Epoch 6/1@
12/12 [
2
Epoch 7/1@

12/12 [1-e
2

—
©
w

w

Epoch 8/1@
12/12
9

—
©
w

Figure 34: CNN with Epochs

In [83]: # Evaluate the model on the test data

los

s, accuracy = model.evaluate(X_test, y_test)

Print the accuracy

pri

nt(f"Accuracy on test data: {accuracy * 18@:.2f}%")

from sklearn.metrics import classification_report

Make predictions on the test data

y_p

red = (model.predict(X_test) > ©.5).astype(int)

Generate the classification report
report = classification_report(y_test, y_pred, target_names=['Negative', 'Positive'])

Print the classification report

7ms/step - loss: ©.6313 - accuracy: ©.

7ms/step - loss: ©.6011 - accuracy: ©.

6ms/step - loss: ©.5904 - accuracy: ©.

7ms/step - loss: ©.5804 - accuracy: O.

6ms/step - loss: ©.5748 - accuracy: ©.

6ms/step - loss: ©.5704 - accuracy: ©.

7ms/step - loss: ©.5671 - accuracy: ©.

6819

6712

6658

7089

7089

7035

6981

print(report)
4/4 [] - @s 3ms/step - loss: @.5577 - accuracy: 0.6667
Accuracy on test data: 66.67%
4/4 [] - @s 2ms/step
precision recall fl-score support
Negative .69 .88 0.77 76
Positive 0.55 e.27 @.36 41
accuracy 0.67 117
macro avg 8.62 8.57 @.57 117
weighted avg 8.64 .67 0.63 117

Figure 35: CNN scores

20

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

2]

.6326

.6216

.6205

.6243

.6245

.6236

.6255

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

9.623

9.645

9.645

0.645

9.645

0.645

9.655

Case Study 4 : Depression Diagnosis and Other Health Related Variables

In [92]: X = df[['Within the last 12 months, have you had any of the following? - Allergy problems',
'Within the last 12 months, have you had any of the following? - Anorexia’,
'Within the last 12 months, have you had any of the following? - Anxiety Disorder',
‘Within the last 12 months, have you had any of the following? - Chronic Fatigue Syndrom’,
'Within the last 12 months, have you had any of the following? - Depression’,
'Within the last 12 months, have you had any of the following? - High blood pressure’,
'Within the last 12 months, have you had any of the following? - High cholesterol’,
'Within the last 12 months, have you had any of the following? - Repetitive stress injury (e.g. carpal tunnel syndrome)’,
‘Within the last 12 months, have you had any of the following? - Seasonal Affect Disorder’,
'Within the last 12 months, have you had any of the following? - Substance abuse problem',
'Within the last 12 months, have you had any of the following? - Back pain']]
y = df['Have you ever been diagnosed with depression?']

In [93]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=6.2, random_state=42)
Decision Tree and Random Forrest

In [94]: dt_classifier = DecisionTreeClassifier()
dt_classifier.fit(X_train, y_train)
dt_predictions = dt_classifier.predict(X_test)

rf_classifier = RandomForestClassifier()
rf_classifier.fit(X_train, y_train)
rf_predictions = rf_classifier.predict(X_test)

dt_accuracy = accuracy_score(y_test, dt_predictions)
dt_report = classification_report(y_test, dt_predictions)

rf_accuracy = accuracy_score(y_test, rf_predictions)
rf_report = classification_report(y_test, rf_predictions)

print(“"Decision Tree Classifier:")
print(f"Accuracy: {dt_accuracy:.2f}")
print("Classification Report:")
print(dt_report)

Figure 36: Case Study 4

21

Decision Tree Classifier:
Accuracy: ©.87
Classification Report:

precision recall

=
®
[#.4]
Ja
®
~J
o

accuracy
macro avg 0.86 .85
weighted avg 0.87 ©.87

Random Forest Classifier:
Accuracy: .91
Classification Report:

precision recall

e ©.95 e.92
1 ©.86 e.9e

accuracy
macro avg e.9e e.91
weighted avg 0.92 ©.91

fl-score

0.90
0.81

0.87
0.86
0.87

fl-score

0.93
.88

0.91
0.91
0.91

support

76
41

117
117
117

support

76
41

117
117
117

Figure 37: Decision Tree and Random forest scores

Support Vector Machine - SVM

In [95]: from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, classification_report

svm_classifier = SVC(kernel='linear")
svm_classifier.fit(X_train, y_train)
svm_predictions = svm_classifier.predict(X_test)

svm_accuracy = accuracy_score(y_test, svm_predictions)
svm_report = classification_report(y_test, svm_predictions)

print("Support Vector Machine (SVM) Classifier:")
print(f"Accuracy: {svm_accuracy:.2f}")
print(“"Classification Report:")

print(svm_report)

Support Vector Machine (SVM) Classifier:
Accuracy: ©.91
Classification Report:

precision recall fl-score support

e 9.99 8.87 8.92 76

1 0.80 8.98 0.88 41

accuracy 0.91 117
macro avg 9.89 e.92 9.90 117
weighted avg 9.92 8.91 0.91 117

Figure 38: SVM with scores

22

Neural Network - CNN

In [96]: scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
In [97]: model = Sequential([
Dense(units=64, activation='relu’, input_dim=X_train.shape[1]),
Dense(units=32, activation='relu'),
Dense(units=1, activation='sigmoid')
1
model.compile(loss="'binary_crossentropy', optimizer='adam', metrics=["accuracy'])
history = model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)
Epoch 1/1e
12/12 [] - 1s 23ms/step - loss: ©.6823 - accuracy: ©.6469 - val_loss: ©.6482 - val_accuracy: .64
52
Epoch 2/1@
12/12 [] - @s éms/step - loss: ©.5870 - accuracy: ©.7547 - val_loss: ©.5735 - val_accuracy: ©.731
2
Epoch 3/1e
12/12 [] - @s 7ms/step - loss: ©.5235 - accuracy: ©.8113 - val_loss: ©.5224 - val_accuracy: 8.795
7
Epoch 4/1@
12/12 [] - @s 7ms/step - loss: ©.4732 - accuracy: ©.8248 - val_loss: ©.4883 - val_accuracy: ©.795
7
Epoch 5/18
12/12 [] - @s 7ms/step - loss: ©.44@5 - accuracy: ©.8275 - val_loss: ©.4628 - val_accuracy: ©.806
5
Epoch 6/1e
12/12 [] - @s 8ms/step - loss: ©.4162 - accuracy: ©.8302 - val_loss: ©.4483 - val_accuracy: ©.806
5
Epoch 7/1@
12/12 [] - @s 7ms/step - loss: ©.4034 - accuracy: ©.8329 - val_loss: ©.4353 - val_accuracy: ©.806
5
Epoch 8/1@
12/12 [] - @s 7ms/step - loss: 0.3911 - accuracy: ©.8383 - val_loss: ©.4318 - val_accuracy: ©.806
5
Epoch 9/1@
Figure 39: CNN with Epochs
In [98]: # Evaluate the model on the test data

loss, accuracy = model.evaluate(X_test, y_test)

Print the accuracy
print(f"Accuracy on test data: {accuracy * 1ee@:.2f}%")

from sklearn.metrics import classification_report

Make predictions on the test data

y_pred

= (model.predict(X_test) » 6.5).astype(int)

Generate the classification report
= classification_report(y_test, y_pred, target_names=['Negative', 'Positive'])

report

Print the classification report

print(report)

4/4 [

Accuracy on test data: 88.03%

] - ©s 3ms/step - loss: ©.3282 - accuracy: ©.8803

a/4 [] - @s 3ms/step
precision recall fl-score support
Negative 0.91 .91 9.91 76
Positive 0.83 8.83 9.8 41
accuracy .88 117
macro avg 0.87 .87 0.87 117
weighted avg .88 0.88 9.88 117

Figure 40: CNN scores

23

In [165]: dimport matplotlib.pyplot as plt

models = ['Decision Tree', 'Random Forest', 'SVM', 'CNN']
accuracies = [dt_accuracy, rf_accuracy, svm_accuracy, accuracy]

Define colors for each bar
colors = ['blue’, 'green', 'red', 'purple']

plt.bar(models, accuracies, color=colors)
plt.xlabel('Models")
plt.ylabel('Accuracy’)

plt.title('Model Comparison - Accuracy')
plt.ylim(e, 1)

plt.show()

Model Comparison - Accuracy

1.0

0.8 1

0.6

Accuracy

0.4 4

0.2 1

0.0 -

Decision Tree Random Forest SVM CNN
Models

Figure 41: Case Study 4 - Accuracy comparison

24

	Introduction
	System Specification
	Hardware Specification
	Software Specification

	Software Tools
	Python
	Jupyter Notebook

	Packages and Libraries
	Python Packages
	Python Libraries

	Implementation

