~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Joseph Agoi
Student 1Dx22121684

School of Computing
National College of Ireland

Supervisor: Supervisor: Dr. Anu Sahni

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Joseph Agoi
Student ID: x22121684
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Dr. Anu Sahni
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 1,165
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Joseph Agoi

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Joseph Agoi
x22121684

1 Introduction

This document highlights the necessary steps and instructions to replicate the study on
a predictive analysis project for Chicago crash severity and obtain the expected results.
It captures the system configurations along with the project development process. The
code snippets for the implementation process will be included.

2 System Configuration

Due to the sheer volume of data used for the study, a higher hardware specification
is required to effectively carry out the study. Figure 1 below captures the hardware
specification used to achieve the research objectives. The software requirements are
captured in Figure 2.

Hardware Configurations

Details
Operating System Windows 10 Pro
Installed RAM 24 GB
Hard Disk Space 256 GB
Processor Intel{R) Core(TM) i7-7600U CPU @ 2.80GHz 2.90 GHz

Figure 1: Hardware Specifications

Software Used to Deliver the Project

Details
Programming Language Python 3.7.2
Integrated Development Environment (IDE) Jupyter Notebook 5.7 .6
Other Software Utilized Microsoft Office Suite

Figure 2: Software Requirements

3 Project Development

The following steps provide a view of the code sequences executed within Jupyter Note-
book, allowing you to understand the specific code snippets, commands, functions, or
algorithms, and the outcomes produced during the execution.

3.1 Data Collection

As shown in Figure 3, an API call was made to the city of Chicago’s Data portal API
endpoint. The data was saved in a local drive in an Excel format.

import reguests
import csv

url = "https://data.cityofchicago.org/resource/85ca-t3if.json’
response = requests.get(url)

if response.status_code == 200:
data = response.json()

file path to save the csv file
file_path = "C:\Chicago Traffic Crashes.csv’

Write data to a csv file
with open(file_path, 'w', newline='') as file:
csv writer = csv.writer(file)
Write the header
header = list(data[e].keys())
csv_writer.writerow(header)
Write each row of data to the csv file
for item in data:
csv_writer.writerow(item.values())
print(f"csv file downloaded successfully to: {file_path}")

else:
print("Failed to fetch data from the API")

Figure 3: API Code Snippet
Upon importing the retrieved dataset, a preliminary assessment was conducted to

ensure its integrity. Following this, a filtering process was implemented to exclusively
retain records corresponding to the timeframe encompassing the years 2021 to 2022.

3.2 Data Importation

The data was imported into a Python data frame as shown in figure 4. Basic info was
printed out to have an understanding of the dataset.

import pandas as pd
df = pd.read excel('Chicago Traffic Crashes.xlsx")

Display basic information about the dataset
print(df.info())

Figure 4: API Code Snippet

3.3 Data Pre-processing

Variables that were not core to the study were identified and dropped as shown in Figure
5 below.

columns_to_drop = ['LANE_CNT','WORKERS_PRESENT_I','DOORING_I','WORK_ZONE_TYPE','WORK_ZONE_I','PHOTOS_TAKEN_ I',
"STATEMENTS TAKEN T','NOT RIGHT OF WAY T','CRASH DATE EST T', ' TNTERSECTION RELATED T',"HIT AND RUN T',
'REPORT_TYPE', 'LOCATION', INJURIES_INCAPACITATING','INJURIES_NON_INCAPACITATING',
"TNJURTES REPORTED NOT EVIDENT','TNIJURTES UNKNOWN','INJURTES FATAL','STREET DIRECTION',
'CRASH_RECORD_ID', 'BEAT_OF_OCCURRENCE','STREET_NAME', 'CRASH_DATE','DATE_POLICE_NOTIFIED',
"SEC_CONTRTBUTORY CAUSE','RD NO', STREET NO']

new_df = df.drop(columns=columns_to_drop)
Figure 5: Dropped Variables

Label encoding and manual mapping were done on various categorical variables in the
new data frame.

Figures 6, 7, 8, and 9 detail label encoding and mapping procedures for selected cat-
egorical variables in a dataset. They provide step-by-step insights into the conversion
and mapping of these variables, enabling numerical analysis and computation.

trafficway_map =
"ONE-WAY'": 1,
"UNKNOWN" : 2,
'NOT DIVIDED': 3,
'DIVIDED - W/MEDIAN BARRIER': 4,
"FOUR WAY': 5,
'"DIVIDED - W/MEDIAM (MOT RAISED)': 6,
"T-INTERSECTION': 7,

{

'RAMP': 8,
'CENTER TURN LANE': 9,
'ALLEY': 16,

"FIVE POINT, OR MORE': 11,
"Y-INTERSECTION': 12,

"PARKING LOT': 13,

"UNKMNOWM INTERSECTION TYPE': 14,
"OTHER': 15,

'DRIVEWAY': 16,

"TRAFFIC ROUTE': 17,

"MOT REPORTED': 18,
"ROUNDABOUT ' : 19,
"L-INTERSECTION': 20

}

Map the 'TRAFFICWAY TYPE' column using the dictionary
new_df['TRAFFICWAY TYPE NUMERIC'] = new_df['TRAFFICWAY TYPE'].map(trafficway map)
new_df.head()

Figure 6: Trafficway_Type label encoding and mapping

Label encoding and manual mapping were done on various categorical variables in the
new data frame.

alignment_mapping = {
"STRAIGHT AND LEVEL': 1,
'STRAIGHT OM GRADE': 2,
"CURVE, LEVEL': 3,
"STRAIGHT OM HILLCREST': 4,
"CURVE ON GRADE': 5,
"CURVE ON HILLCREST': 6

¥

Replace 'ALIGNMENT' values with their corresponding numeric representations
new df["ALIGNMENT NUMERIC'] = new df['ALIGNMENT'].map(alignment mapping)

new df.head()

Figure 7: Road_Alignment label encoding and mapping

road defect mapping = {
'NO DEFECTS': 1,
"UNKNOWN": 2,
"RUT, HOLES': 3,
"WORN SURFACE': 4,
"OTHER': 5,
'SHOULDER DEFECT': 6,
'DEBRIS ON ROADWAY': 7

¥

Replace 'ROAD DEFECT' values with their corresponding numeric representations
new df["ROAD DEFECT NUMERIC'] = new df['ROAD DEFECT'].map(road defect mapping)
new_df.head()

Figure 8: Road_Defect label encoding and mapping

weather_condition mapping = {
'CLEAR': 1,
"UNKNOWN " & 2,
'RAIN': 3,
'FOG/SMOKE/HAZE ' : 4,
‘OTHER': 5,
'CLOUDY/OVERCAST": 6,
"SNOW': 7,
'FREEZING RAIN/DRIZZLE': 8,
'SLEET/HAIL': 9,
'BLOWING SNOW': 1@,
'SEVERE CROSS WIND GATE': 11,
'BLOWING SAND, SOIL, DIRT': 12

}

Replace 'WEATHER_CONDITION' values with their corresponding numeric representations
new_df['WEATHER_CONDITION NUMERIC'] = new_df['WEATHER_COMDITION'].map(weather_condition_mapping)
new_df.head()

Figure 9: Weather_Condition label encoding and mapping

As illustrated in Figure 10, the original categorical columns were removed from the
dataset after label encoding and mapping, allowing for streamlined analysis and compu-
tation, eliminating redundancy.

new_df.columns

Index(["POSTED_SPEED_LIMIT', 'TRAFFIC_CONTROL_DEVICE', 'DEVICE_CONDITION',
"WEATHER_CONDITIOM', 'LIGHTING_CONDITION', 'FIRST_CRASH_TYPE',
"TRAFFICWAY TYPE', 'ALIGNMENT', 'ROADWAY SURFACE_COND', 'ROAD DEFECT',
"CRASH_TYPE', 'DAMAGE', 'PRIM_CONTRIBUTORY_CAUSE', "NUM_UNITS',
"MOST_SEVERE_INJURY', 'INJURIES TOTAL', 'INJURIES NO_INDICATION',
"CRASH_HOUR', 'CRASH DAY_OF_WEEK', 'CRASH_MONTH', 'LATITUDE',
"LONGITUDE', '"SEVERE_INJURY', 'POSTED_SPEED LIMIT_CATEGORY',
"DAY_MNIGHT_INDICATOR', 'TRAFFICWAY_TYPE_NUMERIC', "ALIGMMENT_NUMERIC',
"ROADWAY_SURFACE_NUMERIC', 'ROAD_DEFECT_MUMERIC', 'CRASH_TYPE_NUMERIC',
"TRAFFIC_CONTROL_DEVICE_NUMERIC', 'DEVICE_CONDITION NUMERIC',
"WEATHER_CONDITION_NUMERIC', 'FIRST_CRASH_TYPE_NUMERIC',
'DAMAGE_NUMERIC', 'PRIM_CONTRIBUTORY_CAUSE_NUMERIC'],

dtype="object")

columns_to_drop = ['TRAFFIC_CONTROL_DEVICE', 'DEVICE_CONDITION', 'WEATHER COMDITION®, 'LIGHTING CONDITION',
'FIRST_CRASH TYPE', 'TRAFFICWAY TYPE', 'ALIGNMENT', 'ROADWAY SURFACE_COND', ‘'ROAD DEFECT',
"CRASH_TYPE', 'DAMAGE', 'PRIM_CONTRIBUTORY_CAUSE','MOST_SEVERE_INJURY']

Drop the specified columns from the DataFrame

new_df = new_df.drop(columns=columns_to_drop, axis=1)
new_df.head()

Figure 10: Dropping of Categorical Variables

Figure 11 below shows a printout to confirm no Categorical value was retained in the
new data frame.

new df.info()

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 217149 entries, @ to 217148
Data columns (total 23 columns):

Column Non-Null Count Dtype
a POSTED_SPEED_LIMIT 217149 non-null inte4
1 NUM_UNITS 217149 non-null intea
2 INJURIES_TOTAL 216607 non-null floated
3 INJURIES_NO_INDICATION 216607 non-null floatesa
4 CRASH_HOUR 217149 non-null inte4
5 CRASH_DAY_OF _WEEK 217149 non-null inte4
6 CRASH_MONTH 217149 non-null intea
7 LATITUDE 215365 non-null floate4
8 LONGITUDE 215365 non-null floatea
9 SEVERE_INJURY 217149 non-null inte4
10 POSTED_SPEED_LIMIT_CATEGORY 217149 non-null category
11 DAY _NIGHT INDICATOR 217149 non-null inte4
12 TRAFFICWAY_TYPE_NUMERIC 217149 non-null intea
13 ALIGNMENT NUMERIC 217149 non-null inte4
14 ROADWAY_ SURFACE_NUMERIC 217149 non-null inte4
15 ROAD_DEFECT_NUMERIC 217149 non-null inte4
16 CRASH_TYPE_NUMERIC 217149 non-null inte4
17 TRAFFIC_CONTROL_DEVICE_NUMERIC 217149 non-null inte4
18 DEVICE_CONDITION NUMERIC 217149 non-null inte4
19 WEATHER_CONDITION_NUMERIC 217149 non-null intea
20 FIRST_CRASH TYPE_NUMERIC 217149 non-null inte4
21 DAMAGE_NUMERIC 217149 non-null intea

22 PRIM _CONTRIBUTORY_CAUSE_NUMERIC 217149 non-null inte4
dtypes: category(1), floate4(4), inte4(18)
memory usage: 36.7 MB

Figure 11: Data frame info printout

Check for Null values in the data set was then carried out as shown in Figure 12
below.
Identified Null values were removed as shown in Figure 13.

#checking missing values in our new dataframe
new_df.isnull({).sum().sort _values(ascending=False)

Figure 12: missing values check

columns_to_dropna = ['LATITUDE', 'LONGITUDE', "INJURIES_TOTAL', 'INJURIES_NO_INDICATION']

new_df .dropna(subset=columns_to_dropna, inplace=True)

Figure 13: Deleting Null Values

3.4 Modeling and Evaluation

For this study, three models were built; Random Forest, Support Vector Machine, and
Logistic Regression.

3.4.1 Experiment 1

A) Random Forest

The clean df dataset was used to define features and target variables, with columns
assigned to predict crash severity. The dataset was split into training and testing sets,
with 85% for training and 15% for testing. A Random Forest Classifier model was in-
stantiated, with 100 decision trees and 42 random states for reproducibility. The model
was trained using the training data.

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_scere, precisien_score, recall_scere, f1_score, classification_report, confusion_matrix

Define features (X) and target variable (v) 551
features_cls = cleaned_df[['POSTED_SPEED_LIMIT', IC_CONTROL_DEVICE_NUMERIC', 'DEVICE_CONDITION_NUMERIC',
*WEATHER_CONDITION_NUI , 'DAY_NIGHT_INDICATOR', 'TRAFFICWAY_TYPE_MWUMERIC', 'ALIGNMENT_NUMERIC',
" ROADWAY_SURFACE_WUMERIC', 'ROAD_DEFECT_MUMERIC', 'CRASH_HOUR®, 'CRASH_ F_WEEK', 'CRASH_MONTH',
"LATITUDE', ‘LONGITUDE'

11

target_cls = cleaned_df["CRASH_TYPE_NUMERIC']

Split the data into training and testing sets

X_train_cls, x_test_cls, y_train_cls, y_test_cls = train_test_split(features_cls, target_cls, test_size=8.15, random_state=42}
Initialize and Fit the Random Forest classifier model

rf_classifier - RandemrForestclassifier(n_estimators-188, random_state-42)
rf_classifier.fit(X_train_cls, y_train_cls)

Moke predictions on the test set

y_pred_cls = rf_classifier.predict(X_test_cls)

Evaluate the model using multiple metrics

accuracy = accuracy_score{y_test_cls, y_pred_cls)

precisicn = precision_score(y_test_cls, v_pred_cls, average='welghted')

recall = recall_score(y_test_cls, y_pred_cls, average='weighted"')

f1 = f1_score(y_test_cls, y_pred_cls, average='weighted')

classification_rep = classification_report(y_test_cls, y_pred_cls)

conf_matrix = confusion_matrix(y_test_cls, y_pred_cls)

True Negative Rote, False Negotive Rate

Additional metrics: True Positive Rate, False Positive Rate
tn, fp, fn, tp = conf_matrix.ravel()
true_positive_rate = tp / (tp + fn)
false_pesitive_rate = fp / (fp + tn)
true_negative_rate - tn / (tn + fp)
false_negative_rate = fn / (fn + tp)

print(f"Accuracy: {accuracy}")
print(f"Precision: {precision}"}
print(f"rRecall: {recall}")
print(f"F1 Score: {f1}")
print{"Classification Report:")
print(classification_rep)
print("Confusion Matrix:"}
print(conf_matrix)
print(f"True Pos

ive Rate: {true_positive_rate}")
print(f"False Positive Rate: {false_pesitive_rate}")
print(f"True Hegat Rate: {true_negative_rate}"}
print(f"False Megative Rate: {false_negative_rate}"}

Figure 14: Random Forest Code

B) Support Vector Machine

The data is classified using features and target variables, similar to Random Forest.
The dataset is split into training and testing sets using an 85:15 ratio. A Support Vector
Machine Classifier (SVC) model is initialized and trained on the training data, setting
hyperparameter values and ensuring reproducibility. The kernel was set to linear, gamma
to auto while C, which is the regularisation parameter, was set to 1 as shown in Figure
15 below.

from sklearn.svm import SvC

from sklearn.model_selecticn import GridSearchcv

from sklearn.metrics import accuracy_scere, precisien_score, recall_scere, fi_score, classification_report, confusion_matrix
from sklearn.medel_selection import traim_test_split

Define feotures (X} ond target variable (y) for classificotion

features_cls = cleaned_df[['POSTED_SPEED LIMIT', 'TRAFFIC_CONTROL_DEVICE_MWUMERIC', 'DEVICE_COWDITION_NUMERIC®,
"WEATHER_CONDITION_NUMERIC', "DAY_WIGHT_INDICATOR', 'TRAFFICWAY_TYPE_NUMERIC', "ALIGNMENT_MNUMERIC',
'ROADWAY_SURFACE_NUMERIC', 'ROAD_DEFECT_NUMERIC', 'CRASH_HOUR®, 'CRASH_DAY_OF_WEEK', 'CRASH_MONTH',
"LATITUDE', 'LONGITUDE'
1]

target_cls = cleaned_df["CRASH_TYPE_NUMERIC"]

Split the date inte troining and testing sets
¥ _train_cls, x_test cls, y train_cls, y_test_cls = train_test_split(features_cls, target_cls, test_size-9.15, randem_state=42)

Define the Support Vector Mochine classifier model
swm_classifier = sSVC(C=1, kernel='linear', gamma="auto', random_state=42)

Fit the model with hyperparameter tuning on the training dota

svm_classifier.fit{X_train_cls, y_train_cls)

Moke predictions on the test set
y_pred_svm = svm_classifier.predict{x_test_cls)

Evoluate the model using multiple metrics

ACCUracy_svm = accuracy_scere(y_test_cls, y_pred_svm)

precision_svm = precision_score{y_test_cls, y_pred_swvm, average="weighted')
recall_swm = recall_score{y_test_cls, y_pred_swm, average='weighted')
fi1_svm = f1_score{y_test_cls, y_pred swvm, average="weighted')
classification_rep_svm = classification_report(y_test cls, y_pred svm)
cenf_matrix_swm = cenfusicn_matrix(y_test_cls, y_pred_svm}

Additional metrics: True Positive Rate, Folse Positive Rate, True Negative Rote, False Negotive Rote
tn_svm, fp_swm, fn_svm, tp_svm = conf_matrix_swm.ravel()

true_positive_rate_svm = tp_swvm / (ftp_swm + fn_svm}

false_pesitive_rate_swm = fp_svm / (fp_svm + tn_svm}

true_negative_rate_swm = tn_svm / (tn_swm + fp_svm}

false_negative rate_swvm = fn_svm / {fn_svm + tp_svm}

print{"support vector Machine Metrics:"}
print{f"Accuracy: {accuracy_svm}")

print{f"Precision: {precisiom_swvm}"}

print{f"recall: {recall swm}")

print{f"F1 sScere: {fl1_svm}")

print{"Classification Report:")
print{classification_rep_svm)

print{"coenfusicn Matrix:"}

print{cenf_matrix_swm)

print{f"True Positive Rate: {true_positive_rate_svm}")
print{f"False Positive Rate: {false_positive rate_swm}")
print{f"True Negative Rate: {true_negative_rate svm}")
print{f"False Megative Rate: {false_negative_rate_swm}")

Figure 15: Support Vector Machine Code with linear kernel and auto gamma

C) Logistic Regression

The logistic regression model was initialized and trained using the same process flow
for data preprocessing and splitting, with hyperparameter configurations such as C for
weaker regularization, max iter for convergence, and solver for optimization. Figure 16
shows the code for Logistic regression.

No specific hyperparameter values were set during the instantiation of the logistic
regression model using the code entry: logistic_regression = LogisticRegression(). Con-

sequently, all hyperparameters retained their default settings, allowing the model to util-
ize the predefined configurations provided by the default parameters.

from sklearn.linear_model import Logisticregression

from sklearn.medel_selection import train_test_split

from sklearn.metrics import accuracy_score, precisien_score, recall_score, f1_score, classification_report, confusion_matrix
import pandas as pd

features_cls = cleaned_df[[FOSTED_SP MIT DEVICE_NUMERIC', 'DEVICE_CONDITI MERIC'
H_NUME : _INDICATOR', 'TRAFFICWAY_TYPE_NUN > "ALTGNMENT_HUM
CT_MUMERIC', 'CRASH_HOUR', 'CRASH_DAY_OF_WEEK',

X traln cls, ¥ _test_cls, y_ traln cls,) test cls = train_test_split(features_cls, target_cls, test_size=8.15, random_state=42

alize and fit the Lo

istic Regression model

logistic_| regr55510n = LogisticRegressicn()
logistic_regression.fit{X_train_cls, y_train_cls)

Moke predictions on the test set
y_pred_leogistic = legistic_regression.predict(¥_test cls}

Evalugte the model using multiple metrics

accuracy_logistic = accuracy sccre(y test_cls, y_pred_logistic)
precision_logistic = precision_score(y_test_cls, y pred_legistic)
recall_legistic = recall_score{y test_cls, y_pred_legistic)

f1_logistic = f1_scere(y_test_cls, y_pred_logistic)

classification_rep_leogistic = classification_report(y_test cls, y_pred_logistic)
conf_matrix_legistic = confusion_matrix(y_test cls, y_pred logistic)

Metrics:")

: {accuracy_logistic}“}
n: {precision_legistic}™)
{recall logistic}™)

print(f“accura
print{f"Precis
print{f"Reca
print{f"F1 5
print{"cl
print \CIESSLFJcatlcn rep_ loglstlc\
print{"Cenfusicn Matrix:"}
print{conf_matrix_leogistic)

Figure 16: Logistic Regression Code

D) Performance Comparison
The performance comparison of experiment 1 is captured in Table 1 below:

Algorithm Accuracy | Precision | Recall | F-1 Score
Random Forest 0.7105 0.6809 | 0.7105 0.6741
Support Vector Machine 0.6955 0.4837 | 0.6955 0.5705
Logistic Regression 0.6944 0.6995 | 0.9826 0.8172

Table 1: Experiment 1 Performance Comparison

3.4.2 Experiment 2

The study used GridSearchCV, a Scikit-Learn function, to identify optimal hyperpara-
meter values for machine learning models. The study compared and selected the best
values, infused them into the existing model code, and rerun the modified codes, resulting
in improved performance and enhanced metric scores.

The second experiment aimed to improve model accuracy, robustness, and gener-
alizability by examining the influence of these techniques on machine learning model
performance. The final outputs of each model were compared to identify the best-fitting

algorithm for crash severity prediction.

A) Random Forest Figure 17 shows a code snippet incorporating the best-fit hy-
perparameter values in Random Forest code.

Initiaglize and Fit the Random Forest classifier model
rf_classifier = rRandomForestClassifier(n_estimators=158, max_depth=22, min_samples_leaf=4, min_samples_split-12, random state-=42
rf_classifier.fit(¥_train_cls, y_train_cls)

Figure 17: Random Forest Best hyperparameters

B) Support Vector Machine Figure 18 shows a code snippet incorporating the
best-fit hyperparameter values in the Support Vector Machine code.

from sklearn.svm import SWC
from sklearn.model_selection import train_test_split
from sklearn.metrics impeort accuracy_scere, precisicn_score, recall_scere, fl1_score, classification_report, confusion_matrix

Define features (X) and target variable (v) for cla

features_cls = cleaned_df[['FOSTED_SPEED_LIMIT', "TRAFFIC_CONTROL_DEVICE_MWUMERIC', 'DEVICE_CONDITION_MUMERIC',
"WEATHER_COMDITION_MUMERIC', "DAY_MWIGHT_INDICATOR®, 'TRAFFICWAY_TYPE_NUMERIC', "ALIGNMENT_NUMERIC',
' ROADWAY_SURFACE_WUMERIC®, 'ROAD_DEFECT_NUMERIC', "CRASH_HOUR', 'CRASH_DAY_OF_WEEK', 'CRASH_MONTH',
"LATITUDE', 'LONGITUDE'

1]

target_cls = cleaned_df["CRASH_TYPE_NUMERIC "]

split the doto into training and testing sets

¥_train_cls, ¥_test cls, y train_cls, y test cls = train_test_split(features_cls, target cls, test_size-8.15, random_state-42)

Define the support Vector Machine classifier model

svm_classifier = SVWC({C=1, kernel-='rbf", gamma-='scale', random_state-42) # Use fixed best-fit hyperparomefers

Figure 18: Support Vector Machine Best hyperparameters

C) Logistic Regression Figure 19 shows a code snippet incorporating the best-fit
hyperparameter values in the Logistic Regression code.

from sklearn.linear_model import LogisticRegressicn

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score, precisionm score, recall_score, f1_score, classification_report, confusion_matrix
import pandas as pd

Define features (x) ond target variable (¥} for classification

features_cls = cleaned_df[['POSTEC_SPEED_LIMIT', 'TRAFFIC_CONTROL_DEVICE_MUMERIC', °"DEVICE_COMDITION_MUMERIC',
"WEATHER_COMDITIOM_MNUMERIC', 'DAY_NIGHT_INDICATOR®, 'TRAFFICWAY TYPE_NUMERIC', ‘ALIGNMENT_MNUMERIC',
'ROADWAY_SURFACE_MUMERIC', 'ROAD_DEFECT_MUMERIC', 'CRASH_HOUR®, 'CRASH_DAY_OF_WEEK', 'CRASH_MONTH',
"LATITUDE', "LONGITUDE'
11

target_cls = cleaned_df["CRASH_TYPE_MUMERIC"]

split the data intoe troiming and testing sets

X_train_cls, X_test cls, y train cls, y_test_cls = train_test_split{features_cls, target cls, test_size=-8.15, random_state=42)

Imitialize logistic regression with best hyperparameters

logistic_regression = LogisticRegression(c=1, max_iter=12@, solver='lbfgs'}

Figure 19: Logistic Regression Best hyperparameters

The final models’ performance output is summarized below.

D) Final Algorithms Performance Comparison
The performance comparison of Experiment 2 is captured in Table 2 below:

Algorithm Accuracy | Precision | Recall | F-1 Score
Random Forest 0.7178 0.6921 | 0.7178 0.6707
Support Vector Machine 0.6965 0.6703 | 0.6965 0.5758
Logistic Regression 0.6952 0.6994 | 0.9850 0.8180

Table 2: Experiment 2 Performance Comparison

3.5 Identifying Influential Factors

The study also investigated factors determining crash severity in Chicago using a ran-
dom forest classifier. The classifier learned from the training set and calculated feature
importance. The graphs analyzed the importance of each feature in determining crash
severity, providing insight into factors affecting crash severity. Figure 20 shows the code
snippet and output of the influential factors in ascending order.

import pandas as pd
from sklearn.ensemble import RandemrForestclassifier

IIT', 'TRAFFIC CONTROL DEVICE NUMERIC', 'DEVICE CONDITION NUMERIC',

CONDITION_NUMERIC' s "DAY_NIGHT_IN DICATOR', 'TRAFFICWAY_TYPE_NUMERIC', °ALIGHMENT_MUMERIC',

¥_SURFACE_NUMERIC', 'ROAD_DEFECT_NUMERIC®,'CRASH_HOUR', 'CRASH_DAY_OF_WEEK', 'CRASH_MONTH',
'LONGITUDE

Fit the model

rf.fit({features, target)

Get feature importances
feature_importances = rf.feature_importances_
feature_names = features.celumns.tolist()

Create o DatoFrame of feature importances

feature_importance_df = pd. DataFr‘ame({ Feature': feature_names, "Importance': feature_importances})

Sort the fea s by importence in descer

.sort_values(by='Importance', ascending=False)

'Featur‘e 1mpor“tance df = feature 1mpor‘tance

pi

print (Feature Jmpor‘tance _df)

v feature importance

Feature Impcrtance
12 LATITUDE 2.226445
13 LONGITUDE 2.223628
El CRASH_HOUR 2.135863
11 CRASH_MONTH 2.186825
18 CRASH_DAY_OF_WEEK 2.877537
5 TRAFFICWAY_TYPE_NUM 2.859334
@ POSTED_SPEED_L 2.825378
7 ROADWAY_SURFACE_K 2.827335
1 TRAFFIC_CONTROL_DEVICE_N 2.8214888
2 WEATHER_COMDITION_NUM 2.8211832
2 DEVICE_COMDITION_NUM 2.819248
8 ROAD_DEFECT_NUM 2.819178
4 DAY_NIGHT_IN “ICHTOR @.812185
& ALIGHMENT_NUMERIC 2.888322

Figure 20: Influential Factors

3.6 Sub-Factors Identification

The study focused on the primary contributory cause and crash type attributes in a data-
set, using feature encoding and the One-Hot Encoding technique. The dataset was divided
into training and testing sets, with 80% used for training the Random Forest Classifier.
The classifier was trained to identify influential sub-factors impacting severe crashes, and

10

feature importance was extracted to identify the top 10 influential sub-factors. This in-
formation was visually represented in a horizontal bar plot using Matplotlib. Figure 21
shows the code snippet and output of the 10 most influential sub-factors in ascending
order.

Extroct feature importance
feature_importance = pd.Series{random_forest.feature_importances_, index=encoded_df.columns)

sort feature importonce in descending order
sorted_feature_importance = feature_importance.sort_values(ascending=False)

Display top imfluential cguses

print{"Top Influential Causes for Sewvere Crashes:"}
print{sorted_feature_importance.head{1e}) # Display top 1@ couses

Top Influential Causes for Severe Crashes:

PRIM_CONTRIBUTORY _CAUSE_DISREGARDING TRAFFIC SIGNALS 2.188797
PRIM_CONTRIBUTORY _CAUSE_IMPROPER BACKING 2.118529
PRIM_CONTRIBUTORY _CAUSE_FAILING TO YIELD RIGHT-OF-WAY 2.895491
PRIM_CONTRIBUTORY_CAUSE_UMNABLE TO DETERMINE 2.@E5525
PRIM_CONTRIBUTORY _CAUSE_UMDER THE INFLUENWCE OF ALCOHOL/DRUGS (USE WHEM ARREST IS EFFECTED) 2.8E43223
PRIM_CONTRIBUTORY _CAUSE_FAILING TO REDUCE SPEED TO AVOID CRASH 2.862934
PRIM_CONTRIBUTORY _CAUSE_FOLLOWING TOO CLOSELY B.862273
PRIM_CONTRIBUTORY _CAUSE_PHYSICAL CONDITION OF DRIVER 2.855161
PRIM_CONTRIBUTORY_CAUSE_IMPROPER OVERTAKING/PASSING 2.854547
PRIM_CONTRIBUTORY _CAUSE_EQUIPMENT - VEHICLE CONDITION 2.839358

dtype: floatss

Figure 21: Influential Sub-Factors

3.7 Visualization of Influential Factors

Figure 22 shows the visualization output of the influential factors in ascending order.

Top Feature Importances

LATITUDE

LONGITUDE

CRASH_HOUR

CRASH_MONTH
CRASH_DAY_OF_WEEK
TRAFFICWAY_TYPE_NUMERIC
POSTED_SPEED_LIMIT
ROADWAY_SURFACE_NUMERIC

Featune

TRAFFIC_CONTROL_DEVICE_NUMERIC
WEATHER_CONDITION_NUMERIC
DEVICE_CONDITION_NUMERIC

ROAD_DEFECT_NUMERIC

DAY_MIGHT_INDICATOR

ALIGNMENT_NUMERIC

T T T T
Qoo 0.05 Q.10 0.15 Q.20
Impaortance

Figure 22: Visualization of Influential Factors

11

	Introduction
	System Configuration
	Project Development
	Data Collection
	Data Importation
	Data Pre-processing
	Modeling and Evaluation
	Experiment 1
	Experiment 2

	Identifying Influential Factors
	Sub-Factors Identification
	Visualization of Influential Factors

