

Cloud Native Application Disaster Recovery in a

Multi-Cloud Environment – A DevOps Approach

using Terraform

MSc Research Project

Cybersecurity

Wei Tong

Student ID: X21202648

School of Computing

National College of Ireland

Supervisor: Ross Spelman

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Wei Tong

Student ID:

X21202648

Programme:

MSc. in Cybersecurity

Year:

2022

Module:

Final Thesis

Supervisor:

Ross Spelman

Submission Due

Date:

14th December 2023

Project Title:

Cloud Native Application Disaster Recovery in a Multi-Cloud
Environment – A DevOps Approach using Terraform

Word Count:

6305 Page Count: 21

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Wei Tong

Date:

14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Cloud Native Application Disaster Recovery in a

Multi-Cloud Environment – A DevOps Approach

using Terraform

Wei Tong

X21202648

Abstract

In today’s business landscape, the ability to recover from unforeseen disasters and

continue critical business operations is crucial for enterprises, irrespective of their size.

Any additional minute when the system is offline could cause substantial financial losses

and irreversible reputation damage to the organisation. Hence, finding the quickest and

the most reliable solution to recover the failed system can be extremely beneficial. In

recent years, one noticeable trend in the software industry is that cloud-native applications

are becoming increasingly popular. These applications provide developers great flexibility

when architecting complex distributed systems. With the advantage of leveraging multiple

platforms, developers can create highly available, fault-tolerant applications across several

cloud ecosystems. However, this trend also introduces many unique challenges to the

development and operation (DevOps) team, such as the complexity of infrastructure

orchestration and management between multiple cloud providers. To address these

difficulties, Infrastructure as Code (IaC) tools like Terraform have been created. To find

the most suitable disaster recovery solution for cloud-native applications, we conducted a

comprehensive literature review of the existing research papers on the topic. However,

none of them provided an in-depth exploration of performance evaluation. Therefore, we

propose to develop a more robust and efficient disaster recovery solution for multi-cloud

environments utilizing the IaC tool Terraform. In this research, we try to bridge the gap

between literature and contribution value into the implementation of more efficient

disaster recovery solutions for cloud-native applications in the multi-cloud environment.

1 Introduction

Reducing project implementation costs, increasing software development agility, and ensuring

robust system security and compliance are the primary driving forces for businesses to adopt a

cloud strategy. Gartner projected that, by the year 2025, over 95% of the new digital workload

will be hosted in the cloud environments. The cloud’s pay-as-you-use model gives enterprises

of any size seamless access to an extensive pool of computing resources, which allow them to

perform research and development activities at a fraction of the cost. This model offers

businesses the opportunity to implement software project without the burdens of procuring

hardware or installing operating systems. Instead, the process only involves provisioning the

2

required resources in the cloud. The flexibility offered by this pay-as-you-use model

encourages businesses to start new projects and pay only for the resources consumed.

Additionally, the ability to delete cloud resources effortlessly without penalties is another

advantage to leverage the cloud strategy.

A vast range of services is offered by the Cloud Service Providers (CSP), including but

not limited to Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as

a Service (SaaS). Notably, Amazon Web Services (AWS), Microsoft Azure, and Google Cloud

stand out as the three major players in this domain. Business often chooses a specific CSP

according to their needs and migrates on-premises applications to the cloud to leverage many

advantages, such as cost efficiency and convenience. Furthermore, new software is also

developed and deployed within the same cloud infrastructure, primarily driven by the

familiarity of developers with the specific CSP.

However, it is important to acknowledge that many potential issues exist when utilizing

a single cloud approach, including concerns such as vendor lock-in, cost considerations, and

business continuity. Organizations may only become aware of these issues when an unexpected

interruption occurs, such as when their applications go offline due to unforeseen situations with

the CSP’s load balancer.

1.1 Motivation and Background

Recovering from unforeseen disasters swiftly is critical for organizations, regardless of their

size and industry. Small e-commerce platforms must maintain an online presence so that their

customers can purchase products from them. Air traffic control systems require continuous

online operation so that all air traffic activities can be monitored and managed accurately. Even

a brief downtime of the system can cause significant issues for the business. Therefore, find

the best and most reliable disaster recovery solution for the failing system can be extremely

important.

3

Figure 1. CNCF survey 2020. Source: CNCF

 A 2020 survey conducted by The Cloud Native Computing Foundation (CNCF) reveals

the growing popularity of the term multi-cloud, see Figure 1. It shows that cloud-native

applications are gaining more interest due to the capability of running in any CSP that supports

the Docker running environment. This gives developers more options and flexibility to

architect applications that can leverage resources from multiple cloud providers.

 However, the multi-cloud application architecture brings many advantages but also

some challenges, especially for the Development and Operation (DevOps) teams. DevOps, as

a cultural movement, makes the collaboration between the development and operation teams

easier. It has one single goal, which is to release high-quality software efficiently. It also has

many other benefits including knowledge sharing, continuous feedback, and improvement. In

the intricate multi-cloud environment, the ability to leverage the Infrastructure as a Code (IaC)

tool to provision the cloud infrastructure automatically becomes crucial. This approach has

many benefits, such as code revisioning, static code inspection, reducing repetition, and cost-

saving. There are many IaC tools available in the market, Terraform from HashiCorp stands

out alongside many others like AWS CloudFormation and Pulumi. Infrastructure as Code can

facilitate fast cloud infrastructure provisioning. The ability to create cloud infrastructure

quickly can be an advantage for Business Continuity and Disaster Recovery (BC/DR) operation

with applications running in multiple cloud environments.

 Disaster Recovery (DR) involves strategies and plans on how an organization can

recover from unexpected events, for example, natural disasters, deliberate disruption, loss of

utilities and services, and hardware or software failures (Abualkishik, A.Z., A., A. and Gulzar,

Y. 2020). Measuring the performance of the DR solution involves utilizing metrics such as

4

Recovery Point Objective (RPO), Recovery Time Objective (RTO), and cost. On the other

hand, Business Continuity (BC) involves how an organization can continue operations

seamlessly without downtime when disaster strikes.

1.2 Research Question

One of the key challenges associated with leveraging cloud resources is the ability to swiftly

recover enterprise’s application and maintain business continuity from unforeseen disasters,

which can be beyond the awareness and control of the selected CSP.

This challenge motivates the formulation of the following research question: Can the

Infrastructure as Code tool, such as Terraform, contribute to the reduction of a cloud-native

application’s recovery time during a crisis? Furthermore, to what extent this reduction in

recovery time can be achieved?

In consideration of the research question, we propose to deploy the cloud-native

application in multiple cloud environments using Terraform. If multiple CSPs are utilized, one

is designated as the primary infrastructure and the others as secondary fallbacks in the event of

disaster. This approach could potentially reduce the cloud-native application’s disaster

recovery time. The result could be continuous business operation without disruption, also

mitigating the risk of vendor lock-in.

1.3 Document Structure

The remainder of this paper is structured as follows. In section 2, we conduct a literature review

on the topic of BC/DR in a single or multiple cloud environment. Section 3 and 4 outline the

methodologies used for our research and the final specification of the proposed solution.

Section 5 explains more details about the implementation phase. Section 6 outlines how the

proposed solution is evaluated against varies of test scenarios. Finally, section 7 provides the

conclusion and future works.

2 Related Work

This section comprises a comprehensive analysis of the existing literature on the topic of

BC/DR, organized in chronological order. Several works have been studied in the area of

cloud-native application, as well as the BC/DC solutions for single-cloud and multi-cloud

environments. However, from our extensive review, it has come to our attention that only one

of the papers provided limited metrics for measuring the performance of BC/DR solutions.

 The investigation conducted by Alshammari, M.M. et al. (2017) offers a detailed

studies of the complexity of achieving disaster recovery in both single-cloud and multi-cloud

environments. The study identifies and discusses several challenges that companies may face

in the context of disaster recovery, emphasizing the potential security issues that may arise and

data loss when all information is stored in a single cloud environment. To mitigate these risks,

it proposes to adopt a multi-cloud environment, which has advantages in terms of high

5

availability, load balancing, and flexibility. Furthermore, the authors express the intention to

develop the disaster recovery system in a multi-cloud environment in the future and provide

insight of the metrics for RTO and RPO. The study conducted by Lavriv, O. et al. (2018)

proposed the utilization of IaC tool Terraform for recovering the cloud infrastructure within a

local OpenStack cloud instance. The paper presents the suitability of the IaC tool Terraform

for disaster recovery in the cloud environment and the procedures on how to implement it.

Disaster recovery duration is used for the performance measurement. However, it is worth

noting that investigation conducted was confined to a single instance of the OpenStack cloud,

it did not carry out the testing in any publicly available cloud environment. Additionally, the

authors did not consider the utilization of a multi-cloud architecture design.

 The research presented by Harwalkar, S., Sitaram, D. and Jadon, S. (2019) introduces

a lightweight OpenStack prototype aimed at addressing disaster recovery challenges within a

multi-cloud environment. The proposed open-sourced solution suggests that it is possible to

facilitate heterogeneous multi-cloud disaster recovery through the utilization of OpenStack

API and third-party plug-ins. However, it is important to note that the solution remains untested

in any of the main publicly available cloud environments. Therefore, no performance metrics

were ever provided, such as RTO and RPO. Offering a comprehensive study of disaster

recovery, Abualkishik, A.Z., A., A. and Gulzar, Y. (2020) discuss in detail the spectrum of

disasters organizations may encounter, several types of disaster recovery solutions, and the

pros and cons of adopting cloud-based DR approach. The authors extensively highlight issues

and challenges associated with cloud-based disaster recovery and propose the utilization of

services and resources from multiple CSPs as a better alternative. However, the details of the

implementation of the identified better solution are not provided.

 The study conducted by Stamenkov, G. (2022) investigates many potential problems

associated with the planning of disaster recovery and business continuity, which can be created

with various frameworks or institutions. The research systematically compares a set of different

BC/DR plans including critical information infrastructure plans, disaster recovery plans,

business continuity plans, and many more, to study the pros and cons of each. An innovative

layered plan model was proposed in this study. Each layer in the model contains three distinct

BC/DR plans to address different levels of operation consists of normal operation, non-

disastrous local emergency event, and disastrous event. Notably, this research is beneficial for

large enterprise with the capability of allocating resource for selecting the best suitable plan,

but the comprehensive information and lack of implementation details approach may

overwhelm small and medium-sized businesses who do not have dedicated BC/DR resource.

Moreover, no specific details on how the proposed layer plan can be executed. The research

carried out by Liu, B., Xin, Y. and Zhang, C. (2022), states that the traditional single-cloud

disaster recovery model falls short of meeting the current business need. The authors introduce

a new novel system architecture that utilizes both the traditional DR method and blockchain

technology. The proposed system runs on top of the multiple cloud environments, providing a

third-party service that can potentially help organizations to implement a multi-cloud DR

solution. It consists of many features such as distributed storage, security audit, and network

transmission optimization. Additionally, it offers a unified multi-cloud resource management

6

interface and multi-cloud data DR capability. Although the authors put a lot thought into the

design of a well-structured Disaster Recovery as a Service (DRaaS) system, the complexity of

implementing a such system by businesses remain a considerable challenge. Moreover, the

lack of details regarding system implementation, RTO & RPO and associated cost may further

complicate the potential adoption of the proposed solution.

 Nikolovski, S. and Mitrevski, P. (2022) explain the fundamental prerequisites for

crafting a successful BC/DR solution in their study. It critically identifies the essential missing

parameters in the reviewed literature, such as the infrastructure size, and the data permission,

format, and volume. The paper emphasizes the importance of including measurement metrics

such as RTO, RPO, and data volume when assessing a DR solution. However, the proposed

solution remains primarily theoretical, lacking specifics on how it can be implemented and

validated. The investigation conducted by Pruthvi Kumar Reddy, D. et al. (2022) focuses on

the data recovery part of disaster recovery, by leveraging an already available infrastructure

BC/DR plan via a cloud-based architecture. The proposed solution integrates multiple

advanced concepts such as data encryption technologies, fog computing, and multi-cloud

functionalities. The authors make the argument that the utilization of fog computing can

mitigate network latency issues by bringing the computing resources closer to the target data,

especially for a large data set. This is only true when the data volume is significantly big for

the system to back up, it may cause delays in copying from the source to the target system. The

proposal also suggests data segmentation and distributed backup across multiple CSPs for

enhanced security, reducing the potential impact of data breaches. Each CSP will hold partial

data due to the data partitioning process, therefore the attacker cannot make sense of the

information even though one of the CSPs has a data breach. However, the implementation of

such system can be extremely complicated. Furthermore, the scenario of one of the CSP

experiencing a DR issue of its own while simultaneously the proposed system encounters some

sort of difficulties raises concerns about data integrity, because each CSP holds the data

partially, none of them has the whole data set. Additionally, the measurement metrics are

limited to the data upload and encryption, with no mention of the duration of data restoration.

 Alonso, J. et al. (2023) conducted a full systematic literature review (SLR) exploring

the dynamics of cloud-native applications in multi-cloud environments. The authors argue that

the model of traditional single-cloud architecture is becoming obsolete around BC/DR, as

organizations increasingly gravitate towards multi-cloud solutions. According to the study,

businesses utilizing a multi-cloud architecture model have many advantages, such as cost

reduction, enhanced data agility, and accelerated innovation. There are 940 academic papers

and research journals reviewed by the authors, among them only 88 are accepted to be studied

further to contribute to the final SLR. The research identifies three distinct categories of cloud-

native applications: those replicate from one CSP to another, the one fully distributed and

leveraging multiple CSPs, and the hybrid model that combines both. Notably, the study states

heterogeneity as a significant challenge in the context of application running in multi-cloud

environments. Furthermore, the provisioning and management of cloud-native applications in

this complex setting can be difficult. The authors found a notable research gap in this domain,

which we will conduct further exploration and investigation in this paper.

7

Table 1 - Related BC/DR work with performance evaluation

Authors and Ref. Research Title RTO RPO Cost

Alshammari, M.M. et

al. (2017)

Disaster recovery in single-cloud and multi-cloud

environments: Issues and challenges

No No No

Lavriv, O. et al.

(2018)

Method of cloud system disaster recovery based on

“Infrastructure as a code” concept

Yes No No

Harwalkar, S.,

Sitaram, D. and Jadon,

S. (2019)

Multi-cloud DRaaS using OpenStack Keystone

Federation

No No No

Abualkishik, A.Z., A.,

A. and Gulzar, Y.

(2020)

Disaster Recovery in Cloud Computing Systems: An

Overview

No No No

Stamenkov, G. (2022) Layered business continuity and disaster recovery model No No No

Liu, B., Xin, Y. and

Zhang, C. (2022)

A Solution for A Disaster Recovery Service System in

Multi-cloud Environment

No No No

Nikolovski, S. and

Mitrevski, P. (2022)

On the Requirements for Successful Business Continuity

in the Context of Disaster Recovery

No No No

Pruthvi Kumar Reddy,

D. et al. (2022)

Encrypted Cloud Storage Approach For A Multicloud

Environment Using Fog Computing

No No No

Alonso, J. et al. (2023) Understanding the challenges and novel architectural

models of multi-cloud native applications – a systematic

literature review

No No No

 Upon reviewing Table 1, which comprehensively listed all the studies incorporated in

the literature review, we find a notable absence of BC/DR performance measurement details

that provided by the authors in the previous research. Metrics such as RPO, RTO, and cost are

crucial for assessing the performance of the proposed BC/DR solution. The identified research

gap is that the previous studies focus more on theoretical validation rather than the concrete

implementation of robust systems. Therefore, we propose to design and develop a multi-cloud

BC/DR solution and provide a comprehensive list of performance measurements. The proposed

solution holds the potential of improving RTO, enabling continuously business operation with

less down time. Additionally, it also could mitigate the risk of vendor lock-in, and possibly

cost-saving benefits.

8

3 Research Methodology

The primary research interest centres around the question of “Can the Infrastructure as Code

tool, such as Terraform, contribute to the reduction of a cloud-native application’s recovery

time during a crisis? Furthermore, to what extent this reduction in recovery time can be

achieved?” To address this question, the proposed solution involves leveraging Terraform to

provision and manage multiple cloud infrastructures across different CSPs, providing a robust

environment for the cloud-native application to run. In this setup, one cloud infrastructure

serves as the primary platform, while others function as fallbacks in the event of disasters. So,

what is Terraform?

 Terraform is a widely adopted IaC tool developed by HashiCorp, which utilizes its own

proprietary HashiCorp Configuration Language (HCL) to define resources, whether in the

cloud environment or locally on-premises infrastructure. Leveraging Terraform HCL can have

the same benefits as any other programming language, such as versioning control in

repositories like GitHub, code reusability for multiple cloud infrastructures, and shareability

between different teams. The integration between DevOps workflow tools like GitHub Action

and Terraform can be seamless, allowing triggering automated builds from various Terraform

code branches. It also facilitates automated deployment and update to different cloud

environments. Additionally, Terraform is compatible with all the major CSPs, such as AWS,

Azure, and Google Cloud (Terraform 2023).

Figure 2. Terraform Provider. Source: Terraform 2023

 For provisioning cloud resources, Terraform makes the call to the target CSP’s

Application Programming Interface (API), with its core components called Terraform

providers, which serve as the communication bridge to the CSP API, see Figure 2. There are

extensive number of Terraform providers available, contributed by both HashiCorp and the

Terraform community (Terraform 2023).

9

Figure 3. Terraform Workflow. Source: Terraform 2023

 To provision infrastructure with Terraform, there are three main steps, illustrated in

Figure 3:

• Write: Define cloud resources using Terraform HCL configuration file.

• Plan: Run “terraform plan” command to generate a detailed plan, to add/delete/update

to the cloud infrastructure.

• Apply: Use the plan created in the previous step and run “terraform apply” command,

Terraform will perform the execution of instructions and make changes to the cloud

infrastructure.

 While Terraform orchestrates the cloud infrastructure, the cloud-native application

itself is deployed using a pre-built docker image. Docker container is the main component of

the cloud-native application architecture. It allows the application run seamlessly across

different CSP platforms without any additional configuration.

 A docker container is a standalone unit of stripped-down version of the operating

system and the software application combined. It includes all software dependencies required

inside the container and can run in any computing environments support docker. See Figure 4

10

Docker Architecture. All major cloud CSPs support running docker as a service, including

AWS Elastic Container Service, Azure Container Instance and Google Cloud Run.

Figure 4. Docker Architecture. Source: Docker 2023

4 Design Specification

The design adopted in this research project is different from the conventional multi-cloud

architecture model. While many multi-cloud applications typically leverage the distributed

architecture, where various cloud resources from different CSPs are provisioned and utilized

simultaneously, this project takes another approach. Typically, only one CSP environment is

active at any given time, with the others remaining in a fallback state. The fallback state means

no resources are provisioned in that environment, but are ready to be created when required, as

illustrated in Figure 5. Within the active live AWS environment, many components are

provisioned in the cloud infrastructure, such as a Virtual Private Cloud (VPC), three public

subnets in different Availability Zones (AZ), three Elastic Container Service (ECS) clusters,

an application load balancer, a Route 53 Domain Name Service (DNS), and possibly a

Relational Database Service (RDS) database. In the fallback environment, Azure or Google

Cloud, there are no resources provisioned as demonstrated in Figure 5, except for the presence

of a replicated database.

11

Figure 5. Multi-Cloud Architecture Diagram

 In the event of errors being detected within the live AWS infrastructure through

monitoring and alerting software, another cloud environment can be provisioned inside Azure

or Google Cloud by Terraform. The switch of Route 53 DNS to the newly deployed application

environment is carried out quickly to facilitate a seamless transition. Once the new environment

is live, Terraform can perform the deletion of the old infrastructure to optimize cost. This

design specification ensures a swift response process to potential cloud infrastructure failures

in the active CSP, reducing the time required for the disaster recovery procedure, and

mitigating the risk of the system having any downtime.

5 Implementation

The implementation focuses on the orchestration of the infrastructures using Terraform within

the multi-cloud environments. Terraform HCL code is written for each of the cloud

infrastructures, tailored to the specific requirements of the selected CSPs, such as AWS and

Azure. AWS hosts the live primary platform, while Azure serves as a redundant fallback

infrastructure. All Terraform HCL code is committed to the GitHub repository, which has many

benefits, such as version control, change tracking, easy collaboration, and automation.

12

Figure 6. Terraform graph for AWS resources

Figure 6 illustrates the Terraform configuration and execution graph for the

implemented AWS infrastructure. The visual representation highlights the dependencies for

each of the AWS cloud components in the live environment. During the execution of the

generated plan, Terraform traverses this graph from the top to the bottom and ensures all

dependencies are met before provisioning any resources.

The following Terraform modules are implemented for AWS environment:

• main.tf - The main Terraform file, defines the `required_providers` and `provider`

configurations.

13

• vpc.tf - The network configuration file, defines the ̀ aws_vpc`, 3 ̀ aws_subnet`, network

`aws_security_group`, `aws_internet_gateway`, `aws_route_table`, and

`aws_route_table_association`.

• alb.tf - The application load balancer configuration file, defines the `aws_alb`,

`aws_alb_target_group`, `aws_alb_listener`, and the load balancer

`aws_security_group`.

• ecs.tf - The ECS container cluster service configuration file, defines the

`aws_ecs_cluster`, ̀ aws_ecs_task_definition`, ̀ aws_ecs_service`, ECS Identify Access

Management (IAM) role `aws_iam_role`, and `aws_iam_policy_attachment`.

• variable.tf - The Terraform variable file, defines a list of hard-coded values, which can

be used when running Terraform code.

• output.tf - The Terraform output file, defines a list of calculated output that can be used

for testing and further automation.

Figure 7. Terraform Graph for Azure Resources

Figure 7 illustrates the Terraform configuration and execution graph for the

implemented Azure infrastructure. The visual representation highlights the dependencies for

each of the Azure components in the fallback environment.

The following Terraform modules are implemented for Azure:

• main.tf - The main Terraform file, defines the `required_providers` and `provider`

configurations.

14

• vnet.tf - The network configuration file, defines the `azurerm_resource_group`,

`azurerm_virtual_network`, and 3 `azurerm_subnet`.

• container.tf - The docker container configuration file, defines

`azurerm_container_group`, `azurerm_public_ip`, `azurerm_storage_account`, and

`azurerm_storage_share`.

• variable.tf - The Terraform variable file, defines a list of hard-coded values, which can

be used when running Terraform code.

• output.tf - The Terraform output file, defines a list of calculated output that can be used

for testing and further automation.

6 Evaluation

In this section, we outline more details about the evaluation process of the proposed BC/DR

solution. As previously discussed, the assessment will centre around one key performance

indicator – RTO. This primary indicator will be validated in the context of two different

scenarios:

• Test Scenario 1 – AWS single-cloud DR manual process vs automated Terraform

script. In this scenario, it involves testing the BC/DR solution’s performance in a single-

cloud environment within AWS. A comprehensive analysis between the manual DR

process and the automated Terraform script will be conducted.

• Test Scenario 2 – AWS and Azure multi-cloud DR manual process vs automated

Terraform script. In this scenario, it extends the evaluation to a multi-cloud

environment, including both AWS and Azure. Like the first test, a comprehensive

assessment between the manual DR process and the automated Terraform script will be

conducted.

 These test scenarios have been designed to comprehensively assess the effectiveness of

the proposed BC/DR solution and try to address the research questions accordingly.

6.1 Test Scenario 1 – Manual vs Terraform Automatic DR in Single-

Cloud AWS Environment

In test scenario 1, we conduct a comparison between manual process and automated script

using Terraform for the orchestration of a single-cloud AWS infrastructure. To carry out this

test, the assumption of a typical DR scenario is made, such as the entire infrastructure needs to

be recreated due to errors. To ensure the same starting point across all tests, all resources within

the AWS cloud infrastructure are manually deleted or destroyed through the Terraform destroy

command before each experiment.

The manual test is carried out by using the AWS console to create each resource

individually. On the other hand, the automated experiment involves the execution of Terraform

15

HCL configuration code for orchestrating the whole infrastructure. After each test, essential

metrics such as RTO is recorded for comparison later. Furthermore, the test complexity is

increased gradually by adding the requirement of provisioning more cloud-native applications

to form a highly available and fault tolerant Docker cluster.

The primary objective of this test is to evaluate the effectiveness of IaC tool such as

Terraform, in reducing disaster recovery time within a single-cloud environment and calculate

how much time it can save. The findings are demonstrated in Figure 8.

Figure 8. Single-Cloud DR in AWS

Figure 8 illustrates the correlation between the complexity of the cloud infrastructure

to be recovered and the duration the recovery process. The complexity is represented by the

total number of resources requiring recovery. The blue line represents the manual recovery

process using the AWS console, it shows a significant increase in recovery time as the number

of resources grows. In contrast, the red line represents the automated infrastructure

orchestration process using Terraform, it shows a more consistent and modest decrease in

recovery time as the number of resources increase. Therefore, Terraform not only proves

efficient in reducing DR time in a single-cloud environment for scenarios with small number

of resource but also demonstrates even more time saving for larger amounts of resources. On

average, Terraform could potentially save up to 85% of the time required for manual

infrastructure configuration.

16

6.2 Test Scenario 2 – Manual vs Terraform Automatic DR in Multi-Cloud

Environments (AWS & Azure)

In test scenario 2, we carry out a comparison between manual processes and automated

Terraform scripts for orchestrating infrastructure in a multi-cloud environment (AWS &

Azure). In contrast to the previous single-cloud disaster recovery test scenario, the main

difference is to provision a new DR infrastructure in Azure when the primary AWS

environment encounters issues. The same as test scenario 1, the assumption is made that the

entire infrastructure requires to be recreated due to unforeseen errors. To ensure consistency

across all tests, the resources within the Azure cloud infrastructure are manually deleted or

destroyed using the Terraform destroy command before each experiment.

Like test scenario 1, the manual experiment is carried out by using the Microsoft Azure

portal to create each resource individually. On the other hand, the automated test involves

executing Terraform HCL configuration code for provisioning the whole infrastructure. After

each test, key metrics such as RTO is recorded for later comparison. Furthermore, like the

single-cloud experiment, the test complexity is increased gradually by adding the requirement

of provisioning more cloud-native applications to form a highly available and fault tolerant

Docker cluster.

Similar to the previous single-cloud scenario, the key objective of this test is to assess

whether an IaC tool like Terraform can effectively reduce disaster recovery time in a multi-

cloud environment and calculate how much time it can save. The findings are presented in

Figure 9.

Figure 9. Multi-Cloud DR in AWS & Azure

17

Figure 9 illustrates the relationship between the complexity of the cloud infrastructure

to be recovered and the duration of the recovery process. The complexity is measured by the

total number of resources requiring recovery. The blue line represents the manual recovery

process utilizing the Microsoft Azure portal, it demonstrates a significant increase in recovery

time when the number of resources grows. In contrast, the red line represents the automated

infrastructure orchestration process using Terraform, it indicates a more consistent and modest

increase in recovery time as the number of resources grows. Therefore, Terraform demonstrates

its efficiency not only in reducing DR time in a multi-cloud environment for test scenarios with

less resource but also achieving even more time saving for larger infrastructure. On average,

Terraform could potentially save up to 75% of the time required for manual infrastructure

configuration.

6.3 Discussion

The primary objective of the evaluation of the test scenarios is to assess the effectiveness of

the proposed BC/DR solution. In particular, the tests focus on the orchestration of single-cloud

AWS infrastructure and multi-cloud AWS & Azure environments using Terraform. The

findings provide good insights into the performance of the IaC tool Terraform and offer an

opportunity for critical analysis on the experimental design.

The results from test scenario 1 demonstrate the significant advantages of using

Terraform for disaster recovery in a single-cloud environment. With the number of cloud-

native applications increase, Figure 8 shows a noticeable increase in recovery time with the

manual process but a consistent and almost flat line for the automated process with Terraform.

The average time saving of 85% using Terraform compared with the manual process is a great

achievement. However, the design of test scenario 1 isolates the impact of Terraform only in a

controlled environment. The test assumes the entire AWS infrastructure requires recreation due

to some errors. In a real-world scenario, to replace the whole infrastructure because of errors

from some components is not feasible in a single-cloud architecture. Most likely, the failed

components are replaced rather than the entire environment. Furthermore, simply replacing the

failed components may not be enough to fix the unforeseen DR issue, in situation such as a

Route 53 DNS problem with AWS. Test scenario 1 highlights the advantages of using

Terraform, but not enough to address the research questions.

Test scenario 2 introduces the complexity of orchestrating DR infrastructures across

multi-cloud environments. Similar to test scenario 1, Figure 9 reveals the noticeable advantages

of using Terraform in a multi-cloud DR situation, especially in scenarios with a large number

of cloud-native applications. It shows the more resources required for recovery, the more time

Terraform can save compared to manual configuration. While the test design assumes the while

infrastructure requires recovery, but in a real-world scenario, maybe only a small component

of the environment needs to be replaced. This test should be treated as the last defence, and

only triggering the DR process while the primary cloud infrastructure cannot be recovered.

18

Both test scenarios focus on the cloud-native application’s disaster recovery time –

RTO. The associated cost of the recovered environment (AWS or Azure) and RPO are not

recorded due to the time constraints of this project.

7 Conclusion and Future Work

The ability to recover from disasters and continue business operations is critical for any

organisation. Finding the quickest and the most reliable solution to recover the failed system

can be challenging. To overcome these challenges, we conducted a comprehensive literature

review of the existing research papers on the topic of BC/DR and proposed a more efficient

solution utilizing the IaC tool Terraform. In this paper, we tried to address the research

questions: Can the IaC tool such as Terraform contribute to the reduction of disaster recovery

time for cloud-native applications? We evaluated the proposed solution in two test scenarios,

including single-cloud AWS infrastructure and multi-cloud (AWS & Azure) environments.

Our study showed a significant advantage of leveraging the IaC tool Terraform in both single-

cloud and multi-cloud environments. In the conducted tests, Terraform demonstrated a

potential reduction in disaster recovery time of 75% or more compared to the manual process.

The test results were consistent and had a modest increase or decrease in DR time when more

resources require recovery. Therefore, these key findings successfully answered the research

question and proved that Terraform can be used as a robust and efficient DR solution in varies

of cloud configurations and environments. However, it is important to knowledge the

limitations of the experimental design. The assumption of the need to recreate the whole

infrastructure after each test may oversimplify the real-world scenarios. Additionally, only

focus on the DR recovery time RTO, while other critical metrics such as RPO and cost are not

measured due to time constraints.

More time could be spent in future studies on the cost implications of leveraging multi-

cloud environments. Comparing the associated cost of identical infrastructure within different

CSPs can provide valuable insights for businesses. Understanding the cost of cloud resources

from different cloud providers can be crucial for enterprises to decide on resource allocation

and cost-efficient DR solutions. RPO is a key performance indicator for the BC/DR solution,

future work should explore different options to improve RPO in multi-cloud environments,

especially in minimizing data loss for the cloud-native application during the disaster recovery

process. Additionally, more real-world scenarios should be considered, rather than assuming

the entire infrastructure needs replacement.

References

Abualkishik, A.Z., A., A. and Gulzar, Y. (2020) ‘Disaster Recovery in Cloud Computing Systems: An

Overview’, International Journal of Advanced Computer Science and Applications, 11(9). Available

at: https://doi.org/10.14569/IJACSA.2020.0110984.

https://doi.org/10.14569/IJACSA.2020.0110984

19

Alonso, J. et al. (2023) ‘Understanding the challenges and novel architectural models of multi-cloud

native applications – a systematic literature review’, Journal of Cloud Computing, 12(1), p. 6.

Available at: https://doi.org/10.1186/s13677-022-00367-6.

Alshammari, M.M. et al. (2017) ‘Disaster recovery in single-cloud and multi-cloud environments:

Issues and challenges’, in 2017 4th IEEE International Conference on Engineering Technologies and

Applied Sciences (ICETAS). 2017 4th IEEE International Conference on Engineering Technologies
and Applied Sciences (ICETAS), Salmabad: IEEE, pp. 1–7. Available at:

https://doi.org/10.1109/ICETAS.2017.8277868.

CNCF Survey. (2020) ‘Use of containers in production has increased by 300% since 2016‘, Available

at: https://www.cncf.io/reports/cloud-native-survey-2020/ [Accessed 16 April 2023].

Docker. (2023) ‘Use containers to Build, Share and Run your applications’, Available at:
https://www.docker.com/resources/what-container/ [Accessed 07 December 2023].

Harwalkar, S., Sitaram, D. and Jadon, S. (2019) ‘Multi-cloud DRaaS using OpenStack Keystone
Federation’, in 2019 International Conference on Advances in Computing and Communication

Engineering (ICACCE). 2019 International Conference on Advances in Computing and
Communication Engineering (ICACCE), Sathyamangalam, Tamil Nadu, India: IEEE, pp. 1–6.

Available at: https://doi.org/10.1109/ICACCE46606.2019.9080005.

Lavriv, O. et al. (2018) ‘Method of cloud system disaster recovery based on “Infrastructure as a code”

concept’, in 2018 14th International Conference on Advanced Trends in Radioelecrtronics,

Telecommunications and Computer Engineering (TCSET). 2018 14th International Conference on

Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET),
Lviv-Slavske, Ukraine: IEEE, pp. 1139–1142. Available at:

https://doi.org/10.1109/TCSET.2018.8336395.

Liu, B., Xin, Y. and Zhang, C. (2022) ‘A Solution for A Disaster Recovery Service System in Multi-

cloud Environment’, in 2022 International Applied Computational Electromagnetics Society

Symposium (ACES-China). 2022 International Applied Computational Electromagnetics Society

Symposium (ACES-China), Xuzhou, China: IEEE, pp. 1–4. Available at:

https://doi.org/10.1109/ACES-China56081.2022.10064903.

Nikolovski, S. and Mitrevski, P. (2022) ‘On the Requirements for Successful Business Continuity in

the Context of Disaster Recovery’, in 2022 57th International Scientific Conference on Information,

Communication and Energy Systems and Technologies (ICEST). 2022 57th International Scientific

Conference on Information, Communication and Energy Systems and Technologies (ICEST), Ohrid,

North Macedonia: IEEE, pp. 1–4. Available at: https://doi.org/10.1109/ICEST55168.2022.9828701.

Pruthvi Kumar Reddy, D. et al. (2022) ‘Encrypted Cloud Storage Approach For A Multicloud

Environment Using Fog Computing’, in 2022 Second International Conference on Computer Science,

Engineering and Applications (ICCSEA). 2022 Second International Conference on Computer
Science, Engineering and Applications (ICCSEA), Gunupur, India: IEEE, pp. 1–6. Available at:

https://doi.org/10.1109/ICCSEA54677.2022.9936544.

Stamenkov, G. (2022) ‘Layered business continuity and disaster recovery model’, Continuity &

Resilience Review, 4(3), pp. 267–279. Available at: https://doi.org/10.1108/CRR-05-2022-0008.

Terraform. (2023) ’What is Terraform?’, Available at: https://developer.hashicorp.com/terraform/intro

[Accessed 16 April 2023].

https://doi.org/10.1186/s13677-022-00367-6
https://doi.org/10.1109/ICETAS.2017.8277868
https://www.cncf.io/reports/cloud-native-survey-2020/
https://www.docker.com/resources/what-container/
https://doi.org/10.1109/ICACCE46606.2019.9080005
https://doi.org/10.1109/TCSET.2018.8336395
https://doi.org/10.1109/ACES-China56081.2022.10064903
https://doi.org/10.1109/ICEST55168.2022.9828701
https://doi.org/10.1109/ICCSEA54677.2022.9936544
https://doi.org/10.1108/CRR-05-2022-0008
https://developer.hashicorp.com/terraform/intro

	1 Introduction
	1.1 Motivation and Background
	1.2 Research Question
	1.3 Document Structure

	2 Related Work
	3 Research Methodology
	4 Design Specification
	5 Implementation
	6 Evaluation
	6.1 Test Scenario 1 – Manual vs Terraform Automatic DR in Single-Cloud AWS Environment
	6.2 Test Scenario 2 – Manual vs Terraform Automatic DR in Multi-Cloud Environments (AWS & Azure)
	6.3 Discussion

	7 Conclusion and Future Work
	References

