===y

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
MSc Cyber Security

Amiket Kumar Srivastava
Student I1D: X22119451

School of Computing
National College of Ireland

Supervisor: Dr Vanessa Ayala-Rivera

‘-—
National College of Ireland \ National

MSc Project Submission Sheet
School of Computing

Student Name: Amiket Kumar Srivastava

Student ID: 22119451

Programme: MSCCYB1 Year: 1
Module: MSc Research Project

Supervisor: Dr Vanessa Ayala-Rivera

Submission Due

Date: 14t December, 2023

Project Title: Designing the Architecture of an Efficient Cloud-based Data

Security Posture Management System

Word Count: 2330 Page Count: 14

College
Ireland

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Amiket Kumar Srivastava
Date: 14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Amiket Kumar Srivastava
Student ID; X22119451

1 Introduction

This configuration manual provides detailed instructions on setting up the architecture for the
data security posture management system (DSPM). It allows us to implement the various
components that we have researched for our DSPM system. This research showcases the
combined use of Microsoft Purview Data Catalogue Services with Python and PowerShell
Scripts and Azure DevOps Services to form a cost-effective and efficient DSPM system. Azure
Cloud Services have been used to create a sample environment for testing the different
components of the DSPM system. This manual is divided into 4 major sections — 1) Azure
Cloud Services Configuration, 2) Microsoft Purview Data Catalogue Configuration, 3) Azure
DevOps Services Configuration and 4) Execution.

2 System Configuration
The required system configuration is given in below subsections.

2.1 Hardware Configuration

Operating System: - Windows 11 Home Single Language version 22H2
Processor: 11th Gen Intel(R) Core (TM) i9-11900H @ 2.50GHz 2.50 GHz
System: 64-bit operating system, x64-based processor

Hard drive: 1 TB

Memory (RAM): 16 GB

2.2 Software Configuration

Tools used:

Tool Version Description

Azure DevOps Self-hosted | 3.230.2 Agent was used to run Azure DevOps

Agent pipeline jobs.

Python 3 3.12.1 Python3 was used to run the automation
scripts on the self-hosted Azure DevOps
agent.

PowerShell 5.1.22621.2506 | PowerShell was used to run the
automation scripts on the self-hosted
Azure DevOps agent.

Microsoft Purview Account | NA Purview was used for data catalogue

SaaS Services.

Azure Service Principal SaaS | NA Service Principal was used to access
cloud resources via API.

Azure Managed Identity SaaS | NA Managed Identity was used to integrate
Purview with other cloud services.

Azure Storage Account SaaS | Standard Blob storage was used to store dynamic
data backups of sensitive data sources.

Azure SQL Server SaaS 12.0.2000.8 SQL DB was used to test dynamic data
masking and dynamic data backups
policies.

Azure Key Vault SaaS Standard Key Vault was used to store secrets

which were pulled later in pipelines and
used to run scripts securely.

Tableau Desktop 23.3.345 Tableau was used to create visualisations
from the data and publish reports.

Python libraries used:

Library Version Description

requests 2.31.0 Agent was used to run Azure DevOps
pipeline jobs.

pandas 2.1.1 Python3 was used to run the automation
scripts on the self-hosted Azure DevOps
agent.

pyapacheatlas 0.15.0 PowerShell was used to run the
automation scripts on the self-hosted
Azure DevOps agent.

openpyxl 3.1.2 Purview was used for data catalogue
Services.

3 Execution
This section describes the installation, working and execution of the DSPM system.

3.1 Software Installation

e Azure DevOps self-hosted agent version 3.230.2 was used as it was the latest stable
version. This tool allowed us to run pipeline jobs for free. Agent was downloaded from
the Azure DevOps official site and installation was performed by following the
instructions as shown in Figure 1.

Get the agent x

x64 System prerequisites
<86 Configure your account

Configure your account by following the steps outlined here.

Download the agent
a

Create the agent

PS C:\> mkdir agent ; cd agent
PS C:\agent> Add-Type -AssemblyName System.IO.Compression.FileSystem ;

[System.I0.Compression.ZipFile]::ExtractToDirectory("$HOME\Downloads\vsts
agent-win-x64-3.230.2.zip", "$PWD")

Configure the agent Detailed instructions 12

PS C:\agent> .\config.cmd

Optionally run the agent interactively

fyou didn't run as a service

Figure 1 - Azur DevOps Agent Installation

above -

e Python 3.12.1 was used as it was the latest stable version with proper security updates
as shown in Figure 2. Link to download Python —
https://www.python.org/downloads/release/python-396/

e python

About Downloads Documentation Communi

Download the latest version for Windows

Download Python 3.12.1

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, macOS, Other

Want to help test development versions of Python 3.13? Prereleases,

Docker images

Figure 2 - Download Python

e PowerShell 5.1.22621.2506 was used as it was the latest stable version with proper
security updates that was already available on the local windows machine that hosted
the Azure DevOps agent as shown in Figure 3.

https://www.python.org/downloads/release/python-396/

Name Value

PSVersion 5.1.22621.2506
PSEdition Desktop
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}

Buildversion 10.0.22621.2506
CLRVersion 4.0.30319.42000
wsManStackVersion 3.0

PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.0.1

Figure 3 - PowerShell Details

e Microsoft Purview Account was created in Azure and used for the data catalogue
services as shown in Figure 4.

amiket.cad@gmail.com

Microsoft Purview * dspmcatalogue ® o B Q0 & dmechis

A

~
dspmcatalogue

(8

B 8 e o

Browse assets Manage glossary ° Knowledge center '
N ®

9
¢" zuzr || W I |

« e

Recently accessed My items Links

Figure 4 - Microsoft Purview Data Catalogue

e A Service Principal was created in Microsoft Entra ID and given 1AM permissions to
all the resources in Azure including APl permissions as shown in Figure 5. This was
used in scripts to call API endpoints.

- SP_research | APl permissions % -

‘}'7 Search ‘ « O Refresh Rj Got feedback?
overview 0 The "Admin consent required” column shows the default value for an organization. However, user consent can be customized per permission, user, or app. This column may not reflect 1
in organizations where this app will be used. Learn more
Quickstart
Integration assistant Configured permissions
Manage Applications are authorized to call APIs when they are granted permissions by users/admins as part of the consent process. The list of configured permissions should include

all the permissions the application needs. Learn more about permissions and consent
Branding & properties

-+ Add a permission /' Grant admin consent for Default Directory
9 Authentication

" API / Permissions name Type Description Admin consent requ... Status
Certificates & secrets

v Azure Storage (1
Il Token configuration 9e ()

2 APl permissions user_impersonation Delegated ~ Access Azure Storage No @ Granted for Default Dire | =++

\ Microsoft Graph (4)
Expose an API

. Directory.Read Al Application Read directory data Yes @ Granted for Default Dire_ =++
App roles
Directory ReadWrite. Al Application Read and write directory data Yes Granted for Default Dire, | =+~
& Owners ’ i PP " °
- Directory Write Restricted Application Manage restricted resources in the directory Yes @ Granted for Default Dire «++
&k Roles and administrators
UserRead Delegated Sign in and read user profile No @ Granted for Default Dire | =++
Manifest

Figure 5 - API Permissions Assigned to Service Principal

e A Managed Identity was created in Azure and used for integrating Purview with other
cloud resources so that catalogue scans could be run. It was given IAM permissions to
all other resources and then integrated with the data catalogue as shown in Figure 6.

dspmcatalogue | Managed identities (preview)

Microsoft Purview account

‘;‘37 Search ‘ «

User assigned

€ Qverview

User assigned managed identities enable Azure resources to authenticate to cloud services (e.g. Azure Key Vault) without stor

=1} Activity log resources, and have their own lifecycle. A single resource (e.g. Virtual Machine) can utilize multiple user assigned managed ide

resources (e.g. Virtual Machine).

QR Access control (IAM)

& Tags -+ Add 'O Refresh ,Qj Got feedback?

X Diagnose and solve problems

Ao Root collection permission Name Tl Resource group
Settings D researchidentity rg_purview

1 0 O]

Figure 6 - Managed ldentity Integration with Data Catalogue

Storage Account was created, and Blobs were configured so that dynamic data backup
policy could be implemented as shown in Figure 7. Logs were switched to 2.0 in

Diagnostic Settings (classic) so that data access could be monitored as shown in Figure
8.

Name Last modified Anonymous access level Lease state
$logs 27/11/2023, 9:02:16 am Private Available
sample 27/11/2023, 9:22:17 am Container Available
sqlbackups 30/11/2023, 1:33:30 am Container Available

Figure 7 - Blobs Set Up for Dynamic Data Backup Policy

Logging

Logging version (1

| 2.0 v

Read
Write
Delete

Delete data after 3 days

O N

Figure 8 - Storage Account Diagnostic Settings

Azure SQL Server was deployed, and a database was configured so that dynamic data
backup and dynamic data masking policies could be implemented. The server was then
connected to using SQL Server Management Studio as shown in Figure 9. The
following queries were then run on master and target database:

O “CREATE LOGIN researchadmin WITH password='**¥kx' >

O ““CREATE USER researchadmin WITH password="'*¥#***' >

O “EXEC sp_addrolemember 'db_owner', [researchadmin]”.
The password was stored in the Key Vault.

=R dspmresearch.database.windows.net (SC
= ¥ Databases
= =7 System Databases

=h-]

master
Tables
Views
Synonyms
Programmability
Security

=l W researchtest

&

HFEBEREEEEEBE

Database Diagrams
Tables

Views

External Resources
Synonyms
Programmability
Query Store
Extended Events
Storage

Security

Integration Services Catalogs

Figure 9 - Azure SQL Server Connected via SSMS

e A Key Vault was created to store secrets such as service principal details, SQL account
password and storage keys which were retrieved later in pipelines to run scripts. Vault
Permission model was switched to Vault Access policy and the service principal and
Azure DevOps account were given permissions as shown in Figure 10.

Name Type | Status Expiration date
appid ~" Enabled
appsecret ~" Enabled
sqlkey ~" Enabled
storagekey ~" Enabled
storagetoken ~" Enabled
tenantid ~ Enabled

Permission model

Grant data plane access by using a Azure RBAC or Key Vault access policy

O Azure role-based access control (recommended) ©

@ Vault access policy O

Go to access policies

Figure 10 - Secrets Stored in Key Vault and Access Permission Model

o Tableau Desktop 23.3.345 was used as it was available for a free 1-year license and it
was the latest stable version with proper security updates as shown in Figure 11.

About Tableau

i +ableau

from @ Salesforce

Tableau
Desktop

Professional Edition
20232.3.0 (20233.23.1017.0948)

X

Figure 11 - Tableau Desktop

3.2 Set up Data Scanning, Classification and Glossary Terms

Register All the Data Sources in Purview from Data Map as shown in Figure 12.

Register data source (Azure Blob Storage)

Data source name *

[Azuresion-£23] |

Azure subscription

| Free Trial (cc2563bf-8958-4bca-8747-fceh70808330) v ‘

Storage account name *

| researchcatalogue v | O
Endpoint
[httpsy/researchcatalogue blob.corewindows.net/ o

Collection * ©

| (Root) dspmcatalogue v ‘

@ Allitems in this data source will belong to the collection that you select.

Data policy enforcement (previously Data use management)

Allow data access policies to be assigned to this data source. Learn mare [

@ or

‘ Back ‘ ‘ Cancel ‘
Figure 12 - Registering a Data Source in Purview

Create Custom Classification Rules from Data Map as shown in Figure 13

Classification rules

(New C) Refresh

System Custom

[7 Filter by name

] Name Data pattern Column pattern Match %
[] ccexpiredate cc_expiredate
D cc_eve cc_eve

D cc_number_restricted cc_number
[] phone_restricted phone

D address_restricted address

D email_restricted email

D DOB_Restricted birthdate

Figure 13 - Creation of Classification Rules

Schedule Scans for all the Data Sources as shown in Figure 14

Last applied
11/29/2023, 8:4.

11/29/2023, 8:4

11/29/2023, 8:4...

11/29/2023, 8:4

11/29/2023, 8:4

11/29/2023, 8:4...

11/29/2023, 8:4...

State

@ Enabled
o Enabled
@ tnabled
@ Enabled
o Enabled
@ cnabled
o Enabled

Scan "AzureSqlDatabase-gGg”

Name *

| Scan—zNﬂ |

Connect with integration runtime * ©

‘ Azure AutoResolvelntegrationRuntime e ‘ 7

Server endpoint *

Select database

@ From Azure subscription O Enter manually

Database name *

‘ Select. v ‘ O
Credential *
‘ Microsoft Purview MSI (system) v ‘ &

@ Before you set up your scan you must give the managed identity of the Microsoft Purview
account permissions to connect to your Azure SQL Database. Show more

Lineage extraction (preview) I
@ o

@

ction Cancel

Figure 14 - Scheduling Scans for Data Sources

Create Custom Data Source Schema in a JSON file as shown in Figure 15. An example
of this file is published in the artifacts as typedef.json.

{

"entityDefs": [
{
"category™: "ENTITY",
"nams": "customer",
"description”: "Customer Information”,
"serviceType": "customer_info",
"options": {
"schemaElementsAttribute": "columns"
be
"attributeDefs": [
{
"name": "first_name",
"typeNams": "string",
"isOptional™: true,
"cardinality": "SINGLE",
"walussMinCount

"walussMaxCount": 1,
"isUnique": false,
"isIndexable": true,
"includeInNotification": false

"nam=": "last_nams",
"typeNam=": "string",
"isOptional”: true,
"cardinality": "SINGLE",
"valussMinCount™:

"valuesMaxCount™: 1,
"isUnique": false,
"isIndexakle": true,

"includeInNotification": false

"name": "maiden_name",
"typeName": "string",
"isoptional": true,
"cardinality": "SINGLE",
"valussMinCount™: O,
"waluesMaxCount™: 1,
"isUnique": false,
"isTndexable": true,
"includeInNotification": false

"name": "gender™,
"typeNams": "string",
"isOptional™: true,

Figure 15 - Custom Schema File

Upload this schema to Purview using the upload_typdef.py python script. The script
takes three parameters as input. The first one is used to supply tenant id of the azure
environment. Second parameter is used to supply the service principal application id
and the third parameter is used to supply the service principal application secret to the
script. A fourth parameter is used to supply the path to the custom schema JSON file
which is then uploaded to Purview using the pyapacheatlas library as shown in Figure
16.

1 import os

2 import json, sys

4 from pyapacheatlas.auth import ServicePrincipalluthentication

5 from pyapacheatlas.core import AtlasAttributeDef, AtlasEntity, PurviewClient
& from pyapacheatlas.core.typedef import EntityTypeDef, TypeCategory

7

8 if __name__ == "__main__":

9

1@ This sample provides shows how to create custom type definitions and
11 how to creates entities using a custom type.

12

13

14 oauth = ServicePrincipalAuthentication(

15 tenant_id=sys.argv[1],

16 client_id=sys.argv[2],

17 client_secret=sys.argv[3]

13)

19 client = PurviewClient(

28 account_name="dspmcatalogue",

21 authentication=cauth

22)

23

24 input_path = sys.argv[4]

25 client.upload_typedefs(json.load(open(input_path, 'r’)), force_update=True)

E
M

Figure 16 - Python Script to upload Custom Schema

Next, classify the non-standard dataset using the classify.py script. This script reads the
dataset and applies classification to its values based on a dictionary file. The dictionary
file is available in artifacts as dictionary.csv.
Now ingest the custom data source into Purview by running the upload_entities.py
script. This script parses the classified dataset and uploads it as entities to Purview.
Figure 17 shows a custom type of entity and its classification value in Purview.
jwhite@domain.com
[A customer

+ Add Tag
& edit @ select for bulk edit O Refresh @ Delete

Overview Properties Schema Lineage Contacts Related

Asset description

No description for this asset.

Managed attributes

| Y Filter by attribute name ‘ (@) show attributes without a value

No Attributes for this asset.

Classifications ©

Restricted

Schema classifications (1) ©
Figure 17 - Custom Type Entity and its Classification Value

e Create Data Residency Terms in Glossary from data catalog menu. Next, assign these
terms to entities that have such legal requirements as shown in Figure 18.

., researchanothercatalogue
- B8 Azure Blob Storage
+ Add Tag

f Edit @ Select far bulk edit O Refresh]ﬁl Delete (3 Data share

Overview Properties Contacts Related

Asset description Collection path

No description for this asset. 5:! dspmcatalogue
Managed attributes Hierarchy

| Y Filter by attribute name ‘ ‘\. ,' Show attributes without a value researchanothercatalogue

Azure Storage Account
No Attributes for this asset.

researchanothercatalogue

- Azure Blob Storage
Classifications

No classifications for this asset.
Glossary terms

- Research_Term
Fully qualified name * DataResidencyUs

https://researchanothercatalogue.blob.core.windows.net

Figure 18 - Data Residency Term Assignment

3.3 Setup Pipeline for Automation

e Modify the upload-typedef-pipeline.yml file from the repository as per your
environment requirements. The trigger is set to none as we only need to run this schema
once unless any modification is needed for the dataset. The first task is to connect to
Azure Key Vault and retrieve secrets for the pipeline. Next task is for the python script
to upload the custom schema and 4 parameters are supplied to the script — tenant id, app
id, app secret and path to the JSON file. The pythoninterpreter path should be the path
to the python library which was installed inside the Azure DevOps Agent directory.

1

2 trigger:

3 - none

4

5 pool: researchpool

7 steps:

8 - task: AzureKeyVaultg2

9 inputs:

1@ azureSubscription: 'Free Trial(cc2563bf-8958-4bca-8747-fceb788b8330)"
11 KeyVaultName: 'dspmresearchvault’

12 SecretsFilter: ™*°

13 RunAsPrelob: false

14

15 - task: PythonScript@e

16 displayName: 'Upload custom schema to data catalogue for special data types’
17 inputs:

18 scriptSource: "filePath®

19 scriptPath: "%(System.DefaultWorkingDirectory)iupload_ typedef.py’

20 arguments: "%(tenantid) $(appid) $(appsecret) $(System.DefaultWorkingDirectory)\typedef.json’
21 pythonInterpreter: 'C:\agent)_work)_tool\python.exe’

22 condition: succeeded()

23

Figure 19 - Pipeline to Upload Custom Schema

o Next, modify the upload-entities-pipeline.yml file from the repository as per your
environment needs. This pipeline again has the key vault task in the beginning. The
second task is to upload the dataset to purview as entities using Purview API endpoints

10

e B =) B B S W R

e e e]
VI ST .)

15
16
17
18
19
20
21
22

which are used in the script (Yenamandra, Yunair, VIadR, & Taojunshen, 2023). It
accepts 4 parameters - tenant id, app id, app secret and path to the dataset that needs to
be ingested. This dataset is available in the artifacts as sample-data.csv.

trigger:
- none
pool: researchpool
steps:
- task: AzureKeyVaultg2
inputs:
azureSubscription: 'Free Trial(cc2563bf-8958-4bca-8747-fceb788b833@)"
KeyVaultName: 'dspmresearchvault’
SecretsFilter: '*°
RunAsPrelob: false
- task: PythonScript@e
displayName: 'Upload special custom data to data catalogue’
inputs:
scriptSource: 'filePath’
scriptPath: "$(System.DefaultWorkingDirectory)‘\upload_entities.py’
arguments: "$(tenantid) %(appid) $%(appsecret) $(System.DefaultWorkingDirectory)\sample-data.csv’
pythoenInterpreter: 'C:lagent’_work)_tool\python.exe’
condition: succeeded()
Figure 20 - Pipeline to Upload Custom Entities
Next, modify the access-log-pipeline.yml file from the repository as per your

environment requirements. The pipeline is being run on a daily schedule by default but
can be adjusted by the user as needed. This pipeline again has the key vault task in the
beginning. The second task runs the access.py file which reads the access logs of azure
storage account and produces a report of requestor IP addresses and their location of
origin. This file accepts 2 parameters — storage token and path for output report file.
The report is then published as an artifact by the pipeline as shown in Figure 21.

- none

4

5 schedules:

6 - cron: '@ 1 * * *°
7 displayMName: Daily midnight build
8 branches:

9 include:

1@ - main

11

12 pool: researchpool
13

14 steps:

15 - task: AzureKeyVault@2
16 inputs:

17 azureSubscription: 'Free Trial(cc2563bf-8958-4bca-8747-fceb708b8330) "
18 KeyVaultMame: 'dspmresearchvault’

19 SecretsFilter: **°

20 RunAsPrelob: false

21

22 - task: PythonScript@e

23 displayName: ‘Analyse Access Logs to implement Geo-Fencing’

24 inputs:

25 scriptSource: 'filePath®

26 scriptPath: '$(System.DefaultWorkingDirectory)\access.py’

27 arguments: '$(storagetoken) $(System.DefaultWorkingDirectory)\researchdocs\AzBloblLogs.csv'
23 pythonInterpreter: "C:‘\agent_work'_toolipython.exs’

29 condition: succeeded()

30

31 - publish: $(System.DefaultWorkingDirectory)\researchdocs\AzBloblogs.csv
32 artifact: AzBlobloes.csv

Figure 21 - Geo Fencing Pipeline

11

o Next, modify the research-pipeline file from the repository as per your environment
needs. The pipeline is also being run on a daily schedule by default but can be adjusted
by the user as per their requirements. This pipeline again has the key vault task in the
beginning. The second task fetches a list of all the resources in the cloud environment
and adds it to the artifact. The third task uses this resource list and grabs the 1AM
permissions for each resource one by one and concatenates the information into a single
IAM.csv file which is added to the artifacts as shown in Figure 22.

steps:
- task: AzureKeyVault@2
inputs:
azureSubscription: ‘Free Trial(cc2563bf-8958-4bca-8747-Fceb7@8b8330)"
KeyVaultName: 'dspmresearchvault’
SecretsFilter: '*
RunAsPrelJob: false

- task: PowerShell@2
displayName: 'Get List of Resources’
inputs:
targetType: filePath
filePath: "$(System.DefaultWorkingDirectory)\resourcelist.psl”
arguments: -resourcelist "$(System.DefaultborkingDirectory)\researchdocs\resourcelist.csv” -appid “"$(appid)

-appsecret "$(appsecret)” -tenantid "$(tenantid)"’

- task: PowerShell@2
displayName: ‘Get IAM of Resources’
in;tts:l
targetType: filePath
filePath: "$(System.DefaultWorkingDirecteory)\IAM.psl’
arguments: *-iam "$(System.DefaultWorkingDirectory)\researchdocs\IAM.csv" -appid "$(appid)" -appsecret "$(appsecret)” -tenantid "$(tenantid)"’

Figure 22 - Tasks to get IAM Permissions Report

o The fourth task in this pipeline gets the sensitivity label values for columns inside SQL
tables from the data catalogue and adds that information inside a file using the name of
the table in the artifacts which in our case was account_info.csv. The fifth task reads
these sensitivity values and creates dynamic data masking rules for columns with
sensitive data if they aren’t already created as shown in Figure 23.

- task: PythonScript@e

displayName: "Get SQL Table Column Sensitivity wvalues from Data Catalogue’
inputs:
scriptSource: "filePath’®
scriptPath: '$(System.DefaultWorkingDirectory)\ddm.py'
arguments: ‘$(tenantid) $(appid) $(appsecret) $(System.DefaultWorkingDirectory)\researchdocs’
pythonInterpreter: ‘C:\agent_work_tool\python.exe"
condition: succeeded()

- task: PowerShell@2

displayName: 'Use sensitivity values from previous step to create Dynamic Data Masking Rules'
inputs:
targetType: filePath
filePath: '$(System.DefaultWorkingDirectory)\DDM.psl'
arguments: ‘-file “$(System.DefaulthorkingDirectory)\researchdocs\account_info.csv® -appid “$(appid)

-appsecret “"$(appsecret)” -tenantid "$(tenantid)”’

Figure 23 - Tasks to Set Up Dynamic Data Masking Policy

e The sixth task in this pipeline gets the sensitivity information about all the cloud
resources from the data catalogue and adds that information inside a file called
resource_risk.csv in the artifacts. The seventh task reads these sensitivity values and
creates dynamic data backups for databases with sensitive data inside Azure blob
storage as shown in Figure 24.

) - task: PythonScript@d

Get Sensitivity information about resources from Data Catalogue’

$(Systen. DefaultorkingDirectory)\backup. py’
(tenantid) $(appid) $(appsecre t) $(System.DefaulthlorkingDirectory)\researchdocs’

orkingDirectory)\backup.psl’®
/Y\re

.De W
~file "$(System.DefaultiorkingDirectory)\researchdocs\resource_risk.csv" -appid "$(appid)” -appsecret "$(appsecre)" -tenantid "$(tenantid)” -sqlkey "$(sqlkey)" -storagekey "$(storagekey)"’

Figure 24 - Tasks to Set Up Dynamic Data Backups

e The eighth task in this pipeline gets the data residency information about all the cloud
resources from the data catalogue and adds that information inside a file called
residencyaudit.csv in the artifacts. The ninth task reads these residency requirements

12

and checks each resource’s deployment location against it. It gives a pass rating to
resources whose values match and fails those resources whose values don’t match. It
exports this information inside a file called residencycompliance.csv and adds it to the
artifacts.

Figure 25 - Tasks to Audit for Residency Compliance

e The last or tenth task of the pipeline publishes the artifacts so that they can be
downloaded and used by the users for their result analysis.

3.4 Read Artifacts and Create Visual Reports

e Download the Geo-Fencing.twb file from the repository and open it in Tableau
Desktop. Next, go to the pipeline run for the access-log-pipeline.yml. Download the
AzBlobLogs.csv file from the published artifact as shown in Figure 26. Update this file
as the data source for the Geo-Gencing.twb file. Now we can use the visual reports to
filter out and block IP addresses form unauthorised locations.

« Artifacts

Published

Name
~ & AzBlobLogs.csv
[AzBloblogs.csv
Figure 26 - Published Artifact for Geo-Fencing Pipeline

o Download the IAM.twb file from the repository and open it in Tableau Desktop. Next,
go to the pipeline run for the research-pipeline.yml. Download the IAM.csv file from
the published artifact as shown in Figure 27. Update this file as the data source for the
IAM.twb file. Now we can send these visual reports to the owners of the resources for
access review and audit.

Mame

v & researchdocs

O IAM.csv
Figure 27 - Published Artifact for Access Monitoring Pipeline

e Download the entire published artifact from the research-pipeline.yaml pipeline run.
This artifact contains the following files as shown in Figure 28:
o IAM.csv —already used for creating visual reports for access review.
o account_info.csv — contains classification sensitivity information about SQL
table columns.

13

o residencyaudit.csv - contains residency requirement information about all
cloud resources.

o residencycompliance.csv — Audit report of all cloud resources and their
Residency Requirement Compliance Status.

o resource_risk.csv — contains classification sensitivity information about all
cloud resources.

o resource_list.csv —is a list of all the cloud resources.

v & researchdocs
O 1AM.csv
[account info.csv
[residencyaudit.csv
(3 residencycompliance.csv
[resource_risk.csv

D resourcelist.csvy

Figure 28 - Published Artifacts for DSPM main pipeline

3.5 DSPM Execution

Now that all the pipelines have been setup, the regular use of this DSPM system can be done
by following these steps:

Register all new data sources into Purview.

Verify their classifications in Purview and update the rules as needed.

Periodically download the IAM.csv file and update the IAM.twb visual report and send
it to data owners for review.

Download the RiskAssessmentMatrix.xIsx from the repository and conduct manual
assessments. Send reports of these assessments to the data owners for review.
Periodically download the AzBlobLogs.csv file and update the Geo-Fencing.twb visual
report and share it with data owners for further action.

Download the residencycompliance.csv and share any failures to the respective data
owners regularly.

Take regular feedback from different teams and incorporate the feedback in existing
policies and procedures. Promote innovation and use ideas to create new policies and
procedures.

References

Yenamandra, N., Yunair, VladR, & Taojunshen. (2023, October 31). Microsoft Purview

Resource Provider Rest API. Retrieved from Microsoft:
https://learn.microsoft.com/en-us/rest/api/purview/

14

