"'—-
\ National

Configuration Manual

MSc Research Project
Data Analytics

Akintomiwa Tomisin Akinyemi
Student ID: x22137149

School of Computing
National College of Ireland

Supervisor: Dr. Anu Sahni

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Akintomiwa Tomisin Akinyemi
Student ID: x22137149
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Dr. Anu Sahni
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 717
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Akintomiwa Tomisin Akinyemi
x22137149

1 Overview

This manual provides an insight into the implementation phase of the project, including
the system specifications, necessary softwares needed to be installed, and environments,
needed to conductand execute the research. The research was done to observe the effect-
iveness of various machine learning models in predicting loan defaults within Nigerian
microfinance banks.

2 Hardware/Software Requirements

This section highlights the minimum hardware and software requirements for the execu-
tion of this project.

2.1 Hardware Requirements

The hardware details have been provided below:

Spec Name Value
Operating System Microsoft Windows 11 Home
Processor Intel(R) Core(TM) i5-1035G1@1.00GHz, 1.19 GHz
RAM 8.00GB (7.60GB usable)
Disk Space 256GB SSD
System Type Microsoft Surface Laptop Go

Table 1: Hardware Requirements

2.2 Software Requirements

The code implementation was split into two sections; the preliminary processes were done
on Jupyter Notebook, and the model implementation was carried out on Google Colab, a
cloud-based IDE, using Python programming language. The software details have been
provided below:

Spec Name Value
Programming Language Python 3.10
IDE Jupyter Notebook, Google Colab
Browser Google Chrome, version 119.0.6045.200
RAM 12.7GB
Disk 107GB

Table 2: Software Requirements

3 Data Source

The dataset used for this research was obtained from QORE data warehouse. Due to
computational and time constraints, only a section of the data was randomly selected for

preprocessing and modelling.

loanData = pd.read_csv("Test Data\\loanData_Personal.csv")

C:\Users\Test\AppData\Local\Temp\ipykernel 18776\3656360740.py:1: DtypeNarning: Columns (3) have mixed types. Specify dtype opt

ion on import or set low memory-False.
loanData = pd.read_csv("Test Data\\loanData_Personal.csv")

Figure 1: Reading data on Jupyter Notebook

ease rerun this cell to enable.

Figure 2: Reading data on Google Colab

4 Python Libraries

In order to conduct this research, it was necessary to install and import several Python
libraries into Colab. Some of the essential packages include SKlearn, Numpy, and Pandas.

Figure |3| displays a comprehensive analysis of the libraries utilised.

matplotlib.pyplot as plt

Figure 3: Imported Libraries on Google Colab

5 Data Preprocessing

The dataset was imported into a pandas dataframe on Jupyter Notebook, after which
the records were checked for null and missing values as seen in Figure [df Columns
indicating applicants personal details like FirstName’, ‘Surname’, and 'PhoneNumber’
were removed to protect them. Records with null values for ’CustomerAge’ were removed
since it’s an important attribute and only a small percentage fell under this category.

Now check for missing or null values

Check for NaN values
nan_values = loanData.isnull().any()

print("\nColumns with NaN values:™)
print{nan_values)

Columns with NaMN values:

CustomerID False
Customerige True
Gender True
DOB True
Address True
City True
MarriageStatus True
EmploymentStatus True
BankBalance False
LoanID False
LoanAmount False
LoanTerm (Days) False
LoanRequestTime True
LoanStatus True
dtype: bool

Figure 4: Checking for missing values

Transformation of the data also took place in this section as seen in Figure [5] using
the LabelEncoder method from sklearn library, a fit_transform was performed on ’Loan-
Status’, 'EmploymentStatus’, "MarriageStatus’, and ’Gender’ attributes. This converted
the enum characters to integer.

: from sklearn.preprocessing import LabelEncoder

Instantiate the LabelFncoder
label_encoder = LabelEncoder()

Apply label encoding to the categorical attributes

loanData_Cleaned['loan_Status'] = label_encoder.fit_transform(loanData_Cleaned['loanStatus'])
loanData_Cleaned['Employment_Status’] = label_encoder.fit_transform(loanData_Cleaned[EmploymentStatus’])
loanData_Cleaned['Marriage_Status'] = label_encoder.fit_transform(loanData_Cleaned['MarriageStatus'])
loanData_Cleaned['Sex’] = label_enceder.fit_transform(loanData_Cleaned[Gender'])

Display the DataFrame after Label encoding
print(loanData_Cleaned.head())

CustomerID CustomerAge Gender DOB
2] 5386 67.0 Female ©2/82/1956
1 1608 44.9@ Female 12/08/197%
2 991 43.0 Male 21/84/1988
3 1875 46.@ Female ©6/89/1977
5 7198 68.0 Female 31/83/1963

Address City MarriageStatus \

<] NO26 FREEDOM ROAD UBIAJA UBIAJA Married
1 MO. 22 JUNIOR STAFF QTRS G.R.A UBIAJA UGEOHA Married
2 NO. SACRED HEART LANE EGUARE QTRS UBIAJA Nal Single
3 NO.34 MARKET ROAD UBIAJA. UBIAJA Single
5 EGUSI QTRS UBIAJA IBADAN Married

EmploymentStatus BankBalance LoanID LoanAmount LoanTerm (Days) \
2] Employed 21@460.105 LPoe1ees 15000000 18@
1 Employed 124186.524 LP@@l1@24 15000000 180
2 Employed 3178304.000 LP@©l@27 leoeoeoe 240
3 Employed 299566.521 LP@01@28 100000000 300
5 Employed 21414.715 LPeele34 60000000 360

Figure 5: Encoding the attributes

6 Data Visualization

This section contains the various steps performed during exploratory data analysis (EDA).
it shows the relationship of other variables with the target variable (LoanStatus).

1. Figure [6] shows a pie chart of the split between defaulted and repaid loans.

Count the occurrences of each category in the 'LoanStatus® column
loan_status_counts = finalloanData['LoanStatus’].value_counts()
custom_labels = ['Defaulted’, 'Repaid’]

Plot a pie chart

plt.figure(figsize=(s, 8))

plt.pie(loan_status_counts, labels=custom_labels, autopct='%1.1%%', startangle=90, colors=['tomato’, 'gold'])
plt.title(Distribution of Loan Repayment Status')

plt.shou()

Figure 6: Distribution of Target variable class

2. The relationship between the applicants gender and outcome of the loan was ex-
plored and illustrated in Figure

3. Figure |8 depicts how the applicants’ employment status affects the loan status.

sns.countplot(x= finalloanData[Gender'] , hue= finalloanData[LoanStatus'])
plt.title('Gender & Loan Status');

Gender & Loan Status

200004 LoanStatus
Em Defaulted
17500 | ™== Repaid

15000 A

12500

count

10000 A

7500 4

5000 -

2500 A

04

Female Male
Gender

Figure 7: Relationship between Gender and LoanStatus

sns.countplot(x= finalloanData['EmploymentStatus’] , hue= finalloanData['LoanStatus'])
plt.title('Employment Status & Loan Status');

Employment Status & Loan Status

LoanStatus
16000 B Defaulted
B Repaid
14000 4
12000 4
.. 10000 A
[
2
8

8000

6000 -

4000 A

2000 A

Employed SelfEmployed UnEmployed
EmploymentStatus

Figure 8: Relationship between EmploymentStatus and LoanStatus

7 Final Data Save

After data preprocessing, transformation, and exploration, the final data was saved to
a csv file using the Python command as seen in Figure [0} A method from the Pandas
library was used to facilitate this.

: |# Write final dataset into csv file to be used for Colab analysis

finalloanData.to_csv('Test Data‘\\lLoanData_Final.csv’, index=False)

Figure 9: Saving final data to csv

8 Split Data into Train and Test

The final data was imported into Google Colabﬂ to perform model analysis and evaluation.
Before the machine learning models were fitted, the dataset was split into training and
test data on a 80/20 basis.

Split data into train test sets

from sklearn.model selection import train_test_split
trainingSet, testSet = train_test_split(df, test size=-08.2)

Figure 10: Splitting dataset into train and test

9 Model Implementation and Evaluation

Both the Keras and Sklearn Python libraries were utilised in the process of implementing
the models, and the sklearn.metrics library was utilised in order to compute the findings.
The details of the implementation of each of the models are discussed in the following
sections.

9.1 Logistic Regression
Figure |11 shows the code snippet of the Logistic Regression classifier model.

#import python Library
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()

#fit the model
logreg.fit(X_train,y train)

#predict using the trained model
y_pred = logreg.predict(X_test)

Figure 11: Logistic Regression Model

'https://colab.google/

https://colab.google/

9.2 Random Forest

The random forest model was built using default parameters as seen in Figure and
tuned using the code illustrated in Figure

from sklearn.ensemble import RandomForestClassifier
ranfor = RandomForestClassifier(n_estimators = 188)

ranfor.fit(X_train,y train)
y_pred = ranfor.predict(X test)

cnf_matrix = metrics.confusion matrix(y test, y_pred)
cnf_matrix

Figure 12: Random Forest Model

Adjusting the n_estimators value to see if there'll be a difference

ranforl = RandomForestClassifier(n_estimators = 288)

ranforl.fit(X train,y train)
y_pred = ranforl.predict(X_test)

Figure 13: Tuned Random Forest Model

9.3 Decision Trees
The decision tree model was built with various hyperparameters, as shown in Figure

from sklearn.tree import DecisionTrecClassifier
dTreel - DecisionTreeClassifier(criterion = “entropy”, random_state — 108, max_depth-3, min_samples_leaf-5)

dTreel. Fit(X_train,y_train)
y_pred = ranfor.predict(X_test)
cnf_matrix = metrics.confusion matrix(y_test, y_pred)
cnf_matrix
array([[5576, 1355],
[1246, 4754]1])

dTree2 = DecisionTreeClassifier(criterion = "entropy”, random_state = 3@@, max_depth=10, min_samples_leaf=5)

dTree2.fit(X_train,y_train)
y_pred = ranfor.predict(X_test)

cnf_matrix = metrics.confusion matrix(y_test, y_pred)
cnf_matrix

array([[5576, 1355],
[1246, 4754]])
dTree3 - DecisionTreeClassifier(criterion = "entropy”, random_state - 308, max_depth-10, min_samples leaf-18)

dTree3.fit(X_train,y_train)
y_pred = ranfor.predict(X_test)

cnf_matrix = metrics.confusion matrix(y test, y_pred)
cnf_matrix

array([[5576, 13551,
[1246, 4754]])

No difference in the output of the model even after modifying it's attributes.

Figure 14: Decision Tree Model

9.4 K Nearest Neighbor
The KNN model was built with default parameters, as shown in Figure

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()

knn.fit(X train,y train)
y_pred = knn.predict(X_test)

cnf_matrix = metrics.confusion matrix(y_test, y_pred)
cnf_matrix

Figure 15: KNN Model

9.5 Naive Bayes

Default parameters were used to build the Naive Bayes model as shown in Figure

troin a Goussian Naive Bayes classifier on the training set
from sklearn.naive bayes import GaussianNB

instantiate the model
gnb = GaussianNB()

fit the model
gnb.fit(X_train, y_train)
y_pred = gnb.predict{X_test)

#Fvaluate model prediction
cnf_matrix = metrics.confusion_matrix(y_ test, y pred)
cnf_matrix

Figure 16: Gaussian Naive Bayes Model

9.6 XGBoost

The model was built using default hyperparameters in Figure [17| while Figure [18| shows
how the hyperparameters were tuned in search for a better result.

import xgboost as xgb

xgb_model = xgb.XGBClassifier(objective="binary:logistic", random_state=42)
fit the model

xgb_model.fit(X train, y train)

y_pred = xgb_model.predict(X_test)

#Evaluate model prediction

cnf_matrix = metrics.confusion_matrix(y_test, y_pred)
cnf_matrix

Figure 17: XGBoost Model

xgb_modell = xgb.XGBClassifier(
learning_rate =0.1,
n_estimators=208,
max_depth=4,
min_child_weight=6,
gamma=@.3,
subsample=0.3,
colsample_bytree=8.8,
reg_alpha=0.805,
objective= 'binary:logistic’,
nthread=4,
scale_pos_weight=1,
seed=27)

fit the model
xgb_modell.fit(X_train, y_train)
y_pred = xgb_modell.predict(X_test)

#Evaluate model prediction
cnf_matrix = metrics.confusion matrix(y_test, y_pred)
onf_matrix

Figure 18: Tuned XGBoost Model

9.7 Deep Neural Networks

The keras package was used to build this model, Figure 19| and Figure [20| show the code
used to build the models.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

define the keras model

model = Sequential()

model.add(Dense(12, input_shape=(8,), activation="relu'))
model.add(Dense(8, activation="relu'})

model.add(Dense(1, activation="sigmoid'})

compile the keras model
model.compile(loss="binary_crossentropy', optimizer="adam’, metrics=['accuracy'])
fit the keras model on the dataset

model.fit(X_train, y train, epochs=18, batch size=18)

evalugte the keras model

_, accuracy = model.evaluate(X_test, y_test)
print("Accuracy: %.2f' % (accuracy*18@))

Figure 19: DNN Model

define the keras model

modell = Sequential()

modell.add(Dense(24, input_shape=(8,), activation="relu’})
modell.add(Dense(18, activation="relu'))
modell.add(Dense(12, activation="relu'))
modell.add(Dense(8, activation="relu'))
modell.add(Dense(1, activation="sigmoid'))

compile the keras model
modell.compile(loss="binary_crossentropy’, optimizer='adam', metrics=['accuracy'])
fit the keras model on the dataset

modell.fit(X_train, y_train, epochs=28, batch size=1@)

evaluate the keras model

_, accuracy = modell.evaluate(X_test, y_test)
print(Accuracy: ¥.2f' ¥ (accuracy*1e@))

Figure 20: Tuned DNN Model

9.8 Model Evaluation

Each model underwent evaluation using an agreed set of metrics, which included Ac-
curacy, Precision, Recall, and AUC score. Figure shows the confusion matrix and
evaluation results for XGBoost, the best performing model.

Confusion matrix (XGBoost)

5000
1364
4000

- 3000

Predicted label

Actual label

- 2000

print("Accuracy:”,metrics.accuracy_score(y_test, y pred)*lee)
print("Precision:",metrics.precision_score(y_test, y pred)*100)
print("Recall:",metrics.recall score(y_test, y_pred)®1eo)

- 1000 Accuracy: 82.86635217693913
Precision: 78.71742861688873
0 1 Recall: B4.98333333333333

Figure 21: XGBoost Model Evaluation

10

	Overview
	Hardware/Software Requirements
	Hardware Requirements
	Software Requirements

	Data Source
	Python Libraries
	Data Preprocessing
	Data Visualization
	Final Data Save
	Split Data into Train and Test
	Model Implementation and Evaluation
	Logistic Regression
	Random Forest
	Decision Trees
	K Nearest Neighbor
	Naive Bayes
	XGBoost
	Deep Neural Networks
	Model Evaluation

