

Enhancing Container Security Orchestration

and Management Tool

MSc Research Project

Cybersecurity

Shivam Rajesh Tiwari

Student ID: 22102396

School of Computing

National College of Ireland

Supervisor: Jawad Salahuddin

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Shivam Rajesh Tiwari

Student ID:

22102396

Programme:

MSc Cybersecurity

Year:

2023

Module:

Academic Internship

Supervisor:

Jawad Salahuddin

Submission Due

Date:

14-12-2023

Project Title:

Enhancing Container Security Orchestration and Management Tool

Word Count:

5280 Page Count 21

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Shivam Rajesh Tiwari

Date:

14-12-2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Enhancing Container Security Orchestration and

Management Tool

Shivam Rajesh Tiwari

22102396

Abstract

With containerization's rapid growth, security lags as a pressing issue. This research

develops automated methodologies to enhance protection for container workloads.

Containers' dynamic nature necessitates flexible security able to address evolving threats.

The project delivers a parallel scanning pipeline tightly coupled with CI/CD automation

to enable enhanced security. Implementing multithreading reduces scan times by 40%

versus sequential approaches while preserving accuracy. Seamless integration with

developer workflows proactively uncovers vulnerabilities early in the lifecycle. Initial

testing shows promise for the methodology securing cloud-native applications. Further

enhancements and expanded compatibility are beneficial future work. By combining

performance and scalability with organizational fit, this research pushes the leading edge

of innovation for container security, laying groundwork for widespread impact across

industries.

1 Introduction

With its unmatched flexibility and efficiency, containerization has become a revolutionary

force in the fast-paced world of modern software development. DevOps approaches now

revolve around technologies like Docker and Kubernetes, which let developers build, ship, and

execute apps consistently across a variety of settings. But the swift adoption of containerization

also presents a complicated set of issues, the most pressing of which being security.

Organizations must strengthen their security protocols at the same time that they work to fully

realize the advantages of containers. In order to better address the changing threat landscape,

this research paper explores container security in great detail and aims to improve security

orchestration and management solutions now in use.

1.1 Context and Importance

Containerization has become more popular due to application developers' constant quest for

scalability and agility. Applications and their dependencies are encapsulated by containers,

which create a reproducible and isolated environment. This promotes uniformity throughout

the stages of development and deployment, but it also raises security issues that require careful

consideration and resolution. The paper lays the groundwork by exploring the complexities of

container security and recognizing the need to carefully combine innovation with strong

security measures. This research is important because it is dedicated to improving container

security without sacrificing the speed and flexibility that containers are meant to offer.

2

1.2 The Situation of Container Security Tools Right Now

A thorough analysis of the state of container security technologies today finds a varied

ecosystem that addresses different aspects of container security. While runtime security is

handled by programmes like Falco, image vulnerability evaluations are the main focus of tools

like Docker Security Scanning. However, security tactics must constantly change due to the

dynamic nature of containerized systems. The basis for suggestions that go beyond small

tweaks to achieve a comprehensive and flexible security system is laid by this examination.

1.3 The Research's Goals

The study presents a complete set of goals, each designed to strengthen container security:

Vulnerability Detection and Remediation: The main goal of the project is to develop

methods for locating vulnerabilities in container images during build time. It also looks at

innovative method of simultaneous scanning for effective vulnerability detection, reducing

time and resources used to scan the containers.

Optimized Resource Utilization: The secondary goal of the project is to optimize the resource

utilization which includes computation and manpower required. The project aims to cut down

the resource utilization.

Integration with DevOps Pipelines: The article recognizes the difficulties in incorporating

improved security features into DevOps pipelines in a smooth and efficient manner. In order

to guarantee that security becomes an essential component of continuous integration and

deployment processes, it aims to provide scalable and effective integration.

1.4 Originality

The research is expected to make significant contributions to the forefront of container security.

Reduced time for scanning: The time for scanning multiple containers should be drastically

reduced, after the solution is built up. Additionally, resources i.e., manpower required to setup

all the scans are drastically reduced.

Reducing the resource requirement: When it comes to resources, in the current scenario the

tools multiple instances should be created to scan containers, leading to use of many resources,

which is not an optimistic approach and leads to waste of resource. Also, there is a licensing

factor that cannot be neglected. With the solution, all these problems should be solved, and

only one resource is needed and based on the number of container scan, computational power

can be adjusted.

Integrating Scalable with CI/CD Pipelines: The study proposes a seamless integration of

upgraded security features, acknowledging the critical role that continuous integration/delivery

chain (CI/CD) pipelines play in modern software delivery. Because of the scalability of this

connection, security will be an efficient and fundamental part of agile DevOps processes.

3

2 Related Work

(Mavridis et al., 2023) make contributions to the field through their investigation of virtual

machines, unikernels, and orchestrated sandboxed containers. With an emphasis on improving

isolation in serverless computing and multitenant workloads, the paper explores cutting edge

methods for protecting and maximising cloud-based apps. By contrasting various virtualization

technologies, the study contributes to the comprehension of the advantages and disadvantages

of each, providing insightful information that is beneficial to both scholars and practitioners.

In their study, (Čilić et al., 2023) discuss how container orchestration solutions function in edge

computing scenarios. The report offers a thorough review of different orchestration

technologies and sheds light on their efficacy in edge circumstances through a methodical

evaluation. For stakeholders looking to deploy containers at the edge, this research is essential

since it provides recommendations for the best orchestration solution based on needs and

performance data. The PhD dissertation of (Alqarni et al., 2023) makes a major contribution to

cloud security and privacy. The study provides improvements through vulnerability assessment

and zero-knowledge encryption, with a focus on Kubernetes deployments. This paper provides

workable ways to protect sensitive data in cloud-based applications by tackling important

security issues in containerised settings. The results add to the current endeavours to strengthen

security protocols in Kubernetes installations. In their study, (Moreau et al., 2023) investigate

how containers support computational repeatability. Their research highlights how crucial

containers are to making computer experiments easier to replicate. This work adds significant

insights to the scientific community by offering a thorough review of container usage for

reproducibility, particularly in fields where experiment reproducibility is crucial. Future

directions of cloud-native workload orchestration at the edge are presented by (Vaño et al.,

2023) along with a deployment review. The complexity of coordinating workloads in edge

computing environments is examined in this paper. This study is essential to comprehending

the special difficulties presented by edge environments and offers recommendations for

managing containerised workloads in dispersed and resource-constrained contexts.

A Docker Container Security Orchestration and Posture Management Tool is presented by

Perera, Reza, De Silva, Karunarathne, Ganegoda, and Senarathne (2022). Docker container

security orchestration is a critical need that this research, presented at the 13th International

Conference on Computing Communication and Networking Technologies, aims to solve. By

improving the overall security posture of Dockerized apps, the tool hopes to advance container

security as it develops. (Raj et al., 2018) examine the complexities of operating containerised

apps across several cloud environments as they go into automated multi-cloud operations and

container orchestration. Their research, which was published in "Software-Defined Cloud

Centres," offers insightful information about the management and operational tools required to

orchestrate containers in a multi-cloud environment. The field is enhanced by (Hoque et al.,

2017) as they examine the opportunities and difficulties related to container orchestration in

fog computing infrastructures. This work offers the foundation for understanding how

container orchestration might be extended to fog computing environments, taking into account

their particular characteristics and requirements. It was presented at the IEEE 41st Annual

Computer Software and Applications Conference. In this paper, (Sultan et al., 2019) discuss

the problems, difficulties, and potential future directions in the field of container security,

offering a thorough overview of the subject. The report, which was published in IEEE Access,

is a useful tool for comprehending the container security landscape as a whole because it

highlights the dangers that are always changing as well as possible countermeasures. (MP et

al., 2016) concentrate on using Linux hardening strategies to improve the security of Docker

containers. Their research, which was presented at the 2nd International Conference on Applied

4

and Theoretical Computing and Communication Technology, explores methods with roots in

Linux hardening practices and adds to the ongoing efforts to strengthen Docker security.

The autonomic orchestration of containers is examined by (Casalicchio et al., 2016), who also

describes the problem definition and research challenges related to this area. The article, which

was presented at VALUETOOLS, explores the difficulties in attaining autonomous behaviour

in container orchestration, highlighting important problems and outlining areas in need of more

research. By suggesting automated vulnerability scanning and repair using (Trivy et al., 2023)

advances container security. The publication's emphasis on automated security procedures

implies a proactive strategy to finding and addressing vulnerabilities within containerised

environments, even though precise details are not disclosed. The notion of Container Security

Intelligence is presented by (Mahavaishnavi et al., 2023), who use machine learning to detect

anomalies in containerised systems. The research, which was published in the Journal of

Propulsion Technology, adds to the developing topic of container security by examining how

machine learning may be used to improve security by identifying anomalies within

containerised settings. With Lic-Sec, an improved AppArmor Docker security profile

generator, (Zhu et al., 2021) advance container security. The study, which was published in the

Journal of Information Security and Applications, presents a tool that focuses on using the

AppArmor architecture to generate enhanced security profiles for Docker containers,

improving the overall security posture of containerised applications. The study conducted by

(Sharma et al., 2016) compares virtual machines and containers on a large scale. This study,

which was presented at the 17th International Middleware Conference, explores the scalability

and performance of virtual machines and containers, offering important insights into each

technology's potential applications Docker's suitability for use in industrial IoT gateways is

evaluated by Lumio (2018). The study investigates the useful applications of containerisation

technology, Docker, in industrial Internet of things environments. The paper, which was

published in an undisclosed source, probably offers advice on how to use Docker to improve

the efficiency and flexibility of industrial IoT gateways.

A survey of cloud container technologies that is up to date is provided by (Pahl et al., 2017).

The study, which was published in the IEEE Transactions on Cloud Computing, gives a

thorough picture of the state of the industry by summarising the developments, difficulties, and

current trends in cloud container technologies. (Senel et al., 2023) offers a doctoral dissertation

from Sorbonne Université on container orchestration for edge clouds. The dissertation probably

delves into the complexities of managing containers in edge computing settings, illuminating

the unique problems and approaches associated with container deployment at the network's

edge. (VS et al., 2023) explore container security, discussing levels of precaution, mitigating

techniques, and offering research perspectives in their publication published in Computers &

Security. This document probably provides a thorough analysis of security protocols in the

container environment, along with risk-reduction tactics and recommendations for future

research topics. An investigation of the Docker ecosystem's vulnerabilities is carried out by

Martin et al., 2018) and is published in Computer Communications. In order to improve the

overall security of Docker-based applications, the paper probably analyses potential

vulnerabilities within the Docker ecosystem and offers insights into areas that might need to

5

be strengthened. In an arXiv preprint, (Bui et al., 2015) analyses Docker security. The study

most likely examines Docker's security features, providing information on possible

weaknesses, advantages, and areas where the Docker framework needs to be strengthened. A

survey on multi-access edge computing security and privacy is presented by (Ranaweera et al.,

2021) in the IEEE Communications Surveys & Tutorials. This study probably gives a thorough

overview of privacy and security issues in multi-access edge computing, highlighting problems

and possible fixes. (Zhu et al., 2023) have published an article in SN Computer Science

regarding the creation of access security policies for cloud services that utilise containers. It is

probable that the article will examine techniques and approaches for creating efficient access

control policies that are especially suited for cloud-deployed containerised applications.

(Jain et al., 2021) make a significant addition to the field of container security by their

investigation of Docker image static vulnerabilities. They stress in their work how critical it is

to recognise and address security threats in containerised environments. The authors want to

improve the overall security posture by proactively identifying vulnerabilities in Docker

images through the use of static analysis techniques. The paper tackles the crucial topic of

containerised application security, offering perceptions on possible risks and weaknesses that

can be useful in creating strong security procedures for Docker-based implementations. By

concentrating on the evaluation of container security vulnerability detection methods, (Javed

et al., 2021) make a contribution to the field of container security. In order to determine the

effectiveness and calibre of current techniques for identifying vulnerabilities in containerised

environments, their task entails a thorough investigation. The authors offer insightful

information on the state of container security solutions by analysing the benefits and drawbacks

of various tools. In order to improve overall system security and resilience, practitioners and

organisations seeking to make well-informed decisions on the choice and application of

security tools in their containerised infrastructure will find this research to be crucial. The

"UBCIS: Ultimate Benchmark for Container Image Scanning" is presented by (Berkovich et

al., 2020) as a CSET at the USENIX Security Symposium. The study presents UBCIS, a

benchmark intended to assess container image scanning methods in a thorough manner. The

authors hope to offer a standardised framework for evaluating the efficacy and efficiency of

different container image scanning technologies by creating this benchmark. By addressing the

requirement for a consistent evaluation approach, the research advances the field of

cybersecurity by empowering practitioners and academics to make well-informed choices

when evaluating and choosing container image scanning solutions in various security

situations. In their dissertation, (Andersson et al., 2022) examine issues with Docker container

images and the existing tools for scanning them. The paper explores the security features of

Docker container images, addressing concerns about current image security procedures and

scanning technologies in particular. Through examining these issues, the study offers important

new perspectives on the difficulties and possible weaknesses related to containerisation. The

dissertation lays the groundwork for future developments in container security procedures by

offering a thorough resource for comprehending and improving the security environment of

Docker container images.

6

3 Research Methodology

For the purpose of this research project, we executed multiple Docker images in parallel to find

vulnerabilities. This was accomplished by implementing a multithreading technique in Python

that allowed for the simultaneous scanning of multiple Docker images while dividing the

workload among the threads.

3.1 Tool Selection

There are many static vulnerability scanning tools available when it comes to container

scanning. Some of the most popular once are Claire, Anchore, Trivy, Dagda, Falco, Qualys,

Grype, etc. Majority of the tools are open source and can be used without licence requirements.

Although for the project requirements, Claire, Anchore and Trivy suits best. Following is a

comparison table, for the above-mentioned tools.

Feature Trivy Anchore Clair

Ease of Use Easy to use with a

user-friendly

interface

User-friendly, but may

have more features

Lightweight but might have

fewer features

Scanning Speed Known for fast

scanning capabilities

Scanning speed is

generally efficient

Lightweight but may be

slower in some cases

Vulnerability

Types

CVEs in OS

packages,

applications, IaC

OS packages, libraries,

application deps

Focuses on OS

vulnerabilities in images

Integration Easily integrated into

CI/CD pipelines

Can be integrated into

CI/CD workflows

Integration capabilities may

vary

Cost Free and open-source Open-source with a

commercial offering

Open-source and free to use

Deployment

Options

Helm, Docker, ECR Docker, Kubernetes,

other deployment ops

Typically used with Docker,

Kubernetes

7

Community

Support

Active community

support

Active community,

commercial support

Open-source project with

community support

IaC Scanning

Support

Supports IaC in

Terraform files

Comprehensive IaC

scanning support

Focuses more on Docker

image scanning, limited IaC

support

Custom Policies Allows custom

policies

Supports customizable

policies for scan

Policies are predefined,

limited customization

Notification

Alerts

Supports notification

alerts for vulns

Notifications for policy

violations

Basic notification system for

vulns

License Open-source Open-source with

commercial offering

Open-source

Table 1 : Comparison Table of Container Scanning Tools

Based on the requirements and features, Trivy was selected as the tool, due to its versatility,

speed, ease of use and comprehensive scanning capabilities. After, going through many

research papers on Container scanning tools, Trivy was one the best choices.

3.2 Setting up the Logging and Exception Handling Modules:

For efficient exception handling and logging, implementing and testing the logger.py and

exception.py modules were done. Unexpected occurrences in the code are handled via

exception.py. This means to create exceptions based on the requirements and recording the

data. It can specify destinations (such as a file or terminal), log levels, and formats. It's essential

for debugging and following the application's flow.

8

Figure 1: Error Handling

Figure 2: Logging

3.3 Creating a file that contains all the images:

It is important that the image names in the Docker_img_list.txt file are accurate and the image

exists, to ensure the scanner to work properly. Implemented error handling to address

formatting and file existence problems. A list of Docker images to be scanned is stored in the

Docker_img_list.txt file. Each line should contain only one docker image name. Included

checks in the code to ensure that the file exists and is formatted correctly. In the event that a

file is missing or improperly formatted, error handling has been placed.

Figure 3: Docker_img_list.txt

3.4 Tool Development:

The multiprocess.py module had been created, which includes the scanning mechanism. Test

images were used to thoroughly test the scanning mechanism. The scanning mechanism

includes integration of tool i.e., Trivy. The scanned report is stored in the scan_results

9

directory. To differentiate between the which container is scanning at the current time, use of

processid, processName, threadName and image_name is utilized.

 Figure 4: Multiporcess.py

Then once the multiprocess.py is done, we created a logic for dynamically creating threads

based on number of images passed. For achieving this, Threads module in python is used and

the function from multiprocess module is called.

Figure 5: app.py

10

When it comes to thread safety, caution has been taken, to prevent race conditions. The use of

multi-threading function, not only saves resource, but also save times.

3.5 Configure Automation for Jenkins:

A t2.meduim AWS instance was created with Ubuntu 20.04. On start , Shell scripts were used

to install the necessary packages (Jenkins, Trivy, Docker).Jenkins was set-up such that it can

be reached at <public_ip>:8080. EC2 instance on AWS offers the infrastructure needed to run

the pipeline and host Jenkins. This guarantees that the pipeline has the tools it needs. EC2

instance's environment variables, networking, and security groups were configured.

To manage pipeline, a new Jenkins task was created. In order to do this, project type was

defined and connectted it to GitHub, version control system. The Groovy-written Jenkinsfile

outlines the phases and actions in the pipeline. It is versioned on the GitHub repository, like

the code.

Pipeline Stages:

• SCM Finalization: Take the materials and code out of the GitHub repository. In order

to get the most recent code ready for the following steps, this stage retrieves it from the

GitHub repository.

• Image Build: Use the Dockerfile to create Docker images. At this step, the Dockerfile

is used to build the Docker images that are specified in your code.

• Image Scan: To perform vulnerability scanning, integrate Trivy. This is where Trivy

integration takes place. Vulnerabilities are found in the Docker images created in the

earlier phase.

3.6 GitHub Integration:

A GitHub repository was used to save code and artefacts. An automated triggering Jenkins

pipeline using a GitHub webhook was set-up. The code and dockerfiles were kept in the GitHub

repository. To start the Jenkins pipeline automatically anytime updates are pushed, a webhook

in the GitHub repository was setup.

Figure 6: GitHub Integration

11

3.7 Reviewing and Updating Pipeline:

We consistently checked Jenkins' pipeline setup. According to the project needs, the Jenkins

file and pipeline steps were updated. It was ensured that Jenkins pipeline configuration is in

line with the demands of the current project by reviewing it on a regular basis. As necessary,

the Jenkins file was updated. The build and deployment processes accordingly modifies the

file.

Figure 7: Jenkin’s Pipeline

4 Design Specification

This section provides design specifications for the project. The scope of the specifications

includes the development of essential modules such as logger.py and exception.py, the

preparation of image lists from Docker_img_list.txt, the implementation of the scanning

mechanism in multiprocess.py, the setup of Jenkins automation using an AWS EC2 instance,

parallel scanning with multithreading, and continuous improvement practices. It makes use of

Jenkins for continuous integration.

12

Figure 8: Architecture Diagram

4.1 Functional Requirements:

● Modules for Logging and Exception Handling:

Specify custom exceptions for problems that arise during runtime. For efficient

debugging, record events and failures. Put fallback plans in place in case of serious

errors.

● Making an Image List:

Conditions: Verify the format and existence of Docker_img_list.txt.

List the images that need to be scanned after reading the file.

● Implementing the Scanning Mechanism:

Develop scanning logic in multiprocess.py as per the requirements.

Use a scanning tool (Trivy) to evaluate vulnerabilities.

● Multithreaded Parallel Scanning:

Requirements: Use multiprocess.py to integrate scanning with multithreading.

Make sure there is thread safety to avoid race situations.

● Configuring Jenkins Automation:

Conditions: Get an Ubuntu 20.04 AMI running on an Amazon EC2 instance

(t2.medium).

To install Docker, Trivy, and Jenkins, write shell scripts.

Set up environment variables, networking, and security groups.

● Ongoing Enhancement:

Update tools and dependencies on a regular basis.

Take testing and production deployment feedback into account.

Keep an eye out for security updates and install them right away.

13

4.2 Non-Functional Requirements:

● Security

To ensure secure access to Jenkins, use HTTPS.

Avoid hardcoding credentials and instead store important information securely.

Put authentication procedures and access limits in place.

● Usability:

Create logging messages that are easy to read so that issues can be found quickly.

5 Implementation

Below is a synopsis of the main elements and procedures mentioned:

Table 2: Configuration

Sample Applications:

● The target_1 and target_2 directories include sample programmes that are probably

meant to be used when building Docker images.

● These programmes are designed to be used for scanning.

Logging and Exception Handling:

● The modules exception.py and logger.py are used to handle exceptions and monitor the

behavior of the application.

Docker Image Creation:

● The sample apps can be used to produce Docker images.

● Scripts, namely img_build.sh, are used to simplify the generation of images.

Docker Images Listing:

● A list of Docker images can be retrieved using the get_img.py module.

Using Multithreading to Scanning Images:

14

● A multithreading technique for simultaneously scanning two photos is implemented via

the multiprocess.py package.

Image Scanning Procedure:

● The process of scanning images is made simpler by the scan_img.sh script.

● The app.py module, which combines multiple modules for multithreading, exception

handling, and logging, is where the scanning technique is really implemented.

Using Multiple Processing to Scanning Docker Images:

● The app.py module combines the features of the previous modules to accomplish

multiprocessing for Docker image scanning.

Using Multiple Processing to Scanning Docker Images:

● The app.py module combines the features of the previous modules to accomplish

multiprocessing for Docker image scanning.

With a focus on streamlining these procedures using scripts and modular Python code, it offers

an organized method for creating, inspecting, and maintaining Docker images.

An automated procedure for establishing a Jenkins continuous integration and deployment

(CI/CD) pipeline for a project aimed at improving container security is described in the

instructions that are included. The steps are summarized as follows:

EC2 Instance Configuration:

● Using the Ubuntu 20.04 AMI, create an EC2 t2.medium instance on Amazon.com.

Setting up Jenkins:

● Install Jenkins on the EC2 instance by running the jenkins.sh script.

● Java is needed by Jenkins, and this dependence is handled by the script.

Setting up Docker:

● Install Docker using the docker.sh script to provide the container runtime required for

handling containerized images.

Setting up Trivy:

● Install Trivy, a tool for detecting vulnerabilities in containerized images, using the

trivy.sh script.

Setting up the Jenkins Pipeline:

● Make a Jenkins pipeline job and use the GitHub source code.

● Configure the pipeline to use GitHub as the source code management platform.

● In the GitHub repository's settings, enable the "GitHub webhook" feature and set the

Jenkins URL as the payload URL.

15

● Jenkins and GitHub are connected securely thanks to the webhook, and the connection

is successful when shown by a green checkmark.

Automated Workflow for CI/CD:

● Jenkins runs automatically every time there is a code update in the GitHub repository.

● There are various stages in the pipeline:

● Gets the most recent updates from the GitHub repository during the Git Checkout stage.

● Build Stage: Using the supplied Dockerfile, builds the Docker image.

● Stage of Scanning: Trivy is used to search the containerized image for vulnerabilities.

● The text file with the scanning stage's results may be found in the

"/var/lib/jenkins/workspace/enhance_container_security/" directory.

With this configuration, increased security protections are provided throughout the

development lifecycle through an automated and continuous process of generating, testing, and

scanning containerized images whenever changes are made to the codebase.

6 Evaluation

The Evaluation section analyses the methodology's outcomes to assess its efficacy in meeting

defined goals around scan performance, resource optimization, and seamless integration. Key

metrics examined include variation in scan duration, consistency in detection accuracy during

concurrent scanning, resource utilization benefits, and qualitative measures of pipeline

integration and automation. The analysis relies on experimental data gathered from the

prototype implementation, including quantifiable timing data, scanning outputs, and

infrastructure monitoring. By interpreting the result, conclusions are drawn regarding the

methodology's strengths and limitations. The purpose of this section is to compare current

practices with the solution for efficiency, security, and cost-effectiveness of containerised

workloads.

6.1 Variation in Scan Duration

Evaluation: When compared to manual scanning, the methodology greatly shortens scan times.

The efficiency achieved is demonstrated by the stated difference of 12.8 seconds for scanning

4 containers compared to 25–28 seconds for sequential scanning. This is a great advantage

when there are a lot of containers in an organizational setting.

Strength: In situations where speed and efficiency are critical, the tool saves a significant

amount of time and is a real asset in large-scale container setups.

16

Figure 9: Time taken for scanning 4 containers

6.2 Variation in the Total Number of Vulnerabilities Found

Evaluation: The methodology shows consistency in discovering the same number of

vulnerabilities across numerous scans run, which solves a prevalent concern in concurrent

scanning technologies. This suggests that the accuracy of vulnerability detection is not

jeopardized by the parallel scanning approach.

Strength: The tool's trustworthiness is increased by its capacity to consistently identify

vulnerabilities, which guarantees that organizations can depend on reliable results even when

using concurrent scanning.

The result on left-hand side is generated by the code and the result on the right-hand side is

generated by manually scanning the container using trivy via terminal.

Figure 10: Scan Result

6.3 Pipeline Automation for CI/CD

Evaluation: One notable strength is the integration of pipeline automation for CI/CD. The

solution automatically initiates scans with every repository modification and blends in

smoothly with the development workflow. This illustrates how security checks may be

smoothly incorporated into deployment and continuous integration procedures in the real

world.

Strength: Automation promotes a proactive security posture by increasing efficiency and

guaranteeing that security checks are an essential component of the development lifecycle.

6.4 Conserving Resources

17

Evaluation: The tool's design, which uses threads for parallel scanning and operates on a single

machine, shows to be resource-efficient. Without requiring the installation of tools on each

container or the creation of multiple tool instances, resource utilization is optimized by the

dynamic generation of threads based on the number of containers.

Strength: Scalability is ensured by the resource-efficient design, which allows the tool to adjust

to changing workloads and available processing power.

6.5 Report Formatted Based on Criticality of Vulnerability

Evaluation: Based on CVSS ratings, multiple severity levels are represented in the report

created by Trivy. This organized output improves the tool's usability and practical insights by

helping to priorities and address vulnerabilities based on their criticality.

Strength: A clear and standardized approach for ranking and addressing vulnerabilities is

provided by the integration of CVSS scores with the prepared report, which helps to facilitate

successful remediation efforts.

Figure 11: Report File

6.6 Discussion

The results demonstrate that the developed methodology for automated parallel scanning of

Docker images provides significant improvements in efficiency and resource utilization

compared to sequential scanning approaches. Specifically, the scan time for 4 containers was

reduced from 25-28 seconds using sequential approach down to just 12.8 seconds with the

concurrent approach. This represents over 40%-time savings, which would enable much faster

security scanning in contexts with large numbers of containers. The consistency in the number

of vulnerabilities detected across repeated scans also shows that the accuracy of detection is

not compromised by introducing parallelism, ensuring reliability.

Additionally, the single-machine design using dynamic thread allocation also allows efficient

scaling without requiring multiple tool instances or installation on every container.

18

Together, these benefits clearly demonstrate more optimized resource usage, improved speed,

and stronger security posture. However, some limitations exist in the current implementation.

The demonstration the approach was only on a small number of containers. Testing on larger,

more complex repositories would better validate scalability. The prototype pipeline also relies

on a specific set of technologies like Jenkins, Docker, and Trivy. Integration with additional

orchestrators like Kubernetes or other scanning tools may improve adaptability across diverse

infrastructures.

Nonetheless, within the defined scope, the methodology delivers on the stated goals of faster

scanning, lower resource footprint, and tighter integration with CI/CD automation. These

capabilities directly address pressing needs for container workload security, preventing

organizations from having to choose between velocity and protection. With further

enhancement and expanded testing, the techniques show promise for wide adoption securing

cloud-native development.

7 Conclusion and Future Work

This research presented an automated methodology for efficient parallel scanning of Docker

container images to enhance security. The implementation demonstrates significantly faster

scan times compared to sequential approaches, reducing the duration by over 40% for a small

set of sample containers. The accuracy of vulnerability detection is also consistent across

repeated parallelized scans.

Additionally, the integration of the scanning pipeline with CI/CD automation using Jenkins

enables security checks to be intrinsically embedded within development workflows. Scans

automatically trigger with code changes to proactively detect vulnerabilities early in the

lifecycle. The single-machine architecture also optimizes resource utilization by dynamically

allocating threads based on workload instead of needing isolated tools.

Together, these capabilities improve the speed, cost-effectiveness and security posture of

organizations relying on containerized workloads. Developers gain the ability to move fast

without compromising protection.

While showing promise, further enrichment of the implementation and testing on larger, real-

world repositories would be beneficial future work. Expanding compatibility with additional

orchestrators like Kubernetes and integrating dynamic scanning tools could also make the

approach viable across more diverse infrastructures. Exploring other methods like machine

learning to prioritize scan targets could further optimize the pipeline.

Overall, this research makes valuable progress in addressing the growing need for efficient

security solutions tailored to container environments. By combining automation,

parallelization and tight integration with development pipelines, key advantages are achieved

in performance, scalability and organizational fit. These techniques lay groundwork for more

innovations that secure container adoption across industries. With additional work, the

methodology has potential for widespread impact securing cloud-native applications.

19

References

Alqarni, A. (2023). Enhancing Cloud Security and Privacy With Zero-Knowledge Encryption and Vulnerability

Assessment in Kubernetes Deployments - ProQuest. [online] www.proquest.com. Available at:

https://www.proquest.com/openview/5f3859b286536da5318f915d68e87666/1?pq-

origsite=gscholar&cbl=18750&diss=y [Accessed 13 Dec. 2023].

Amith Raj MP, Kumar, A., Pai, S.J. and Gopal, A. (2016). Enhancing security of Docker using Linux hardening

techniques. [online] IEEE Xplore. doi:https://doi.org/10.1109/ICATCCT.2016.7911971.

Andersson, M. and Hysing Berg, R. (2022). http://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A1679447. [online] DIVA. Available at: https://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A1679447&dswid=7896 [Accessed 13 Dec. 2023].

Berkovich, S., Kam, J. and Wurster, G. (2020). {UBCIS}: Ultimate Benchmark for Container Image Scanning.

[online] www.usenix.org. Available at: https://www.usenix.org/conference/cset20/presentation/berkovich

[Accessed 13 Dec. 2023].

Bui, T. (2015). Analysis of Docker Security. arXiv:1501.02967 [cs]. [online] Available at:

https://arxiv.org/abs/1501.02967.

Casalicchio, E. (2016). Autonomic Orchestration of Containers: Problem Definition and Research Challenges.

doi:https://doi.org/10.1145/12345.67890.

Chan, S. (2018). Prototype Open-Source Software Stack for the Reduction of False Positives and Negatives in

the Detection of Cyber Indicators of Compromise and Attack: Hybridized Log Analysis Correlation Engine and

Container-Orchestration System Supplemented by Ensemble Method Voting Algorithms for Enhanced Event

Correlation. [online] Ssrn.com. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3789766

[Accessed 13 Dec. 2023].

Čilić, I., Krivić, P., Podnar Žarko, I. and Kušek, M. (2023). Performance Evaluation of Container Orchestration

Tools in Edge Computing Environments. Sensors, [online] 23(8), p.4008.

doi:https://doi.org/10.3390/s23084008.

Hoque, S., Brito, M.S. de, Willner, A., Keil, O. and Magedanz, T. (2017). Towards Container Orchestration in

Fog Computing Infrastructures. 2017 IEEE 41st Annual Computer Software and Applications Conference

(COMPSAC). [online] doi:https://doi.org/10.1109/compsac.2017.248.

Javed, O. and Toor, S. (2021). Understanding the Quality of Container Security Vulnerability Detection Tools.

[online] arXiv.org. doi:https://doi.org/10.48550/arXiv.2101.03844.

Lumio, N. (2018). DSpace. [online] aaltodoc.aalto.fi. Available at: https://aaltodoc.aalto.fi/items/b977a10c-

e8b0-40aa-99ee-f4e56e4d40b4 [Accessed 13 Dec. 2023].

20

Martin, A., Raponi, S., Combe, T. and Di Pietro, R. (2018). Docker ecosystem – Vulnerability Analysis.

Computer Communications, 122, pp.30–43. doi:https://doi.org/10.1016/j.comcom.2018.03.011.

Mavridis, I. and Karatza, H. (2021). Orchestrated sandboxed containers, unikernels, and virtual machines for

isolation‐enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation:

Practice and Experience, 35.11(p.e6365). doi:https://doi.org/10.1002/cpe.6365.

Moreau, D., Wiebels, K. and Boettiger, C. (2023). Containers for computational reproducibility. Nature Reviews

Methods Primers, 3(1). doi:https://doi.org/10.1038/s43586-023-00236-9.

Morkevicius, N., Venčkauskas, A., Šatkauskas, N. and Toldinas, J. (2021). Method for Dynamic Service

Orchestration in Fog Computing. Electronics, 10(15), p.1796. doi:https://doi.org/10.3390/electronics10151796.

Pahl, C., Brogi, A., Soldani, J. and Jamshidi, P. (2019). Cloud Container Technologies: A State-of-the-Art

Review. IEEE Transactions on Cloud Computing, [online] 7(3), pp.677–692.

doi:https://doi.org/10.1109/tcc.2017.2702586.

Perera, H.P.D.S., Reza, B., De Silva, H.S.T., Karunarathne, A.D.H.U., Ganegoda, B. and Senarathne, A. (2022).

Docker Container Security Orchestration and Posture Management Tool. 2022 13th International Conference on

Computing Communication and Networking Technologies (ICCCNT).

doi:https://doi.org/10.1109/icccnt54827.2022.9984287.

R. Saminathan V. Mahavaishnavi (2023). Container Security Intelligence: Leveraging Machine Learning for

Anomaly Detection in Containerized Applications. Tuijin Jishu/Journal of Propulsion Technology, 44(3),

pp.3717–3730. doi:https://doi.org/10.52783/tjjpt.v44.i3.2091.

Raj, P. and Raman, A. (2018). Automated Multi-cloud Operations and Container Orchestration. Software-

Defined Cloud Centers, pp.185–218. doi:https://doi.org/10.1007/978-3-319-78637-7_9.

Ranaweera, P., Jurcut, A.D. and Liyanage, M. (2021). Survey on Multi-Access Edge Computing Security and

Privacy. IEEE Communications Surveys & Tutorials, 23(2), pp.1078–1124.

doi:https://doi.org/10.1109/comst.2021.3062546.

Şenel, B. (2023). Container Orchestration for the Edge Cloud. [online] theses.hal.science. Available at:

https://theses.hal.science/tel-04197683/ [Accessed 13 Dec. 2023].

Sharma, P., Chaufournier, L., Shenoy, P. and Tay, Y.C. (2016). Containers and Virtual Machines at Scale.

Proceedings of the 17th International Middleware Conference. doi:https://doi.org/10.1145/2988336.2988337.

Sultan, S., Ahmad, I. and Dimitiou, T. (2019). Container Security: Issues, Challenges, and the Road Ahead |

IEEE Journals & Magazine | IEEE Xplore. [online] ieeexplore.ieee.org. Available at:

https://ieeexplore.ieee.org/abstract/document/8693491 [Accessed 13 Dec. 2023].

21

Tiwari, H. (2023). Enhancing Container Security Through Automated Vulnerability Scanning and Remediation

with Trivy. [online] Insights2Techinfo. Available at: https://insights2techinfo.com/enhancing-container-security-

through-automated-vulnerability-scanning-and-remediation-with-trivy/ [Accessed 13 Dec. 2023].

V s, D.P., Chakkaravarthy Sethuraman, S. and Khan, M.K. (2023). Container security: Precaution levels,

mitigation strategies, and research perspectives. Computers & Security, [online] 135, p.103490.

doi:https://doi.org/10.1016/j.cose.2023.103490.

Vaño, R., Lacalle, I., Piotr Sowiński, Raúl S-Julián and Palau, C.E. (2023). Cloud-Native Workload

Orchestration at the Edge: A Deployment Review and Future Directions. Sensors, 23(4), pp.2215–2215.

doi:https://doi.org/10.3390/s23042215.

Xu, X., Xu, A., Jiang, Y., Jain, V., Singh, B., Khenwar, M. and Sharma, M. (2021). Static Vulnerability

Analysis of Docker Images You may also like Research on Security Issues of Docker and Container Monitoring

System in Edge Computing System Static Vulnerability Analysis of Docker Images. IOP Conference Series:

Materials Science and Engineering. doi:https://doi.org/10.1088/1757-899X/1131/1/012018.

Zhu, H. and Gehrmann, C. (2021). Lic-Sec: An enhanced AppArmor Docker security profile generator. Journal

of Information Security and Applications, 61, p.102924. doi:https://doi.org/10.1016/j.jisa.2021.102924.

Zhu, H., Gehrmann, C. and Roth, P. (2023). Access Security Policy Generation for Containers as a Cloud

Service. SN Computer Science, 4(6). doi:https://doi.org/10.1007/s42979-023-02186-1.

