

Configuration Manual

MSc Research Project

MSc Cyber Security

Amiket Kumar Srivastava

Student ID: X22119451

School of Computing

National College of Ireland

Supervisor: Dr Vanessa Ayala-Rivera

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Amiket Kumar Srivastava

Student ID:

22119451

Programme:

MSCCYB1

Year:

1

Module:

MSc Research Project

Supervisor:

Dr Vanessa Ayala-Rivera

Submission Due

Date:

14th December, 2023

Project Title:

Designing the Architecture of an Efficient Cloud-based Data

Security Posture Management System

Word Count:

2330 Page Count: 14

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Amiket Kumar Srivastava

Date:

14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Amiket Kumar Srivastava

Student ID: X22119451

1 Introduction

This configuration manual provides detailed instructions on setting up the architecture for the

data security posture management system (DSPM). It allows us to implement the various

components that we have researched for our DSPM system. This research showcases the

combined use of Microsoft Purview Data Catalogue Services with Python and PowerShell

Scripts and Azure DevOps Services to form a cost-effective and efficient DSPM system. Azure

Cloud Services have been used to create a sample environment for testing the different

components of the DSPM system. This manual is divided into 4 major sections – 1) Azure

Cloud Services Configuration, 2) Microsoft Purview Data Catalogue Configuration, 3) Azure

DevOps Services Configuration and 4) Execution.

2 System Configuration

The required system configuration is given in below subsections.

2.1 Hardware Configuration

Operating System: - Windows 11 Home Single Language version 22H2

Processor: 11th Gen Intel(R) Core (TM) i9-11900H @ 2.50GHz 2.50 GHz

System: 64-bit operating system, x64-based processor

Hard drive: 1 TB

Memory (RAM): 16 GB

2.2 Software Configuration

Tools used:

Tool Version Description

Azure DevOps Self-hosted

Agent

3.230.2 Agent was used to run Azure DevOps

pipeline jobs.

Python 3 3.12.1 Python3 was used to run the automation

scripts on the self-hosted Azure DevOps

agent.

PowerShell 5.1.22621.2506 PowerShell was used to run the

automation scripts on the self-hosted

Azure DevOps agent.

Microsoft Purview Account

SaaS

NA Purview was used for data catalogue

services.

Azure Service Principal SaaS NA Service Principal was used to access

cloud resources via API.

2

Azure Managed Identity SaaS NA Managed Identity was used to integrate

Purview with other cloud services.

Azure Storage Account SaaS Standard Blob storage was used to store dynamic

data backups of sensitive data sources.

Azure SQL Server SaaS 12.0.2000.8 SQL DB was used to test dynamic data

masking and dynamic data backups

policies.

Azure Key Vault SaaS Standard Key Vault was used to store secrets

which were pulled later in pipelines and

used to run scripts securely.

Tableau Desktop 23.3.345 Tableau was used to create visualisations

from the data and publish reports.

Python libraries used:

Library Version Description

requests 2.31.0 Agent was used to run Azure DevOps

pipeline jobs.

pandas 2.1.1 Python3 was used to run the automation

scripts on the self-hosted Azure DevOps

agent.

pyapacheatlas 0.15.0 PowerShell was used to run the

automation scripts on the self-hosted

Azure DevOps agent.

openpyxl 3.1.2 Purview was used for data catalogue

services.

3 Execution

This section describes the installation, working and execution of the DSPM system.

3.1 Software Installation

• Azure DevOps self-hosted agent version 3.230.2 was used as it was the latest stable

version. This tool allowed us to run pipeline jobs for free. Agent was downloaded from

the Azure DevOps official site and installation was performed by following the

instructions as shown in Figure 1.

3

Figure 1 - Azure DevOps Agent Installation

• Python 3.12.1 was used as it was the latest stable version with proper security updates

as shown in Figure 2. Link to download Python –

https://www.python.org/downloads/release/python-396/

Figure 2 - Download Python

• PowerShell 5.1.22621.2506 was used as it was the latest stable version with proper

security updates that was already available on the local windows machine that hosted

the Azure DevOps agent as shown in Figure 3.

https://www.python.org/downloads/release/python-396/

4

Figure 3 - PowerShell Details

• Microsoft Purview Account was created in Azure and used for the data catalogue

services as shown in Figure 4.

Figure 4 - Microsoft Purview Data Catalogue

• A Service Principal was created in Microsoft Entra ID and given IAM permissions to

all the resources in Azure including API permissions as shown in Figure 5. This was

used in scripts to call API endpoints.

Figure 5 - API Permissions Assigned to Service Principal

• A Managed Identity was created in Azure and used for integrating Purview with other

cloud resources so that catalogue scans could be run. It was given IAM permissions to

all other resources and then integrated with the data catalogue as shown in Figure 6.

5

Figure 6 - Managed Identity Integration with Data Catalogue

• Storage Account was created, and Blobs were configured so that dynamic data backup

policy could be implemented as shown in Figure 7. Logs were switched to 2.0 in

Diagnostic Settings (classic) so that data access could be monitored as shown in Figure

8.

Figure 7 - Blobs Set Up for Dynamic Data Backup Policy

Figure 8 - Storage Account Diagnostic Settings

• Azure SQL Server was deployed, and a database was configured so that dynamic data

backup and dynamic data masking policies could be implemented. The server was then

connected to using SQL Server Management Studio as shown in Figure 9. The

following queries were then run on master and target database:

o “CREATE LOGIN researchadmin WITH password='******';”

o “CREATE USER researchadmin WITH password='******';”

o “EXEC sp_addrolemember 'db_owner', [researchadmin]”.

The password was stored in the Key Vault.

6

Figure 9 - Azure SQL Server Connected via SSMS

• A Key Vault was created to store secrets such as service principal details, SQL account

password and storage keys which were retrieved later in pipelines to run scripts. Vault

Permission model was switched to Vault Access policy and the service principal and

Azure DevOps account were given permissions as shown in Figure 10.

Figure 10 - Secrets Stored in Key Vault and Access Permission Model

• Tableau Desktop 23.3.345 was used as it was available for a free 1-year license and it

was the latest stable version with proper security updates as shown in Figure 11.

Figure 11 - Tableau Desktop

7

3.2 Set up Data Scanning, Classification and Glossary Terms

• Register All the Data Sources in Purview from Data Map as shown in Figure 12.

Figure 12 - Registering a Data Source in Purview

• Create Custom Classification Rules from Data Map as shown in Figure 13

Figure 13 - Creation of Classification Rules

• Schedule Scans for all the Data Sources as shown in Figure 14

8

Figure 14 - Scheduling Scans for Data Sources

• Create Custom Data Source Schema in a JSON file as shown in Figure 15. An example

of this file is published in the artifacts as typedef.json.

Figure 15 - Custom Schema File

9

• Upload this schema to Purview using the upload_typdef.py python script. The script

takes three parameters as input. The first one is used to supply tenant id of the azure

environment. Second parameter is used to supply the service principal application id

and the third parameter is used to supply the service principal application secret to the

script. A fourth parameter is used to supply the path to the custom schema JSON file

which is then uploaded to Purview using the pyapacheatlas library as shown in Figure

16.

Figure 16 - Python Script to upload Custom Schema

• Next, classify the non-standard dataset using the classify.py script. This script reads the

dataset and applies classification to its values based on a dictionary file. The dictionary

file is available in artifacts as dictionary.csv.

• Now ingest the custom data source into Purview by running the upload_entities.py

script. This script parses the classified dataset and uploads it as entities to Purview.

Figure 17 shows a custom type of entity and its classification value in Purview.

Figure 17 - Custom Type Entity and its Classification Value

10

• Create Data Residency Terms in Glossary from data catalog menu. Next, assign these

terms to entities that have such legal requirements as shown in Figure 18.

Figure 18 - Data Residency Term Assignment

3.3 Setup Pipeline for Automation

• Modify the upload-typedef-pipeline.yml file from the repository as per your

environment requirements. The trigger is set to none as we only need to run this schema

once unless any modification is needed for the dataset. The first task is to connect to

Azure Key Vault and retrieve secrets for the pipeline. Next task is for the python script

to upload the custom schema and 4 parameters are supplied to the script – tenant id, app

id, app secret and path to the JSON file. The pythonInterpreter path should be the path

to the python library which was installed inside the Azure DevOps Agent directory.

Figure 19 - Pipeline to Upload Custom Schema

• Next, modify the upload-entities-pipeline.yml file from the repository as per your

environment needs. This pipeline again has the key vault task in the beginning. The

second task is to upload the dataset to purview as entities using Purview API endpoints

11

which are used in the script (Yenamandra, Yunair, VladR, & Taojunshen, 2023). It

accepts 4 parameters - tenant id, app id, app secret and path to the dataset that needs to

be ingested. This dataset is available in the artifacts as sample-data.csv.

Figure 20 - Pipeline to Upload Custom Entities

• Next, modify the access-log-pipeline.yml file from the repository as per your

environment requirements. The pipeline is being run on a daily schedule by default but

can be adjusted by the user as needed. This pipeline again has the key vault task in the

beginning. The second task runs the access.py file which reads the access logs of azure

storage account and produces a report of requestor IP addresses and their location of

origin. This file accepts 2 parameters – storage token and path for output report file.

The report is then published as an artifact by the pipeline as shown in Figure 21.

Figure 21 - Geo Fencing Pipeline

12

• Next, modify the research-pipeline file from the repository as per your environment

needs. The pipeline is also being run on a daily schedule by default but can be adjusted

by the user as per their requirements. This pipeline again has the key vault task in the

beginning. The second task fetches a list of all the resources in the cloud environment

and adds it to the artifact. The third task uses this resource list and grabs the IAM

permissions for each resource one by one and concatenates the information into a single

IAM.csv file which is added to the artifacts as shown in Figure 22.

Figure 22 - Tasks to get IAM Permissions Report

• The fourth task in this pipeline gets the sensitivity label values for columns inside SQL

tables from the data catalogue and adds that information inside a file using the name of

the table in the artifacts which in our case was account_info.csv. The fifth task reads

these sensitivity values and creates dynamic data masking rules for columns with

sensitive data if they aren’t already created as shown in Figure 23.

Figure 23 - Tasks to Set Up Dynamic Data Masking Policy

• The sixth task in this pipeline gets the sensitivity information about all the cloud

resources from the data catalogue and adds that information inside a file called

resource_risk.csv in the artifacts. The seventh task reads these sensitivity values and

creates dynamic data backups for databases with sensitive data inside Azure blob

storage as shown in Figure 24.

Figure 24 - Tasks to Set Up Dynamic Data Backups

• The eighth task in this pipeline gets the data residency information about all the cloud

resources from the data catalogue and adds that information inside a file called

residencyaudit.csv in the artifacts. The ninth task reads these residency requirements

13

and checks each resource’s deployment location against it. It gives a pass rating to

resources whose values match and fails those resources whose values don’t match. It

exports this information inside a file called residencycompliance.csv and adds it to the

artifacts.

Figure 25 - Tasks to Audit for Residency Compliance

• The last or tenth task of the pipeline publishes the artifacts so that they can be

downloaded and used by the users for their result analysis.

3.4 Read Artifacts and Create Visual Reports

• Download the Geo-Fencing.twb file from the repository and open it in Tableau

Desktop. Next, go to the pipeline run for the access-log-pipeline.yml. Download the

AzBlobLogs.csv file from the published artifact as shown in Figure 26. Update this file

as the data source for the Geo-Gencing.twb file. Now we can use the visual reports to

filter out and block IP addresses form unauthorised locations.

Figure 26 - Published Artifact for Geo-Fencing Pipeline

• Download the IAM.twb file from the repository and open it in Tableau Desktop. Next,

go to the pipeline run for the research-pipeline.yml. Download the IAM.csv file from

the published artifact as shown in Figure 27. Update this file as the data source for the

IAM.twb file. Now we can send these visual reports to the owners of the resources for

access review and audit.

Figure 27 - Published Artifact for Access Monitoring Pipeline

• Download the entire published artifact from the research-pipeline.yaml pipeline run.

This artifact contains the following files as shown in Figure 28:

o IAM.csv – already used for creating visual reports for access review.

o account_info.csv – contains classification sensitivity information about SQL

table columns.

14

o residencyaudit.csv - contains residency requirement information about all

cloud resources.

o residencycompliance.csv – Audit report of all cloud resources and their

Residency Requirement Compliance Status.

o resource_risk.csv – contains classification sensitivity information about all

cloud resources.

o resource_list.csv – is a list of all the cloud resources.

Figure 28 - Published Artifacts for DSPM main pipeline

3.5 DSPM Execution

Now that all the pipelines have been setup, the regular use of this DSPM system can be done

by following these steps:

• Register all new data sources into Purview.

• Verify their classifications in Purview and update the rules as needed.

• Periodically download the IAM.csv file and update the IAM.twb visual report and send

it to data owners for review.

• Download the RiskAssessmentMatrix.xlsx from the repository and conduct manual

assessments. Send reports of these assessments to the data owners for review.

• Periodically download the AzBlobLogs.csv file and update the Geo-Fencing.twb visual

report and share it with data owners for further action.

• Download the residencycompliance.csv and share any failures to the respective data

owners regularly.

• Take regular feedback from different teams and incorporate the feedback in existing

policies and procedures. Promote innovation and use ideas to create new policies and

procedures.

References

Yenamandra, N., Yunair, VladR, & Taojunshen. (2023, October 31). Microsoft Purview

Resource Provider Rest API. Retrieved from Microsoft:

https://learn.microsoft.com/en-us/rest/api/purview/

