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Featured Application: The proposed framework can be integrated into learning plat-
forms to enhance personalized adaptive learning. By leveraging knowledge-driven
agents and RAG pipelines, this framework improves the accuracy and effectiveness of
AI assistants, while expanding their capabilities through the incorporation of customized
knowledge. Continuous updates to the knowledge base enable AI models to dynamically
adapt to individual learners, delivering context-aware and precise responses tailored
to their needs. This approach is particularly valuable for integrated interdisciplinary
learning such as digital transformation, where multidisciplinary knowledge integration
plays a crucial role in fostering deeper understanding and knowledge retention.

Abstract: As Large Language Models (LLMs) incorporate generative Artificial Intelligence
(AI) and complex machine learning algorithms, they have proven to be highly effective in as-
sisting human users with complex professional tasks through natural language interaction.
However, in addition to their current capabilities, LLMs occasionally generate responses
that contain factual inaccuracies, stemming from their dependence on the parametric knowl-
edge they encapsulate. To avoid such inaccuracies, also known as hallucinations, people use
domain-specific knowledge (expertise) to support LLMs in the corresponding task, but the
necessary knowledge engineering process usually requires considerable manual effort from
experts. In this paper, we developed an approach to leverage the collective strengths of
multiple agents to automatically facilitate the knowledge engineering process and then use
the learned knowledge and Retrieval Augmented Generation (RAG) pipelines to optimize
the performance of LLMs in domain-specific tasks. Through this approach, we effectively
build AI assistants based on particular customized knowledge to help students better carry
out personalized adaptive learning in digital transformation. Our initial tests demonstrated
that integrating a Knowledge Graph (KG) within a RAG framework significantly improved
the quality of domain-specific outputs generated by the LLMs. The results also revealed
performance fluctuations for LLMs across varying contexts, underscoring the critical need
for domain-specific knowledge support to enhance AI-driven adaptive learning systems.

Keywords: large language models; personalized adaptive learning; retrieval augmented
generation; multi-agent system; digital transformation

1. Introduction
Through successful use cases in diverse domains, Large Language Models (LLMs)

have been recognized as the Natural Language Processing (NLP) technology of choice.
Language Models (LMs) leverage advanced deep learning architectures and exhibit un-
paralleled proficiency in understanding, generating, and manipulating human-like text,
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fundamentally reshaping the landscape of artificial intelligence. The widespread adoption
of LLMs is a testament to their versatility and efficacy. Despite their remarkable achieve-
ments, LLMs have also faced some challenges in their deployment. Issues such as bias,
hallucination, and domain-based knowledge challenges for specific use cases have surfaced,
prompting a reevaluation of their role in shaping the future of artificial intelligence [1].
Moreover, according to recent research by Uchida, S. [2], even advanced LLMs also have
limitations in memorizing complete knowledge of ontology in domain-specific contexts. To
extend the advantages and resolve the problems of LLMs, people use external knowledge
to support their performance. For example, using the Retrieval Augmented Generation
(RAG) method [3], we can improve the performance of many LLMs in specific tasks. RAG
efficiently improves the output of LLMs based on the particular context, while sufficient
knowledge support and an integrated knowledge base are required in addition to the
deployment of LLMs.

Traditional approaches for constructing knowledge bases typically require significant
human effort or computational resources to process relevant textual documents. These
approaches utilize knowledge engineering techniques to extract and organize concepts
for the construction of knowledge bases. However, these conventional methods exhibit
two main deficiencies when it comes to building practical knowledge bases based on
domain-specific expertise. First, identifying domain-specific knowledge and accurate
contextual matching can pose significant challenges [4], and relevant knowledge can
exceed the coverage of textual documents [5]. This requires input from domain experts in
specific scenarios. Secondly, in many contexts, practicality demands that domain-specific
knowledge be dynamically adjusted and updated according to specific task requirements [6].
This requires domain experts to continually identify knowledge within the knowledge
base and promptly update the corresponding knowledge based on new circumstances.
As can be seen from the above two points, the intensive and constant participation of
corresponding experts is a key element in establishing a domain-specific knowledge base,
which makes the interaction between experts and the knowledge engineering pipeline
critical to the quality of knowledge. In this research, we propose using a multi-agent
system supported by LLMs to help construct a domain-specific knowledge base and
improve the quality of knowledge. Our approach provides an efficient way of updating
and validating domain-specific knowledge through the interaction between expert users
and the system. By optimizing support knowledge, we enhance the performance of LLMs
in domain-specific tasks, enabling Artificial Intelligence (AI) assistants to provide more
accurate, context-sensitive responses tailored to the needs of each learner. This approach
strengthens AI-driven personalized learning applications, ensuring more effective and
adaptive educational support.

2. Related Work
2.1. The Deployment of LLMs in Domain-Specific Applications

Pre-trained LLMs are neural networks trained using deep learning and natural lan-
guage processing techniques. These models are typically trained on large amounts of
textual data, such as previous language corpora, which may contain large amounts of
textual data from websites, books, and other textual sources. Pre-trained LLMs trained on
comprehensive data have demonstrated impressive capabilities to comprehend natural
language for tasks related to structural prediction and reasoning [7].

However, based on previous applications in various domains, people have also found
that LLMs are constrained by their training data in practical use [8]. The output LLMs
produce is highly dependent on the training corpus. As a result, their inherent knowledge
cannot cover topics not included in previous training data. If there are insufficient training
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data or biased opinions on the corresponding topic, this usually affects the quality of the
model output and even causes serious hallucinations of AI [9]. In addition, LLMs also
need to be further improved in focusing on specific levels of concrete knowledge and a
precise understanding of context [10]. To provide answers to ordinary or abstract questions,
the impact of the above issues may not be obvious, but in special and highly professional
applications, these mentioned problems actually limit the efficacy and practicality of LLMs
and become an inevitable challenge for deploying LLMs.

To address this challenge, researchers have developed domain-specified LLMs to
serve particular uses in a certain domain [11,12]. Domain-specified LLMs refer to language
models that are fine-tuned or specialized for a particular domain or field of knowledge.
Based on the pre-trained LLM, researchers use specific training datasets that include
corresponding domain-specific knowledge to further train the model and make the model
adapt to the understanding of particular domains. Many domain-specified LLMs have
been developed in different domains, and we list some typical examples as follows:

• E-commerce: EcomGPT [13]
• Finance domain: BloombergGPT [14]
• Legal domain: LawGPT [15]
• Biomedical domain: BioGPT [16], BioMedLM [17]
• Geoscience: K2 [18], Oceangpt [19]

In the previous examples listed, domain-specified LLMs offer several advantages,
including improved performance and accuracy in tasks relevant to the specific domain,
as well as the ability to generate text that aligns more closely with the expectations and
requirements of users within that domain. They are particularly useful in applications such
as information retrieval, content generation, question answering, and language translation
within specialized fields. However, domain-specified LLMs require additional fine-tuning
work on relevant new training data, and this increases the initial cost of LLM deploy-
ment [20]. Moreover, the context and knowledge of domain-specified LLMs are embedded
in the fine-tuned model, and this may limit the explainability of the model to users [21].
Consequently, the additional training cost makes it difficult for users to dynamically update
their expertise under a given context. For scenarios that require intensive interaction with
users and updating knowledge based on user needs, such as customized data searching,
education, and consulting, people have increasingly started to accept RAG as a supple-
ment and alternative to fine-tuning LLMs. Relevant examples can be seen in previous
research on general conversation [22], education [23,24], research [25,26], and business
consulting [27,28].

2.2. Structured Knowledge Base with RAG

As discussed above, fine-tuning LLMs works well with certain predefined tasks, but
the complexity of training limits the extensibility and explainability of the models. For better
and more adaptive performance in tasks that are highly dependent on the user context and
require integrated knowledge from multiple domains, alternative methods such as RAG are
sometimes recommended. RAG is a NLP approach that combines elements of both retrieval
and generation models to improve performance in various language understanding and
generation tasks. An RAG method can provide additional context to the LLM based on
the prompt that has been passed to it [29]. This additional context can be retrieved from
various sources, such as online datasets, vector databases, and the knowledge base. RAG
provides the ability to use external and customized knowledge to improve the performance
of LLMs without additional fine-tuning training. Based on previous research [30,31], it
can increase accuracy and avoid hallucination problems based on the knowledge obtained.
However, the quality of the output generated is highly dependent on the quality of the
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retrieved knowledge. Poor retrieval results can lead to suboptimal generation performance.
In addition, if the retrieval knowledge is biased or limited in scope, the generation model
may produce biased or incomplete responses. This makes the efficiency of RAG highly
dependent on the corresponding knowledge engineering process and the knowledge base
behind it. To improve the performance of LLMs and make the RAG loop run efficiently, we
need to enhance the efficiency and accuracy of the knowledge retrieval and engineering
process in RAG methods by providing structured, semantically rich, and context-aware
knowledge.

Knowledge Graphs (KGs) are an efficient method of representing knowledge and have
been widely used to support AI models in many different domains [32]. A KG formally
represents semantic models by describing the relevant entities and their relationships.
KGs may make use of ontologies as a schema layer. In doing this, they can represent the
complicated structure of knowledge with hierarchical concepts [33]. This feature makes
KGs an ideal platform to contain and present a user’s domain-specific knowledge in
various scenarios.

Furthermore, graphic representation of the ontologies also gives KGs a unique advan-
tage in supporting the reasoning inference of AI models. The potential fusion of KGs with
cutting-edge AI techniques holds promise for fostering diverse and efficient applications
within the data analysis and management domains. Last but not least, KGs give us a
good platform to integrate and explain new knowledge graphically, in a structured manner.
With this advantage, we could easily integrate customized knowledge or context into the
concepts in a given knowledge base or elaborate an explanation of the particular topic
to users. More recently, we have seen new applications, such as GraphRAG [34], that
use structured and graphic knowledge to support RAG in applications based on LLMs,
improving the performance of LLMs in many sophisticated use cases. However, there
have also been many pieces of research that reported the use of LLMs in the corresponding
knowledge engineering process [35,36]. In the research presented in this paper, we tried to
integrate both types of approach into one framework and leverage the advantages of each
side in knowledge-driven applications.

2.3. Knowledge-Driven AI Agents for Helping Personalized Adaptive Learning

Personalized adaptive learning refers to an educational approach that uses technology
and data-driven insights to tailor learning experiences to the unique needs, preferences,
and abilities of individual learners [37]. Unlike traditional “one-size-fits-all” methodologies,
adaptive personalized learning adjusts dynamically to the pace, level of knowledge, and
learning style of the student, ensuring that instruction is relevant and effective [38]. The
goal of personalized adaptive learning is to optimize educational outcomes by recognizing
and accommodating the diversity of learners, thus fostering deeper understanding and
long-term retention.

This approach needs to integrate advanced technologies such as artificial intelligence
(AI), machine learning (ML), and real-time analytics to assess a learner’s progress and adjust
the content or schedules accordingly. Throughout the entire process, providing students
with personalized real-time arrangements is the key to the successful implementation of
personalized adaptive learning, which requires that the AI system has accurate and relevant
knowledge support, and is able to flexibly handle differences between different students
in context. In previous research by [39], a successful example was demonstrated in which
large language models (LLMs) were utilized as chatbots to deliver personalized adaptive
learning features in a practical setting. In the research of Cho et al. [40], the researchers
used a transformer-based model that achieved an Area Under the Curve (AUC) of 0.865 in
knowledge tracing. Furthermore, in the research in [41], the importance of incorporating
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specific knowledge from both students and teachers into the design of the learning process
was emphasized, highlighting its potential to improve adaptability in learning. In addition,
some of the latest research [42,43] has also shown us the great potential of robots and
multi-agent in human–machine interaction and examples of effectively promoting learning.
More quantitative results were reported by [44], where the research demonstrated that an
AI-based tutor significantly improved post-test scores for underperforming math students,
with those in the lowest pretest quartile gaining an average of 8.2 points, compared to 3.5
points in the control group, an improvement of over 130%. Another research study [45]
used an AI model to generate personalized feedback, and the given model outperformed
the baselines, resulting in a 45% improvement in student learning gains.

To integrate AI models and user-specific knowledge into the learning process,
knowledge-driven agents could be a useful tool for the corresponding implementation. AI
agents (empowered by LLMs) can play a crucial role in the implementation of personalized
adaptive learning by using intensive human–machine interaction to tailor educational
experiences to individual needs. With personalized domain-specific knowledge support,
they can analyze learner behavior, preferences, and progress to provide customized con-
tent and support, fostering more effective and engaging learning outcomes. In addition,
by adapting in real time and incorporating feedback from both students and teachers,
AI agents improve adaptability, improve learning efficiency, and make education more
accessible and inclusive. The latest explorations and attempts to combine agents with
personalized adaptive learning have yielded some very successful cases, with especially
promising results in adapting to customized knowledge to providing personalized ser-
vices [46–48]. In our approach, particular AI agents retrieve the extra relevant knowledge
(i.e., from domain-specific knowledge bases) based on the user’s requests and use this
specific knowledge to improve the performance of LLMs in each task. With this, the system
can not only generate personalized responses based on context but also ensure the accuracy
of the contents by providing domain-specific and context-related knowledge.

2.4. The Impact of Our Approach on Personalized Adaptive Learning in Digital Transformation

The digital transformation in education is not only a response to technological ad-
vancements but also a necessity to address the diverse needs of students from various
backgrounds. Traditional one-size-fits-all education models often fail to accommodate
learners in digital transformation contexts with different cultural contexts, learning styles,
paces, and abilities [49,50]. Personalized adaptive learning fits the essential requests in digi-
tal transformation education well and can increase the adaptability of studies by providing
customized learning processes and contents [51]. Using technology, educators can create
more inclusive learning environments that provide equitable access to quality education
for all students, including those who are underserved or face unique challenges. Adaptive
technologies can support learners regarding interdisciplinary knowledge domains, lan-
guage barriers, or varying levels of skills, ensuring that everyone can progress at their own
pace [52]. In addition, digital transformation equips students with the skills necessary for
success in the modern workforce, such as digital literacy, critical thinking, and problem
solving. It also prepares them to adapt to continuous changes in technology and promotes
lifelong learning. This customized learning method not only enhances academic outcomes,
but also empowers learners, building confidence and resilience in a rapidly evolving world.

In fact, the value of adaptive learning is seen as multidimensional, being evaluated not
just through academic achievement but also through its adaptability, student perception,
and support for diverse learning needs. Researchers interpret and measure the value of
adaptive learning through various lenses, including learning outcomes, user perception,
engagement, and longitudinal performance data. For example, Sun et al. [53] conducted an
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empirical study using the LearnSmart platform, finding that students perceived greater
value and effectiveness in adaptive systems compared to traditional ones. These percep-
tions were measured through online surveys that analyzed the effectiveness of self-reported
learning. A broader systematic review by Martin et al. [54] synthesized adaptive learning
research from 2009 to 2018, identifying key themes such as instructional strategy inte-
gration, learner analytics, and scaffolding as vital factors in the evaluation of adaptive
learning. More recent studies such as [55] used longitudinal data to analyze the impact
of adaptive learning on student engagement and performance in online education. The
results supported the efficacy of adaptive learning systems, showing improved retention
and personalized timing as the main contributors to better learning outcomes. In this study,
we focus on the use of AI to provide personalized learning suggestions and integration
of customized strategies to help with the implementation of adaptive learning. In terms
of metrics for evaluating the quality of the output of the AI model, we refer to various
previous methods for evaluating adaptive learning, which will be discussed in Section 4.

To embrace the digital transformation and implement adaptive personalized learn-
ing today, we need the support of new techniques and approaches, to develop a suitable
learning system for users. As discussed above, traditional static knowledge structures
and rigid, formulaic learning models no longer meet the personalized learning needs of
today’s digital era. In the realm of knowledge engineering and AI, the traditional approach
to knowledge extraction is being reshaped by the advent of LLMs. These cutting-edge
artificial intelligence systems have demonstrated exceptional proficiency in understanding,
generating, and structuring large amounts of textual data. However, knowledge integration
in sophisticated and professional domains, such as high-level education, requires constant
updating of the corresponding knowledge under a specific context, as well as understand-
ing of the new data with domain-specific knowledge. This ability is still a challenge for
LLMs and can caused a number of relevant issues, such as hallucinations, data credibility,
and bias in LLM applications [8,56].

In this research, our goal was to combine the cutting-edge techniques discussed to
forge an AI-based system that can effectively help students with personalized adaptive
learning adapt to the digital transformation, and to mitigate the issues mentioned above in
the use of LLM. By extracting the context and knowledge from the user’s input, profile files,
and previous conversations, the system can interactively construct a customized knowl-
edge model under the domain-specific context and use this knowledge to better improve
the performance of AI models. This exploration aims to contribute to the refinement of
knowledge engineering and enrich the application of LLMs, paving the way for a more
advanced and effective deployment of AI models in practical learning applications.

3. Materials and Methods
The approach used in this study was to develop an AI-based framework and use the

framework to help personalize adaptive learning. The developed framework includes a
multi-agent system and a customized knowledge base to provide domain-specific knowl-
edge. In the agents of the system, we embedded LLMs to help the system better process
text-based data and interact with users for the delivery of customized knowledge engineer-
ing and learning services. With the RAG pipelines implemented by agents, the LLMs can
provide better recommendations and responses based on the context and user’s request.

In our approach, there is an initial KG that works as a local knowledge base to contain
the customized knowledge model that is defined by expert users or extracted from the given
training documents. The knowledge model is made up of multiple relevant concepts and
each concept has its unique description, attributes, and keywords. Expert users can define
the content of the concepts directly or select the corresponding prompt templates to retrieve
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the content from the designated datasets and then review them on the KG. After validation
with the users, newly updated content will be included in the KG concepts. The knowledge
of the KG remains dynamically updated and can be applied to the corresponding RAG
method to improve the performance of LLMs. The whole pipeline can be divided into two
steps: the corresponding multi-agent’s knowledge engineering, and RAG-based response
generation. Figure 1 shows an outline of the proposed pipeline for our framework.

Figure 1. The outline of the framework with multi-agent and RAG pipelines.

3.1. Knowledge Engineering Facilitated by Context Awareness Agents Empowered with LLMs

Efficient extraction of relevant knowledge based on the given context is one of the main
goals our approach aims to achieve. In this section, we focus on how to use multi-agent to
better extract the context of a given task process and use it to serve knowledge engineering
in a system.

The context of given tasks comes from the original user requests. The system extracts
the keywords (meaningful nouns and verbs) from the text input and then uses agents to
explain the semantic meaning of these words. Agents request diverse Language Models
(LMs) that output the ontologically grounded representations of meaning based on the
given natural language words and then search the matchable items in the semantic lexicon
of the local knowledge base. To save computational resources, the agents are assigned a
corresponding language model based on their task. In the research of Oruganti et al. [57],
the authors discussed a sophisticated method of using agents and LLMs to process given
textual seeds. In our case, we use pre-trained LMs to elaborate the semantic meaning of
keywords in the user input and extract the relevant concepts to represent the context. The
process is implemented with several agents, and each agent works with a given extracted
keyword. The agent (a) checks the concepts (c) in knowledge and decides the relevance
(R) of the concepts based on the semantic distance (S, calculated by the indexing model)
between the given keyword (Kcontext) from the user input and the list of keywords (Kci) of
the concept. For each concept, this may include multiple (n) description labels.

Ra,c =
∑n

i=1 S(Kcontext − Kc,i)

n
(1)

Based on the semantic distance, the agents will select the most relevant concepts and
return them to the system. The threshold for selecting the most relevant concepts is given
by the predefined knowledge in the knowledge base. The complete context of the given
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request is a combination of the returns of all the agents and is represented as a list of
concepts that are predefined in the semantic lexicon. The system will add the complete
context as a prefix to the original user request. Users can also refer to textual documents in
their request. To process a large document, the system will divide the data into different
chunks and integrate the summary of the different chunks at the end. In general, the
system analyzes the inherent context of the user input based on the given knowledge and
identifies the related concepts of the knowledge base in this step. The purpose of this step
is to collect the knowledge necessary to process the given data in the subsequent steps.
Figure 2 illustrates an general example of this pipeline. This step is directly triggered by
the user request. The initial input is the original user input (requests or attached text-based
data), and the output is the revised prompts, which include the original user input and a
reference to related knowledge.

Figure 2. Context identification with multi-agent.

After the system has retrieved the context from user inputs, multi-agent process the
context and the user input separately in different roles. The role of the involved agents
can be customized based on predefined context patterns, which are groups of concepts
in the combination sets. For example, it may define a particular pattern in the context of
the student profile. In this case, the pattern needs to include relevant concepts such as the
student’s name, gender, registered courses, background, etc. Figure 3 illustrates a typical
example of this process. The precondition for this step is that the prompt templates are
chosen on the basis of a reference to context concepts. The expected output of this process
is to synthesize a new prompt based on the combination of related prompt templates.

In the given example, there are three different roles: knowledge retrieval, self-
validation, and format control. Each role corresponds to a particular agent that focuses on
a specific question. For example, for the knowledge retrieval role, the agent aims to solve
the question “what kind of extra knowledge is required to answer the users’ request?” To
answer this question, the agent will search through the concepts in the given context and
integrate the related information into the question prompt with the help of an LLM. The
prompt that the agent used in the process was derived from the original question of the
role and could be extended with the relevant updated information. In this step, the agent
requests that LLMs give suggestions or instructions for further search using the updated
prompt, and iterate the loop after the prompt update until no new information is found.
The output of one agent could be the input of other agents in a different role. For example,
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the agent with the role of self-validation takes the output of knowledge retrieval and checks
the integrity and quality of the extracted knowledge.

Figure 3. The collaboration of different agents in knowledge acquisition.

Finally, the agent with format control integrates all retrieval information based on the
given format. Through this interaction, agents collaborate to search and build knowledge
as the user requests. Take as an example curriculum development, assuming that the user
inputs a sample document of the curriculum in machine learning to our framework. The
request from the user is “taking this document as a sample of making the curriculum in
machine learning” and the given textual document. First, the system asks the LM to extract
the keywords and search the related concepts in the knowledge base based on keywords. In
this case, the related concepts in the knowledge base are document preparation, document
samples, and machine learning. The agent for knowledge retrieval asks the LM to check
if data are available to present for each of these concepts. For the concept of a document
sample, there is an attribute called samples, and the description of this attribute is used to
store the given textual data as samples and to add the co-occurrence concepts as the context
of the sample. The LMs fit the current context to this attribute description, and then the
agent creates a new sample entry with the given data here and adds the rest of the concept
as the context of the sample.

The extracted knowledge is represented in JSON format and sent back to the system.
In this step, the program checks if there are any violations or conflicts with the interaction
and integration rules that are defined in the concepts of previous knowledge. If there
are no conflicts, the new knowledge is accepted and stored in the knowledge base, and
the system updates the semantic lexicon accordingly. Otherwise, the new knowledge is
reported to the expert user with the detected problems, waiting for further annotation
by the expert users during knowledge validation. With the participation of experts, we
apply active learning to the corresponding knowledge model to constantly optimize the
model based on their expertise. The constraints of related concepts ensure the integrity and
quality of the knowledge extracted. These rules are constantly reviewed and optimized
by experts in active learning loops. Figure 4 shows an overview of active learning in
our framework. The preconditions for invoking knowledge validation include the user’s
direct request or a system request from active agents. When active agents find unexpected
knowledge conflicts, they request that experts validate the relevant knowledge model.
The output of knowledge validation is the final feedback from experts and the knowledge
update. After knowledge acquisition, the system builds specific knowledge models that
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are correlated with a particular context, and this customized knowledge is used to improve
the performance of LLMs in a similar context.

Figure 4. Active learning for knowledge validation and optimization.

In this paper, we primarily describe the development of the overall framework, while
also emphasizing the crucial role of the related human–machine interaction modules. For
the work of using active learning in knowledge validation, we suggest reading previous
papers which described similar approaches, with more details of interactive modules
such as explanatory dialogue [58] and knowledge-rich task planning [59]. Our goal here
was to continuously improve the efficiency of the human–machine interaction within the
framework.

3.2. RAG with Context-Based Knowledge Retrieval

In our framework, on the one hand, agents constantly extract external knowledge
from users and try to integrate the new knowledge into the knowledge base. On the other
hand, the agent also accesses the knowledge base and uses the RAG pipeline to facilitate
the performance of LLMs by providing domain-specific knowledge support.

As discussed above, all knowledge engineering processes of the framework are based
on the interaction between agents and users. The user’s expertise is requested by agents
to validate new knowledge when there is any violation of the constraint rules detected
during the knowledge engineering. Each user is considered an expert in the corresponding
aspects according to their profile and is requested to participate in the relevant knowledge
validation processes. The constraint rules are also retrieved from the previous conversation
between the users and the agents. Therefore, the professionalism of users regarding the



Appl. Sci. 2025, 15, 4989 11 of 27

given knowledge is important for efficient knowledge updating and integration. For
users involved within interdisciplinary topics, we could use validated domain-specific
knowledge in the knowledge base to better select or explain these topics during knowledge
engineering. At any time, the user can choose to update the relevant documents in the
system, or type the text-based description instead to update the corresponding knowledge
in the system. In addition, the user can also choose a previous conversation as context
and input the context information into the system for the knowledge update. After that,
the agents use LLMs to process user inputs and extract the relevant content to extend the
concepts in the knowledge base.

The knowledge learned in the knowledge engineering processes will later be used
to better serve user requests in domain-specific tasks with RAG pipelines. The system
adopts the same method to extract the context of user requests in the RAG pipeline, but
assigns agents to different roles based on the different context patterns. Take the example
of curriculum development, after knowledge retrieval, the system assigns the role of
document preparation to the next agent, and this agent searches for the curriculum samples
based on the given topic and adds the retrieved samples to the prompt to optimize the
response of the LLMs. For this role, the LLMs in the agent depend on the knowledge given
and the included examples to perform the in-context learning and optimize the response
with domain-specific knowledge. In the report by [60], the performance of LLMs based
on in-context learning was comparable to fine-tuning, which usually requires a higher
cost and more data to optimize the model itself. As discussed, the agent for knowledge
retrieval will check if the input data include any samples for in-context learning during the
knowledge-acquisition tasks. If there are related samples, the agent extracts the samples
and annotates them as a sample attribute. The pseudocode presented in Algorithm 1 gives
more details on the implementation.

Algorithm 1 Example pseudocode in RAG pipeline

1: Input: Retrieved knowledge X, Parameter synthesized prompt θ
2: Output: Processed results R
3: for each x ∈ X do
4: Update agent y = f (x, θ)
5: Running agent y.RAGloop()
6: if y.states == completed then
7: Store new knowledge if there is any
8: r = y.output()
9: Release y

10: else
11: while Check y.states do
12: Invoke corresponding functions F or agents Z
13: r = y.output(F/Z)
14: end while
15: Release y
16: end if
17: Store r into R
18: end for
19: for each r ∈ R do
20: Integrate θ with r
21: Update (θ)
22: end for
23: return R

In this step, the agent retrieves the content of the sample attribute from the related
knowledge concept in the reverse way and provides it to LLMs in the RAG loop. Figure 5
provides the workflow of the agent working with RAG to improve LLMs in a given task.
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In summary, the whole RAG process in our framework can be concluded in the following
four steps:

• Contextual information matching: The first step in the process is to capture and encode
the user’s context. Contextual information may include explicit user inputs (for exam-
ple, search requests), implicit signals (e.g., user profiles), and external environmental
factors (e.g., location or time). This contextual data are transformed into a few concept
keywords using an encoder, such as in a pre-trained language model. These keywords
represent the user’s intent and needs in a compact, semantic format.

• Knowledge retrieval from the knowledge base: The concept keywords are used to
search for relevant knowledge from the knowledge base. These sources may include
the following:

– KGs: Structured representations of domain-specific knowledge, such as product
attributes, expert reviews, or user-generated content.

– Document repositories: Collections of relevant textual data, such as articles, man-
uals, or FAQs. The system employs similarity-based ranking techniques (cosine
similarity) to fetch the most relevant knowledge nodes. Figure 5 shows an exam-
ple of the use of customized knowledge to recommend better instruction examples
in curriculum development. In this example, the system can find the predefined
prompt template from the knowledge base based on the user’s requests and use
that prompt to request that the LLMs give more specific responses.

• Context-aware prompt and contextual adaptation: The retrieved information is added
to the given prompt template along with the original user request for synthesis of the
input prompt for LLMs. This step ensures that its responses are informed by the most
up-to-date and relevant knowledge.

• Personalized recommendation generation: The LLMs generate responses in a natural
language format, enriched with context-specific explanations. The user can define
their favorite styles in the relevant prompt templates to personalize the format of the
output. Using RAG, the system can achieve better contextual awareness, accuracy,
and user satisfaction.

Figure 5. RAG workflow with customized knowledge support.

All RAG workflows are based on the user’s request and the knowledge support from
the knowledge base. The output of the RAG processes is the extended prompts, which
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include all additional knowledge and context. This additional knowledge can help the
LLMs provide more accurate and context-aware responses during tasks.

4. Results and Discussion
The ultimate objective of this research is to leverage AI-powered agents for per-

sonalized adaptive learning. To accommodate diverse user backgrounds and deliver
context-aware personalized content, it is essential to develop and use domain-specific
knowledge that improves the capabilities of the AI model. This study aims to optimize
the responses of embedded LLMs in AI agents by integrating relevant contextual and
domain-specific knowledge. To assess the effectiveness of our approach, we investigated
how improvements in our knowledge support impacted the performance of LLMs across
various domain-specific contexts.

In this paper, we tested the performance of different LLMs in different domains and
examined the potential of using our knowledge support to improve the performance of
LLMs in these domains. The results can be divided into two parts. In the first part, we
benchmark-tested a few open-source LLMs with datasets from diverse domains. After this,
we used the selected LLM (Gemma:7b) to redo the test with the support of the relevant
knowledge that our framework extracted from the dataset. To gain a more comprehensive
view of the LLM working in different domains, we tested a few of the latest open-source
LLMs, including Gemma 2b [61], Gemma 7b [61], Llama3 [62], and Mistral [63] at the
beginning of our test. All experiments discussed in this paper used the given datasets that
were selected from MMLU (Massive Multitask Language Understanding) [64]. MMLU is a
new benchmark created to assess the knowledge gained during pre-training by evaluating
models solely in zero-shot and few-shot scenarios. Spanning 57 different subjects, it en-
compasses a wide range of disciplines, including STEM (Science, Technology, Engineering,
and Mathematics), the humanities, social sciences, and beyond. This benchmark offers
a comprehensive array of topics in diverse domains, ensuring a thorough and rigorous
evaluation. In our experiments, the initial knowledge in the knowledge base was automati-
cally retrieved by agents from the given text documents which included the corresponding
domain knowledge, and we manually designed the necessary rules and constraints to
check the retrieved knowledge.

In addition to testing the AI models and knowledge models, we also tested dynamic
updates to the knowledge base. This update is supposed to be based on the interaction
between the AI system and the users. As discussed above, customized knowledge is
important to support AIs in adapting to the user’s various contexts. In the test, we focused
on proving the impact of customized knowledge to improve the responses of AI agents in
given practical scenarios. As a first step, the results in this paper in particular demonstrate
the impact of user-customized knowledge and the RAG loop to improve the responses of AI
agents in a given scenario. In future tests, our objective is to assess the impact of continuous
human–machine interaction to optimize complex knowledge and to test the responses
of AI agents from a more comprehensive point of view. We recognize the importance
of continuous optimization and will integrate ongoing updates with diverse evaluation
metrics and participation in future tests.

4.1. Test on the Performance of LLMs with Knowledge Support

In this section, we focus on the test to evaluate the performance of LLMs with knowl-
edge support. To measure and compare the performance of the LLMs under different
conditions, we selected questions related to different domains and compared the perfor-
mance of pre-trained LLMs in answering these questions. The different questions were
randomly selected from the MMLU dataset to check the response of pre-trained LLMs
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in diverse domains, without any extra knowledge support. We tested 4 different LLMs
(Gemma2b, Gemma7b, Llama3, and Mistral) with questions from 9 different groups. For
each group, questions were followed with topics from the same domain, and we calculated
the average performance data of the LLMs. The performance of the LLMs was measured
using the F1 score [65]. Figure 6 shows the conclusions of these experiments. In the figure
below, the results clearly demonstrate that the different topics exerted complex and varied
influences on the performance of the different LLMs. In contrast, Gemma:7b and Mistral
had a comparatively more stable and better average performance on the testing sample
data. More details of the experiment results can be found in Table A1 in Appendix A.
To simplify the experiment and measurement, we decided to use Gemma:7b as the only
default LLM in the subsequent testing experiments to test the impact of knowledge support
in different domains, and this choice was based on a consideration of the representativeness
and stability of the model.

Figure 6. Comparison of the performance of the LLMs based on different domain topics (X axis for
groups, and Y axis for F1 score).

To gain a broader view of the impact of the knowledge domain, we tested with LLM
Gemma:7b on datasets from 31 different domains. These tests aimed to examine the impact
of more diverse topics on the performance of the pre-trained LLM. In the latter tests, we
calculated performance metrics including accuracy, precision, recall, and F1 score. Figure 7
gives an overview of the results of these tests, and the details of the subjects tested can be
found in Table A2 in Appendix A.
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Figure 7. The performance of Gemma:7b across different domains (X axis for groups, and Y axis
for scores).

Throughout all these tests, we observed that different topics imposed an strong influ-
ence on the performance of the LLMs, and the difference in model performance was mainly
caused by the understanding of diverse domain-specific knowledge. Missing such related
knowledge in the general model seriously limited the performance of the model in specific
tasks, giving space for using expertise to improve the model.

Improvement with Domain-Specific Knowledge Support

To further prove our assumption based on the impact of domain knowledge, we extend
our experiments with knowledge support from the framework discussed in Section 3.
Except for benchmarking the performance of the different LLMs in diverse domains, we
tested the performance of the given LLM (Gemma:7b) in different domains with customized
knowledge support and compared the difference with a model without extra knowledge
support in the same scenarios. The purpose of these tests was to examine the potential
of our proposed approach and to identify the characteristics of the framework. In these
tests, we used the default LLM Gemma:7b for all agents to process prompts during the
tasks. Meanwhile, the agents in the framework also used the “paraphrase-MiniLML6-v2”
sentence transformer model [66] from the hugging-face library as the indexing model for
semantic search for RAG. To test the impact of adding relevant domain-specific knowledge,
we first established corresponding knowledge models in the knowledge base. These
knowledge models were automatically created by the agents that extracted the knowledge
from the given text-based data related to the domain-specific knowledge. In these tests, the
knowledge was extracted from the files given by the users, so we tested our framework
with the predefined knowledge that was prepared based on the test scenarios. The dataset
for this test was 11 groups of questions from different domains and topics covered by
various subjects in STEM. Given the considerable variation in the scale of datasets across
domains in MMLU, we decided to select datasets of comparable scale in this experiment
(instead of random selection) to better compare the improvement in LLM efficiency on
different domains after horizontal knowledge enhancement. We also ensured a balanced
representation of domains from the natural and social sciences, to facilitate meaningful
comparisons.

First, we requested the framework to analyze the related datasets and extract knowl-
edge concepts from the data. The description of these concepts was automatically extracted
from documents and indexed by the sentence transformer model. The embeddings index
was saved with the knowledge as labels in the knowledge base. After the knowledge
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had been prepared, we provided the questions and added the retrieved knowledge of the
corresponding domains to improve the LLM and check the response (K_support). The
same questions were also given to agents with prompt template support (prompt) or only
working with LLM (baseline). For the prompt template support group, we provided the
prompt templates that were designed based on the Chain of Thought (CoT) technique to
improve the performance of the LLMs. All results were recorded and analyzed as F1 scores
to measure the performance of the LLM. In addition, we also recorded the computation time
the LLM spent in completing the given tasks, as another way to measure the performance.
Figure 8 shows the conclusions for the time cost of LLMs (in seconds) in all the tests in
various domains.

Figure 8. The time cost of Gemma:7b in various domains (X axis for groups, and Y axis for time cost).

Figure 9 shows the conclusions for the performance of the LLMs (F1 score).

Figure 9. The performance of Gemma:7b in various domains (X axis for groups, and Y axis for
F1 score).

From the figures above, we can see that the given knowledge support effectively
improved the performance of the LLMs, although extra knowledge retrieval and semantic
searching also cost more time in the tasks. Compared to tests with CoT prompt support
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only, the effect of knowledge support was significant in almost all domain tasks. To provide
a more concrete comparison, we list the actual improvements for the knowledge support
tests compared to the test without any knowledge support with different domain topics
(11 domains), and the details can be seen in Table 1. The “performance” represents the F1
score of the knowledge support tests. The “distance” and “improvement”, respectively,
refer to absolute and relative differences compared to the test without any knowledge
support.

Table 1. The impact of knowledge support across different domains (F1 scores)

Domains Performance Distance Improvement %

Biology 0.81 0.36 44%
Clinical knowledge 0.80 0.33 40%
Machine learning 0.50 0.32 64%
Management 0.91 0.27 30%
Global facts 0.61 0.24 39%
Anatomy 0.62 0.21 33%
Medicine 0.69 0.16 22%
Marketing 0.96 0.15 16%
Chemistry 0.48 0.14 30%
Business ethics 0.69 0.08 12%
History 0.71 0.02 3%

For these results, we found that the impact of knowledge support was also different
in diverse domain topics. Some specific scientific topics such as biology and machine
learning seemed to have a better chance of being improved by providing the necessary
expertise than others. To explain this difference, we assume that knowledge support can
help domains include more specific terms with a better chance. In the opposite case, the
general knowledge in a pre-trained model can already make the performance quite good
for some popular topics. Figure 10 shows an intuitive comparison of the LLM performance
in the different domains.

In the experiments described above, we observed that the tested LLMs generally
achieved higher average performance scores in domains that aligned with widely dis-
cussed or trending topics in the media and on the Internet, such as marketing and clinical
knowledge. In contrast, for more specialized domains that require deeper domain-specific
expertise, such as chemistry and machine learning, external knowledge support contributed
to more substantial performance improvements, although the overall performance in these
areas remained comparatively low. These observations suggest that the distribution of
domain-specific knowledge in training data may be uneven and that this imbalance may
have been reflected in the variable performance of the model in different domains.

Through a series of comparative experiments, we observed that the incorporation of
additional knowledge significantly enhanced the overall performance of the LLMs, with this
improvement evident in various domains. However, the specific impact of this knowledge
varied and was influenced by a range of contextual factors, as well as by the underlying
architecture of the model. Given the limited transparency regarding both the structure
of the LLM and the composition of its training data, this study focused on a preliminary
investigation of the general effects of external domain knowledge on model performance,
without attempting a detailed analysis of domain-specific differences. To further investigate
the hypothesis of an uneven knowledge distribution, future research should incorporate a
deeper understanding of the model architecture and training mechanisms. In future work,
we hope to design targeted experiments that can more precisely elucidate how different
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types of domain knowledge impact LLM performance and how this knowledge can be
leveraged more effectively to optimize model outcomes.

Figure 10. Comparison of LLM performance in various domains. Blue curve: The performance of the
LLM with knowledge support; Red curve: the performance of the LLM without knowledge support
(based on F1 score).

Finally, we checked the results of knowledge retrieval during the tasks and found that
many of the inaccurate answers were actually caused by a lack of a match of the knowledge
content with the context. This issue should be able to be mitigated by introducing a more
precise indexing model and more elaborated prompt templates. On the other hand, we will
also consider integrating more effective ontology matching models to improve the semantic
searching process in our future work. In fact, the problem discussed above means that
the framework still has some space to improve its efficiency in optimizing the knowledge-
engineering process. This fact also encourages us to implement an active learning process
with experts to improve our knowledge in future work.

4.2. Test with Customized Knowledge Update

The discussed AI system aims to help personalized adaptive learning in a digital trans-
formation context. This goal requires an excellent learning process, with comprehensive
knowledge integration in multiple domains. Taking into account the diversity of student
backgrounds and the many cross-domain challenges in learning, a personalized adaptive
learning approach will be widely adopted in the system to improve learning efficiency and
reduce cross-regional and cross-domain challenges. This means that the knowledge we use
needs to be customized with each user and be dynamically updated based on the requests
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of users. In this section, we will discuss the results related to the customized knowledge
updates and their importance.

To assess the significance and effectiveness of personalized knowledge updates in practical
applications, we performed an experimental evaluation using a real-world scenario of study
plan creation. In this study, the system processed 100 anonymized resumes and generated
customized study plan recommendations tailored to the corresponding students based on the
content of each resume. The recommendations were designed to provide preparatory guidance
for a specific course. To evaluate the quality of these recommendations, we established five key
assessment criteria based on expert opinions, which were used to measure user satisfaction
and assign performance scores. The anonymized resume data were downloaded from the
Kaggle Resume Dataset, which was obtained by scraping individual resume examples from the
www.livecareer.com, accessed on 29 April 2025 [67].

In our test, we used the system as an AI assistant to help new students with suitable
study strategies, recommended based on their profiles. The experiment procedure included
the following steps:

• Data Preparation: Anonymized resume data available online were downloaded and
used to simulate student registration processes to initiate the program.

• Personal Knowledge Extraction: The resume and personal information of each student
were entered into the system to provide a basic dataset for personalized recommendations.

• Profile and Customized Knowledge Update: The system was tasked with retrieving
the most suitable user profile knowledge and relevant domain-specific knowledge
(i.e., description of the course module) from the knowledge base. This data were
used to prepare a customized learning plan tailored to the individual’s background
and interests. All domain-specific knowledge was extracted from relevant literature
documents and stored in the system knowledge base. The user could ask the system
to extend this customized knowledge by updating more files or inputs at any time.

• Knowledge Integration and Recommendation: Based on domain-specific knowledge
and the student profile, the system was requested to generate advice and compile a
report detailing possible suggestions for the student.

• Interactive Guidance: Finally, the system interacted with the students to address specific
questions and provide contextual guidance based on the generated learning plan.

The default LLM used in this experiment was Llama 3.1 (8b) [68] and the user request
was as follows: “Based on the applicant’s resume and profile, you suggest to the applicant
how to prepare for the given course [cloud computing].” To evaluate the quality of the LLM
responses (suggestion), we listed five rules to check if the content satisfied each important
aspect based on the learning outcome specification of the given course. The five rules are
listed below:

• Rule0: The suggestion should include a recommended reading list.

– Importance: A reading list provides tangible, actionable resources to start learn-
ing, and bridges the gap between wanting to study and knowing where to begin.
As the curriculum designers suggested, a good reading list is the primary part
of a pre-study guide, preventing the guide from remaining vague or overly
theoretical.

– Related aspects:

* Aligns resources with the course’s depth and complexity.

* Sets expectations about content difficulty.

• Rule1: The suggestion should explain the prerequisites for studying the course.

– Importance: Prerequisites prevent students from jumping into material they are not
ready for. Such a suggestion protects learners from frustration by making sure they

www.livecareer.com
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are adequately prepared. The instructors hope to use this information to better guide
students in self-assessment and to be fully prepared before starting the course.

– Related aspects:

* Guide students to fill knowledge gaps first if needed.

* Supports scaffolded learning, where new knowledge builds on existing
understanding.

• Rule2: The suggestion should be of proper length.

– Importance: Length affects clarity and usability. If the suggestion is too short,
it might be incomplete or vague. Otherwise, it could overwhelm the reader or
bury key points.

– Related aspects:

* Efficient communication.

* Easy to digest.

* Focused on essentials, without filler.

• Rule3: The suggestion should include some custom advice for the applicants.

– Importance: Generic advice may not resonate or be useful for all learners. To pro-
vide adaptive learning, the system needs to be able to understand the personal
characteristics of each student and provide them with customized advice.

– Related aspects:

* Makes learners feel seen and supported.

* Can address things like learning style, time management, or career goals
based on the student’s context.

* Make learning suggestions that are appropriate for the student’s context.

• Rule4: The suggestion should consider the particular information on the personal
profile of the given applicants.

– Importance: This ensures that personalization in adaptive learning is based on
the particular profiles of the students. This rule aims to examine the knowledge
integration between domain-specific knowledge and personal profile knowledge.
All features need to be extracted from the correct real user profile and seamlessly
adapted to the background of the chosen courses.

– Related aspects:

* Personalized feature extraction

* Knowledge integration

Based on the opinions of relevant experts, we identified the rules above to examine
the output of the AI model. These rules address three key concerns about the quality of the
output. Rules 0 and 1 assess whether the output is informative, Rule 2 ensures that it is
accessible and user-friendly, and Rules 3 and 4 assess the essential functionalities needed to
support adaptive learning in practical tasks.

After the LLM generates the suggestions, we check if the suggestions satisfy each of
the above rules. If the suggestion follows the particular evaluation rule, the corresponding
score will be +1, otherwise −1. With this, we can score the given suggestion for the five
different aspects. In our experiments, we initially ran the test using only the personal profile
as a context to request suggestions from the LLM, and then we repeated the same use
cases again. The second time, the system allowed the agents to retrieve more customized
knowledge from the designated knowledge base and integrated this with the user profile to
support the LLM in generating the responses. The knowledge in the knowledge base was
customized with the user’s previous input information, and can be dynamically reviewed
and updated by users. In the latter cases, we simulated the situation in which the system
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dynamically retrieves the relevant updated customized knowledge based on the task
context. Figure 11 shows a comparison between the use cases with or without a customized
knowledge update. The two sets of tests each included the insignificant 100 use cases, and
we summarize all the comparison results in Figures 11 and 12 below. The three axes X, Y,
and Z represent the corresponding evaluation rules, the order of use cases, and the instant
score for a given rule.

(a) (b)

Figure 11. Comparison for the impact of customized knowledge updates (a) The result of use cases
without customized knowledge support (b) The result of use cases with customized knowledge support.

As can be seen in the above figure, compared with use cases without customized
knowledge updates, use cases with knowledge updates generally met the evaluation rules
better and ultimately achieved better overall scores on most rules. One exception here
was for rule 2-“The suggestion should be of proper length.” Based on that rule, use cases
with customized knowledge updates seemed not to have an advantage. The reason for this
was that the evaluation rule statement is too subjective and lacks specific knowledge and
concrete examples to support the concept of “proper length”. The scoring of experimental
results was also based on the LLM’s judgment according to the given rule statement,
but when the LLM does not understand the connotation of specific concepts such as
“proper length”, the evaluation results will appear arbitrary. Fortunately, in our system,
this type of problem can also be efficiently solved by updating specific knowledge. To fix
this particular problem, we updated a manual course preparation suggestion as a sample
and asked the LLM to consider the given sample when it gave the evaluation based on the
rules. After updating the knowledge, we repeated the evaluation of the same suggestions,
and generated the new results shown in Figure 12.

In the new re-evaluation results, we can see that the scores of all use cases were
improved because of the custom and concrete sample. Moreover, the score of rule 2 on the
latter set improved significantly and the discussed bias was effectively fixed. This made the
evaluation results closer to user requirements and more reasonable, while maintaining the
necessary consistency. This demonstrated the potential of suitable customized knowledge
updates to solve the LLM performance limitation problem. In our system, agents constantly
interact with users and according to user feedback, and input to update the knowledge
base to improve the performance of LLMs during tasks.
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(a) (b)

Figure 12. Re−evaluating the comparison of the impact of customized knowledge support (a) The re-
sult of use cases without customized knowledge support (b) The result of use cases with customized
knowledge support.

5. Conclusions
In this research, we proposed a novel approach using multi-agent to improve the

domain-specific knowledge engineering process and then applied this customized knowl-
edge to facilitate the performance of LLMs in domain-specific tasks. Through the initial
benchmark tests in different scenarios, we proved the potential of this approach and identi-
fied the essential problems that we aim to solve through our framework. The importance
of the relevant customized knowledge (expertise) and the necessity of user participation
in the loop were proved and demonstrated by testing with the experiments. Despite the
surprising ability of the LLMs in semantic processing and inference, the many limitations
and fluctuations with different contexts revealed in the tests tell us that the performance of
LLMs could still be improved by providing the necessary knowledge inputs from human
users to construct sophisticated knowledge models for practical tasks in a given domain.

However, building knowledge models automatically based on a given domain is a
challenge and requires constant dynamic updates and optimization based on user feedback.
Fortunately, with the application of multi-agent, LLMs can help us simplify the whole loop
from knowledge extraction and integration to the deployment of LLMs in specific tasks in
a collective manner. The experiments discussed in this paper showed promise and good
feasibility in this direction.

In future studies, we will continue to improve the approach discussed in the paper
based on the experience from our results and try to address the problems discovered.
In addition, we will apply this platform within various practical scenarios to test the
overall impact and use more comprehensive metrics to evaluate the recommendations from
different perspectives. The main plans that will be implemented in future research and
development are listed below.

First, we will continue to improve prompt templates and agents to facilitate knowledge
integration and task applications. Second, the role of users in the knowledge validation
pipeline and the interactive persona simulation should be highlighted. To better evaluate
the improvement in responses, we will also introduce new datasets and scenarios into
our tests, with the integration of diverse interactive modules (i.e., specific dialogues and
prompt templates). User feedback through interaction will help the system constantly
improve the quality of knowledge during the task, and the corresponding impacts will
be demonstrated and evaluated in future tests. In our future work, we will continue
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to improve the knowledge engineering process and the user interface to facilitate the
approach discussed in this paper. In addition, in the future, the development of an efficient
and expandable local knowledge base is expected to allow interdisciplinary tasks at a
larger scale. At this stage, enhancing the knowledge maintenance and retrieval process
requires a more robust knowledge base system, to enable the framework to scale effectively.
By integrating an open-source vector database such as VectorDB, we aim to improve the
local knowledge base to support efficient semantic searching and knowledge integration.
Last but not least, data protection and privacy are among the primary concerns for our
future work when deploying the framework for practical use cases. Implementing policies
of the General Data Protection Regulation (GDPR) within this framework will be a critical
focus of our ongoing research.
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Appendix A. The List of Tested Subjects in the Experiments
The objective of this experiment was to evaluate how the performance of different

large language models (LLMs) varied across subject domains, due to differences in domain-
specific knowledge and expertise. The experiment was structured in two parts:

In the first part, we assessed the performance of four representative open-source LLMs
across nine distinct domains. The results, presented in Table A1, indicate that each model
exhibited varying levels of performance depending on the domain, reflecting differences in
their underlying knowledge representations.

In the second part, we expanded the evaluation to 31 domains using the Gemma-7B
model, in order to further investigate the sensitivity of a single LLM to domain-specific
content. The results, shown in Table A2, demonstrated that even within a single model,
performance could fluctuate significantly depending on the domain, underscoring the
importance of domain knowledge in LLM behavior.

https://digital4business.eu/
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Appendix A.1. List of Tested Subjects with Different LLMs Across Different Domains

Table A1. Performance of different LLMs across different domains.

Subject Gemma:7b Mistral:7b Llama3 Gemma:2b

Politics 0.71 0.53 0.38 0.17
Chemistry 0.34 0.49 0.17 0.05
Astronomy 0.75 0.42 0.12 0.28
History 0.69 0.48 0.34 0.2
Computer security 0.36 0.62 0.89 0.15
Global facts 0.37 0.41 0.86 0.21
Clinical knowledge 0.47 0.56 0.59 0.14
Geography 0.50 0.50 0.49 0.15
Medicine 0.53 0.49 0.5 0.08

Appendix A.2. List of Tested Subjects with Gemma:7b Across Different Domains

Table A2. The performance of Gemma:7b across different domains.

Subject F1 Score

Politics 0.71
Chemistry 0.34
Astronomy 0.75
History 0.69
Computer security 0.36
Global facts 0.37
Clinical knowledge 0.47
Geography 0.50
Medicine 0.53
Microeconomics 0.57
Moral disputes 0.55
Algebra 0.51
Business ethics 0.61
Miscellaneous 0.52
Philosophy 0.34
Psychology 0.35
Biology 0.45
Statistics 0.34
International law 0.62
Moral disputes 0.62
Human aging 0.59
Anatomy 0.41
Electrical engineering 0.35
Logical fallacies 0.36
Mathematics 0.47
Human sexuality 0.46
Virology 0.35
Accounting 0.36
Nutrition 0.37
Moral scenarios 0.61
Religions 0.58
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