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Abstract 
 

Open banking is the practice of enabling secure sharing of financial information of a customer 

between a data owning financial entity and an innovative financial service provider through a set of 

well-defined APIs and third-party aggregators. The third-party aggregators use customer data for 

training AI models to offer competent digital solutions for fraud detection, lending analysis etc. Prior 

to this, aggregators are required to minimize customer data to eliminate re-identification or data 

leakage concerns. But the inadequate and possibly confusing regulations around the minimization 

techniques leave financial institutions to adopt an individualised risk-based approach to evaluate the 

minimization procedures in place. Thus, usage of homomorphic encryption is proposed in this 

research work, to encrypt customer data before arriving at the 3rd party aggregators. This will help 

enhance data security and assuage privacy concerns surrounding data minimization techniques. 

Homomorphic encryption is a form of encryption which allows for computations to be performed on 

encrypted data. The result of such computation is same as that of normal operation on plain data. The 

complexity of computations that can be performed are continuously improving, with latest 

applications in machine learning. Key focus of the paper is to show a high-level design of an open 

banking ecosystem embedded with homomorphic encryption. A simple implementation is included to 

prove that it is feasible to encrypt and decrypt API payloads using available homomorphic encryption 

libraries. Furthermore, the research includes evaluation of security and performance of the proposed 

approach, as well as utility of the homomorphically encrypted data for predictive AI models. The 

paper then concludes with a view of current challenges with the implementation and future areas 

worthy of research. 

 
 

1 Introduction 
 

Data is the most valuable resource in the current world run by Information technology. Data 

security refers to the protection of personal data from unauthorized access, attacks and 

exploitations so that data integrity is maintained. This ensures that data remains accurate, 

reliable and available to authorized parties only. In the current AI driven era, there is a lot of 

focus on security, privacy and ethical usage of customer data. Financial data, when used 

appropriately has the ability to enrich and simplify a customer’s journey. This is achieved 

through a wide range of financial service offerings, starting from a personal loan application 

of worth a few thousand Euros to evaluation of credit risk for much larger financial 

transactions. Thus, came open banking, a technological innovation in the financial services 

industry where financial institutions can openly share the data of a consenting customer with 

each other, in order to ease a customer’s journey through a financial service. This would not 

only mean reduced paperwork or manual uploading of information into websites by a 

customer, but also possible automation of decisioning, fraud detection, credit risk checks etc. 
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to name a few, using predictive AI models. To understand this interaction better, please refer 

to figure 1. There are 3 key entities in the open banking ecosystem as depicted in the figure. 

  

Figure 1: Depiction of present-day open banking ecosystem 

A: AISP/PISP (Account Information Service Provider/Payment Information Service 

Provider) - Destination financial institution which receives the customer data and implements 

financial service leveraging customer’s data i.e. data controller. For the purpose of this 

research, only AISP aspect has been taken into account and only APIs related to AISP are 

considered for encryption. Thus, only AISP is referenced in the rest of the documentation. 

B: Aggregators - 3rd party companies which leverages customer data to facilitate the 

AISP/PISP, through API layering and prediction models. 

C: ASPSP (Account Servicing Payment Service Providers) - source of the customer data i.e. 

data owner. 

Open banking requires open sharing of data between A & C through RESTful APIs. 

Some of the key APIs include Accounts, Transactions, Balance, Party etc. As evident from 

the figure, in the process data sharing, B also receives a copy of the data acting as an 

intermediary. B uses acquired data to train internal machine learning models, after applying a 

minimization process, which is elaborated in the next section. Regulatory bodies require 

aggregators, which act as bridging agents between financial institutions, to employ data 

minimisation techniques such as anonymisation, pseudonymisation etc. to remove personally 

identifiable information either by redaction or tokenization process.1 

 
1 https://documents1.worldbank.org/curated/en/099425002082230437/pdf/P1705050aeb8e704f088260f228802b73b8.pdf 
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1.1 Challenges of data minimization 
 

Utility of minimized data is reduced due to modification or removal of important personal 

information2. Also, such techniques can allow for reidentification of customer with the help 

of cross reference of additional data. An article3 provides an interesting statistic by one study, 

that three key characteristics such as gender, birthday, and zip code can be used to identify 

87% of American population and another study4 states the re-identification percentage to be 

approximately 69%. Neither of the numbers are insignificant. An article by IaaP5 further 

discusses the confusion in the EU data protection regulations surrounding anonymization and 

pseudonymization techniques, and the necessity for subsequent deletion of original data to 

avoid data link back etc. The article clearly elaborates on the absence of a one-size-fits-all 

minimization technique. One other article by IaaP6, discusses the necessity for a pragmatic 

anonymization approach to be employed by EDBP regulators and how in the meantime, 

institutions are required to follow a risk-based approach for each use case. While there are 

tools and guidelines available to data controllers to determine the best suited data 

minimization approach for a given use case, there is no guarantee that the approach offers 

total data security. Individual financial institutions are left to go through legal procedures 

along with the 3rd party institutions to understand the risk of data minimization techniques 

employed and their completeness. Such risk-based approach will never serve to address the 

data security concerns at the root. 

1.2 Role of Homomorphic Encryption 
 

Homomorphic encryption is an encryption scheme where several mathematical operations 

can be performed on encrypted data without ever having to decrypt. The results of the 

operations when decrypted match the results of computations without encryption. This unique 

property makes Homomorphic Encryption, one of the most desirable encryption schemes of 

the present time, with machine learning requiring access to substantial amount of raw data for 

training. If the training can be successfully completed on encrypted data, the privacy and 

security achieved in the process is no match to any anonymization or pseudonymization 

process.  

Where the regulations stand to be incomplete and unclear, technology could come to 

rescue and such is homomorphic encryption, a trending privacy preserving technology. With 

several years of research backing homomorphic encryption and its incredible ability to run 

mathematical operations on encrypted data never revealing the underlying plaintext, this 

technology could be utilized in open banking ecosystem to enhance data security. It is 

proposed that the open banking API payloads be encrypted using homomorphic encryption. 

The proposal is that the payload shared among the 3 entities can be homomorphically 

 
2 
https://edpb.europa.eu/sites/default/files/webform/public_consultation_reply/digitaleurope_submission_to_edpb_consultation_guidelines_in

terplay_of_psd2_and_gdpr.pdf 
3 https://dataprivacylab.org/projects/identifiability/paper1.pdf 
4 https://crypto.stanford.edu/~pgolle/papers/census.pdf 
5 https://iapp.org/news/a/a-guide-to-the-eus-unclear-anonymization-standards/ 
6 https://iapp.org/news/a/the-definition-of-anonymization-is-changing-in-the-eu-heres-what-that-means/ 

https://iapp.org/news/a/a-guide-to-the-eus-unclear-anonymization-standards/
https://iapp.org/news/a/the-definition-of-anonymization-is-changing-in-the-eu-heres-what-that-means/
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encrypted end to end. The private key in this context need only be share between A & C. 

While B remains ambivalent to the private key, it would still have access to encrypted data, 

public key and the context. These 3 factors will enable the aggregator to be able to play the 

role it does today and act successfully as an intermediary. Such intermediary functions 

usually include maintenance of the customer data for continued access7, services such as 

credit checks, fraud detection based on predictive algorithms etc. Because of homomorphic 

nature of the data, as part of this research, we will show that encrypted data can be used to 

train AI models and provide meaningful inferences of real time encrypted data. And all of 

this can be achieved without comprising data security since data remains encrypted on the 

aggregator premises. It is important to note that Homomorphic Encryption (HE) comes with 

certain costs. One such cost is ciphertext sizes. HE results in large ciphertexts and to 

circumvent this problem, it is proposed here to use selective encryption of only PII attributes 

in a payload. 

1.3 Research Questions 
 

Primary goal of the paper is to conclude that homomorphic encryption can be applied to 

payloads in the Open Banking Ecosystem to significantly enhance the security of the personal 

data in the context of aggregators. The research also stresses on the necessity of the utility of 

encrypted data, due to the open banking usage. Aggregators should still be able to train and 

run predictive analytics models on the homomorphically encrypted data. While security and 

performance aspects of homomorphic encryption have been thoroughly discussed in several 

previous works, few observations based on this use case will also be noted. To that effect, 

below are the few research questions that are addressed as part of the thesis. 

• Can homomorphic encryption be applied in the context of Open Banking? 

• Is it possible to build and implement a high-level design for such a system? 

• Are there libraries available today which can implement such encryption and 

decryption of API payloads? 

• Is it possible to implement such solution in a high-level language such as 

Python? 

• Is it still possible to run a sample prediction algorithms on open banking data 

post encryption? 

 

1.4 Document Structure 
 

The research paper reviews the latest work in this area showing great progress that has been 

made with respect to improved performance of the homomorphic encryption algorithms, the 

increasing use cases being researched on application of homomorphic encryption in the 

financial services and other critical areas such as medical services. Finally, a quick review of 

literature around successful training and inference on homomorphically encrypted data for 

several simple to moderately complex machine learning algorithms is carried out. After the 

literature review, a very high-level architecture of open banking ecosystem with the usage of 

 
7 https://truelayer.com/blog/compliance-and-regulation/explaining-changes-to-the-90-day-rule-for-open-banking-access/ 
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homomorphically encrypted payload is presented. The paper in conjunction with 

configuration manual shows how an open banking API payload can be homomorphically 

encrypted, and presents the evaluation of several aspects of security, performance and utility 

of the encrypted data. In the end, several open questions, constraints and scope for future 

work are discussed. 

 

 

2 Related Work 
 

In the following section, a number of articles written by several experts in the field are 

reviewed to offer insights into the research work that follows. 

2.1 Brief survey of homomorphic encryption 
 

While homomorphic encryption has been around for decades, only in the early 2000s, first 

plausible algorithm for a fully homomorphic encryption based on lattice-based cryptography 

was proposed by Gentry (Gentry, 2009). This proposed construct supports both additions and 

multiplications along with an innovative approach to reduce noise to evaluate more complex 

circuits. Because noise in encrypted outputs of operations is a serious concern associated with 

homomorphic encryption, the technique of bootstrapping proposed by Gentry became vital to 

a number of subsequent works in the field. Reportedly, implementation of early Gentry 

cryptosystem took approximately 30 minutes to complete a simple bit operation (Gentry & 

Halevi, 2011). Further enhancements to this system radically improved the execution time, 

bringing it down to several milliseconds at the moment. Further in 2010, Dijk, Gentry, Halevi 

and Vaikuntanathan proposed a 2nd fully homomorphic encryption scheme (Gentry, et al., 

2010) based on Gentry’s constructs but seeking simplification in the system by enabling 

operations over integers. These schemes are collectively known as the first generation of 

homomorphic encryption schemes. The 2nd generation schemes still widely used in the 

majority of encryption libraries today (SEAL8, OpenFHE9, HELib10) such as BGV 

(Brakerski, et al., 2011), BFV (Fan & Vercauteren, 2012) schemes are based on hardness on 

Ring With Learning errors problem (RLWE) (Lyubashevsky, et al., 2010) in mathematics. 

These encryption schemes utilize the bootstrapping technique proposed by Gentry to scale up 

to a fully homomorphic encryption scheme with no limit on number of circuits to be 

evaluated. In a later work 2013, setting in motion the 3rd generation of FHE, Gentry, Sahai, 

Waters propose usage of “approximate eigenvector” to improve performance of 

multiplications over “relinearization”, making the scheme faster and more comprehensible 

(Gentry, et al., 2013). This paper also put forth the idea of identity based FHE. While this 

scheme was based LWE, further ring variants led to development of FHEW11 and TFHE12 

schemes, both of which are still key players in the field of FHE. Zama AI using Concrete 

library based on TFHE, is one of the fastest growing homomorphic encryption libraries. 

TFHE introduced an impressive technique known as programmable bootstrapping, which 
 

8 https://www.microsoft.com/en-us/research/project/microsoft-seal/ 
9 https://www.openfhe.org/ 
10 https://homenc.github.io/HElib/ 
11 https://github.com/lducas/FHEW/tree/0959af8daf6635a5e69013f6db7120c6d39e2319 

12 https://tfhe.github.io/tfhe/ 
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returns any function of the output ciphertext with controlled noise level13. This technique 

enables this scheme to make leaps and bounds in the field of AI using homomorphic 

encryption. Finally, one of the key schemes in the fourth and current generation is CKKS 

which enables floating point operations (Cheon, et al., 2013). Due to its inherent similarities 

to the way machine learning algorithms work with real values, this scheme plays a key role in 

the machine learning world. Li and Miccaiancio discuss in their paper  (Li & Micciancio, 

2020) the possible passive attacks and opportunities to retrieve secret keys in CKKS scheme, 

thus further work is deemed necessary to protect against this. A slight variation of RLWE 

based schemes proposed later on where the depth of circuits that can be evaluated without 

bootstrapping, is predetermined, known as leveled FHE (Brakerski, et al., 2014) is still very 

much in use today. It can be stated conclusively that homomorphic encryption has made 

immense progress through the four generations, with respect to simplification of techniques, 

improvements in performance and security aspects, proving itself to be a viable technology in 

the current machine learning dominated world where data privacy is invaluable. In the 

proposed research use case, a selective payload encryption approach is adopted to circumvent 

some of the cost and size implications with encryption technique.  

 

2.2 Application of homomorphic encryption in financial and healthcare 

services 
 

The research work by Cao (Ruiwen, 2022) evaluates usage of homomorphic encryption in the 

context of credit score evaluation and reviews few performance measures to improve overall 

computation overhead by implementing a weighted distance approach. The application use 

case is quite promising, and the core notion is quite similar to proposed research in trying to 

achieve higher levels of security around customer financial information by keeping the data 

private and evaluating credit scores through homomorphic operations. It is to be noted that 

the author indicates the communication overhead of the approach can be alleviated through 

sufficient network bandwidth allocations. Similarly another paper by Munjal and Bhatia 

(Munjal & Bhatia, 2022) alludes to prevalence of cloud technologies, the role third party 

service providers play in today’s healthcare in achieving effective patient care by the way of 

Electronic Health Records (EHR) and the manner in which homomorphic encryption has 

enhanced the data security in the healthcare context. This in turn aligns with the proposed 

research paper’s problem statement in being able to offer better data security for the data 

living on 3rd party service provider’s end. Both financial and medical history records of an 

individual can be regarded as two equally critical sets of personal information that deserve 

utmost security. This paper also refers to the pitfalls of anonymization and pseudonymization 

techniques in fulfilling computation necessities while maintaining data privacy effectively. 

The paper then reviews a number of successful use cases underpinned by FHE schemes over 

a decade and more, such as a SafeBioMetrics system using BGV (Bocu & Costache, 2018) , 

usage of contrast enhancing RDH with FHE to build a safe and high visual quality framework 

for medical pictures  (Yang, et al., 2019), a self-serviced medical device using Homomorphic 

Encryption (Li, et al., 2020), usage of BGV (Brakerski, et al., 2014) to calculate 

 
13 https://whitepaper.zama.ai 
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average/minimum/maximum heart rate(s)  (Soyata & Kocabas, 2020), maintaining healthcare 

data integrity using FHE schemes in CFHET-PPF (Sendhil & Amuthan, 2021) etc. The 

number of successful use cases in the field of healthcare surrounding HE is highly promising. 

2.3 Predictive analytics using homomorphically encrypted data 
 

The paper (Brand & Pradel, 2023) proposes a practical approach to training machine learning 

models using homomorphically encrypted data, by showing that a Support Vector Machine 

(SVM) learning model14 can be trained using leveled homomorphic encryption in a scalable 

fashion. The paper reviews important work carried out by predecessors on usage of HE in the 

inference phase of machine learning, such as neural networks trained on plaintext data was 

shown to draw successful inferences on encrypted data by Gilad-Baschrach  (Gilad-

Bachrach, et al., n.d.), work based on polynomial approximation of ReLU function  

(Hesamifard, et al., n.d.), work by Boemer et al. to implement MP2ML (Boemer, et al., 2020) 

for ML inference over encrypted domain with the help CKKS FHE  scheme etc. The authors 

as with most machine learning models using HE, opted to use CKKS scheme, adopted a 

carefully assessed client assisted model to offload heavy-lifting to Cloud. The paper shows 

extreme promise in optimizing the training over homomorphically encrypted data by 

employing novel techniques. This offers insight into the evaluation of utility in machine 

learning training and inference of homomorphically encrypted data in the proposed research 

area. Another paper by (Bos, et al., 2014) presents a working implementation of a prediction 

model for heart attacks based on few body measurements using homomorphically encrypted 

data. The paper avidly reviews various use cases where data concern is of utmost priority in 

healthcare, before delving into usage of their own previously proposed leveled homomorphic 

encryption scheme in the paper (Naehrig, et al., n.d.). Another important contribution by the 

authors is an automatic parameter selection module for determining appropriate parameters 

for correct and secure evaluation of complex circuits, which could prove to be useful in 

future research work of the proposed use case. Authors showed that such module made for 

efficient evaluation of models based on logistic regression and Cox proportional Hazard 

regression. 

 

3 Research Methodology 
 

This section briefs the research methodology used in order to arrive at the proposed system 

design, implementation and evaluation. 

3.1 Transactions and Party API data Review & Classification 
 

Based on the sample payloads provided by UK Open banking website 15, a quick review of 

attributes in various API payloads (such as accounts, transactions, party, balance etc.) is 

carried out. Party and Transaction API payloads are particularly investigated further, as the 

selected use cases for the proposed encryption application. These APIs have varying range of 

 
14 https://scikit-learn.org/stable/modules/svm.html 
15 https://openbankinguk.github.io/read-write-api-site3/v3.1.11/profiles/account-and-transaction-api-profile.html 
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attributes of interest, such as individual names, transaction references, amounts etc. An 

attempt to manually categorize the API attributes based on an understanding of personally 

identified information was made to select attributes for encryption. Certain attributes may not 

necessarily be personally identifiable but could be categorized as sensitive, such as balance 

after a transaction. So, as an illustration balance has been included PII attributes. Example PII 

attributes include name, full legal name, account role from Party API payload and transaction 

reference, information from Transaction API payload. It is important to identify specific 

attributes that need to undergo encryption so as to limit the performance impacts such as 

encryption time and encrypted payload size. Further information such as account number, 

account co-owner etc. from Accounts payload would fall under PII category too. 

3.2 Identifying FHE algorithm for the encryption 
 

BGV (Brakerski, et al., 2011) and BFV (Fan & Vercauteren, 2012) schemes as reviewed 

earlier, are homomorphic encryption algorithms based on variants of Learning With Errors 

problem, support SIMD operations16 where the plaintext is a vector of values. Thus, they are 

all suitable to be used in the context of open baking. While CKKS (Cheon, et al., 2013) is 

more suitable for real numbers, BFV (Fan & Vercauteren, 2012) and BGV  (Brakerski, et al., 

2011) are preferred for integer. This very fact makes BFV (Fan & Vercauteren, 2012) or 

BGV (Brakerski, et al., 2011) more suitable to encrypt ASCII encoded characters of a string 

value. To elaborate, a string is composed of a few characters and there is no direct API to 

encode a character in any of the HE libraries. So, array of characters is first converted into an 

array of integer ASCII codes, and the resulting array is encrypted homomorphically. The 

resulting ciphertext is encryption of the string. On decryption, the ciphertext can be decrypted 

to output the array which in turn can be decoded to retrieve the original string. On the other 

hand, CKKS (Cheon, et al., 2013) is more suited for encrypting real numbers such as 

transaction amount. 

3.3 Generating Homomorphic Encryption Context and Keys 
 

Once the algorithm has been chosen, it was important to determine the process to generate the 

encryption context and keys. The context is a special object which holds information such as 

algorithm type, encryption parameters such as plaintext modulus and polynomial modulus. 

Polynomial modulus degree denoted as n (a power of 2 such 1024) is the number of slots per 

plaintext of elements to be encoded in a single ciphertext.  Another important parameter is t, 

the Plaintext modulus such that encrypted operations happen are in t modulus. Value of t 

must be such that it is a prime number satisfying condition t-1 should be divisible by 2^n. 

Example values of n and t are 1024 and 65537. Luckily for the implementation purposes of 

this research, the high-level libraries such as the ones to be reviewed in next section offer an 

easy way to set these parameter values. With simple method calls to the underlying 

encryption backbone library (such as SEAL or OpnFHE), the encryption context and keys 

can be generated.  

 
16 https://www.sciencedirect.com/topics/computer-science/single-instruction-multiple-data 
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3.4 Applying the proposed HE on a dataset using a program 
 

A number of high-level libraries were investigated to review feasibility and ease of use. 

Microsoft SEAL (Microsoft, 2023) is an open-source homomorphic encryption library 

written in programming language C++17, which allows for computations to be performed on 

encrypted data. It supports BFV (Fan & Vercauteren, 2012), BGV (Brakerski, et al., 2011) 

and CKKS (Cheon, et al., 2013) algorithms. Open FHE (OpenFHE, 2023) is another 

powerful open-source library written in C++, which supports BFV, BGV, CKKS, DM/FHEW 

(Badawi & Polyakov, 2023) algorithms, and allows for switching between few combinations 

of these algorithms. Pyfhel (Pyfhel, 2023) is a Python library which provides Python 

interfaces for homomorphic operations such as encryption, decryption, addition, 

multiplication with the backbone of SEAL and OpenFHE libraries. Due to underlying C++ 

backends, the Pyfhel library requires C++ support to run programs. It supports BFV, BGV 

and CKKS. Due to ease of use, Pyfhel has been used as part of this research work to develop 

the encryption module. Finally, TenSEAL (TenSEAL, 2023) is a Python Library which 

allows homomorphic encryption operations on tensors. This also utilises SEAL as its 

encryption backend. It mainly supports BFV, CKKS algorithms along with addition, 

subtraction, and multiplication operations. TenSEAL has been used for evaluating utility of 

the encrypted data in the evaluation section later. Concrete AI was investigated for this 

purpose too, but the library mainly supports evaluation of machine learning models over 

encrypted data at present. The training aspect is still a work in progress and thus the choice 

was made to use TenSEAL. 

3.5 Evaluation 
 

As part of evaluation of the proposed solution, three main factors have been investigated – 

security, performance and utility. For security, side channel attack and lattice-based attacks 

are mainly reviewed. A case is also made to show that existing security infrastructure 

surrounding open banking still remains and the attack surface only applies to the encrypted 

data on the aggregator side. Performance wise, execution time of the implementation 

programs is reviewed. A very insightful view of encrypted payload size increment from base 

plaintext API payload is also offered. And finally, utility of the encrypted data is reviewed. 

Utility implies the ability to successfully use the (encrypted) data on the aggregator side to 

train AI models. Proving this is key to the success of proposed work, as explained in 

introduction, for open banking use case. In the evaluation section, we show that TenSEAL 

library can be used to train a logistic regression model using encrypted transaction amount 

data and further inferences can be made using the encrypted data as well.  

 

4 Design Specification 
 

In this section, the proposed architecture of open banking with homomorphic encryption is 

reviewed. A brief listing of scope limitation is also provided. 

 
17 https://cplusplus.com/ 
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4.1 Overview 
 

Image below depicts a high-level system design with Homomorphic encryption in place, with 

source (ASPSP - Account Servicing Payment Service Providers), destination (AISP – 

Account Information Service Provider) and aggregators in view. In the following diagram, as 

in actual open banking ecosystem, an aggregator is at the centre of the entire transaction. This 

entity holds the customer information on behalf of an AISP, as mentioned before. 

 

 

 Figure 2: Depiction of proposed open banking ecosystem with Homomorphic Encryption 

 

In the proposed design, the data at the aggregator is always in an encrypted state. This 

would imply that the source (data owner entity – ASPSP) would entail a new homomorphic 

encryption module which would accept a plaintext API payload, create the encryption context 

(algorithm type, polynomial modulus n, plaintext modulus t), save the output public key, 

evaluation key (used to encrypt the secret key to evaluate multiplication or more deeper 

circuits in HE), rotation key and secret key. The source would also classify the payload 

attributes as PII and non-PII so as to minimize the encryption time and encrypted payload 

size. The context, the payload and the selected attributes are fed into the encryption program 

implemented as part of the research, resulting in partially encrypted payload. The output 

encrypted payload along with context (without private key) is to be shared with the 

aggregator. The destination (i.e. AISP) needs the private key, so as to be able to decrypt the 

payload if necessary. It is important to highlight the necessity of sharing the private key, so as 

to keep the open nature of data exchange intact between source and destination while limiting 

the view of aggregator. 

On the aggregator side, the payload and the context can be stored for further usage such 

as forwarding the data onto AISP as necessary, to train the predictive models for inference 
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purposes etc. The data on the aggregator premise always remains in an encrypted state with 

only the source and the destination with the knowledge of the private key as intended.  

On the destination (AISP) side, a new decryption module would need to exist which 

accepts the encrypted payload, context from the aggregator whenever requested. With the 

help of private key, the encrypted payload can be decrypted and used as necessary. The 

continued access provision of open banking up to 90 days would mean the same private key 

can be used for that period. Alternatively, the key can be rotated for better security. The only 

time the private key needs complete update would be when the source encrypts the payload 

and set up a new encryption context. 

The proposed design achieves several of the intended goals by enabling selective 

encryption of API payload end to end. The selective nature of encryption can be changed to 

complete payload encryption depending on future improvements in the field of homomorphic 

encryption around cipher text size and run time. The encrypted data due to its homomorphic 

nature, can still be used to train prediction models. Such trained model can also run 

inferences on encrypted data and can be further trained continually. This ensures that PII data 

is never exposed to any component of the aggregator ecosystem and remains secure 

throughout the lifecycle 100%. A further food for thought is the necessity of a decryption 

module at the destination side. With the advent of privacy preserving technologies such as 

multi-party computations, it is possible to utilize encrypted data even on receiving end of an 

open banking transaction, ensuring complete security of data. 

4.2 Scope Limitations 
 

The above system design and the research work by extension doesn’t delve into certain 

aspects of the proposal due to limited time nature of the current research work. One of them 

being key exchange between AISP and ASPSP without the aggregator's awareness. While it 

is an important aspect to be investigated, the focus was on proving the encryption/decryption 

process for the payload. But there are provisions of such key exchange between two systems 

already in the security world for example TLS set up. Another aspect which is out of scope 

for this research is parameter consideration based on factors such as payload attribute sizes. 

While there is an evaluation and review of performance of the encryption process and 

predictive algorithms on the encrypted data, changes in homomorphic encryption parameters 

such as plaintext and polynomial moduli has not been explored further in this paper. Also, 

usage of evaluation and rotation keys has been left out of scope for this work. 

 

5 Implementation 
 

The solution includes an encryption and a decryption program using the Pyfhel (Pyfhel, 

2023) library in Python using a Visual Studio Code IDE. Complete details of the code and 

implementation dependencies can be found in the configuration manual. Here pseudocode for 

encryption and decryption programs have been provided. 

5.1 Pseudocode for Encryption Module 
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• Read the API payload JSON and run the following steps for each attribute. 

o Declare a list of attributes to be treated as PII attributes. 

o Drill down to attributes and call encryption routine if an attribute is present 

in piiAttributesList. 

o kick off encryption of integer/string encryption method depending upon 

attribute type. Convert the ciphertext instance to a base64 string and 

return. 

▪ Create an instance of HE context with appropriate parameters. 

▪ If a given data type is integer, encrypt using BFV and the above 

created context. 

▪ If a given data type is String, obtain an array of characters from the 

string. Convert the characters to corresponding ASCII coded 

Integers. Such an integer can be fed through the encryption routine 

to the above sub step. 

▪ For the purpose of simplification, skip encryption of dates. This 

can be explored further by converting the date to an integer and 

feeding it to step ii as well. 

▪ Under each encryption, quickly show the integer and string can be 

decrypted from the ciphertext. 

o Once the inline decryption is proved, add the encrypted value back to the 

dictionary against a field. 

• Save the final JSON with a combination of encrypted and plaintext attributes. 

 

Thus provided an input JSON, the application converts it to (selectively) homomorphically 

encrypted payload and outputs the JSON. 

5.2 Pseudocode for Decryption Module 
 

• Read the API payload JSON and run the following steps for each attribute. 

o Declare a list of attributes to be treated as PII attributes. 

o Drill down to attributes and call decryption routine if an attribute is present 

in piiAttributesList. 

o kick off decryption of integer/string encryption method depending upon 

attribute type. Convert the ciphertext instance to a base64 string and 

return. 

▪ Create an instance of HE context with the context, private key and 

public key attributes on the payload. Remove these 3 attributes 

from the JSON once context is set up. 

▪ Decrypt each PII attribute using the HE context and keys. 

▪ Save each attribute back to the JSON. 

• Save the final JSON. 

6 Evaluation 
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In the following section, the detailed approach of evaluation of proposed design is reviewed. 

The section ends with discussing the evaluation results. 

6.1 Security 

 

One of the key points to note before delving into other security aspects is that the application 

of Homomorphic Encryption to the API payloads is proposed as an addendum to the existing 

security measures in place in open banking ecosystem, such as transport layer security using 

certificates signed by qualified Trust Service Providers18. Security of proposed 

implementation is directly related to security of underlying homomorphic encryption scheme. 

An encryption scheme is considered indistinguishable under chosen plaintext attack also 

known as IND-CPA if the attacker is unable to distinguish between results of encryption of 

two different messages of her choice. As the encryption scheme in use is BFV, hardness of 

Ring Learning with Errors problem comes into play. Most HE schemes including BFV enjoy 

security against IND-CPA thanks to the hardness assumption of underlying mathematical 

construct RLWE (Fauzi, et al., 2022). But authors in the same paper highlight the fact that the 

FHE schemes don’t enjoy similar level of security against IND-CCA1 (where the attacker 

possesses decryption oracle for a brief time) and IND-CCA2 (where the attacker possesses 

decryption oracle indefinitely). Another important note, due to the small error width in the 

RLWE-based encryption schemes, usage of non-cyclomatic rings is not recommended as they 

are associated with certain weaknesses already identified (Chase, et al., 2017). Most 

researched libraries support 2-power cyclomatic rings, so this choice was already made for 

users in the favour of higher security. Next, we review few other possible attack types. A side 

channel attack is one where the physical cryptosystem is exploited to leak information. Due 

to the time complex computations involved in Homomorphic Encryption, an attacker could 

possibly trace information on the systems used for computations leading to malicious 

exploitation (Aydin & Aysu, 2023). HE based solutions are susceptible to Lattice attacks, 

where an attacker exploits vulnerabilities in the lattice structure to acquire information on 

private key. In certain cases, it is also possible to obtain plaintext from ciphertext without 

private key as show in a paper (Chunsheng, 2012).  

6.2 Performance 

 

Performance costs of the overall solution can be measured using few attributes such as 

overall execution time, sizes of ciphertext, the additional content that needs to be exchanged 

such as context and keys etc. The implementation of encryption and decryption programs 

using Pyfhel and BFV scheme naturally incurs a certain execution time overhead. Due to the 

latest the improvements in the underlying encryption library, the observed execution time is 

still within milliseconds. Important note is that instead of encrypting the entire payload, the 

research proposes a selective encryption of only PII attributes to keep execution time impacts 

to a minimum. As the review of history of homomorphic encryption indicates, the encryption 

and decryption times have significantly improved over the years and continue to do so, 

making the technology more viable for practical us cases. On the size of ciphertext, below 

 
18 https://www.digicert.com/faq/signature-trust/what-is-a-trust-services-provider 
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graph represents an analysis of variation between plaintext and encrypted payload types for 

Party & Transaction APIs. As it can be observed, there is a significant rise in the payload size 

post encryption. And this challenge of ciphertext size is known and an active under research 

area in Homomorphic encryption. Another important aspect to consider is that the payload 

presented in the research includes encryption context and keys, which in reality need not be 

repeated for every payload. For one open banking interaction, one set of context, keys can be 

forwarded to the aggregator and destination institution. Excluding context and keys from the 

payload reduces the size approximately by one-third. To further emphasise this point, the 

graph includes sizes of payloads without the context and keys alongside ones with context 

and keys and plaintext payload.  

  

   

Figure 3: Payload Sizes Analysis chart 

6.3 Utility of the encrypted data 

 

In this research, for evaluating utility of the encrypted data, TenSEAL library has been used. 

This library enables homomorphic encryption on tensors, by offering Python APIs on the 

underlying C++ based SEAL. It mainly supports BFV and CKKS schemes. For this 

evaluation, an existing program19 provided by TenSEAL library (TenSEAL, 2023) to 

illustrate the training and inference of encrypted data, has been further modified to aid with 

the evaluation of this use case specific data. The use case is to evaluate if a given transaction 

amount exceeds a certain limit i.e. 500. This is a very basic model which could be further 

enhanced for fraudulent transaction detection. The input data sets had a varying list of 

random transaction amounts under 1500, along with a column labelling the items exceeding 

the limit (0,1). Approximately 12 such datasets with different number of records starting from 

4000 to 100,000 are used for both training and testing. The program splits each input data set 

into training and test data set by shuffling and delimiting the data points. First a logistic 

regression model (single node and single layer neural network) is trained and evaluated using 

plaintext data. This same trained model is used for evaluation using encrypted data later on. 

The program aims to show that the accuracy of the model is not impacted by the usage of 

encrypted data set. Since the input data set is floating point, CKKS encryption scheme is used 

in the program. It is observed that the over the 12 datasets, the accuracy of evaluation 

 
19 https://github.com/OpenMined/TenSEAL/tree/main/tutorials 
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between plaintext and encrypted data doesn’t vary by much, in fact in 75% of tests the 

accuracy of the model over encrypted data was higher than plaintext data. As evident from 

the line graph below, the accuracy of the model evaluation remains quite high in the range of 

0.9 (maximum being 1.0 i.e. 100%). 

 
 

Figure 4: Accuracy of evaluation over encrypted data sets with x 

representing number of records in a data set (used for both training and 

inference) and y representing the accuracy of results on data set on a 

scale of 0 to 1. 

As evident from the above graph, the inference using encrypted data on a trained model 

is highly efficient. Following this, the training of the model using encrypted data has been 

reviewed as well. For this, aforementioned model and implementation provided by TenSEAL 

(TenSEAL, 2023) has been modified and a subset of same test data with amounts and “over 

the limit” labels as before has been used. It is observed that all 4 sets of data used showed 

average accuracy of over 90% in 6 epochs. But the training over large sets encrypted data 

proved to be extremely resource heavy, for instance – data set with 50000 records executed 

for over an hour. 

6.4 Discussion 
 

While the security of the proposed solution is underpinned by security of homomorphic 

encryption in general, there are certain aspects such as key exchange which would need to be 

thoroughly investigated to ensure security of proposed solution. But as mentioned before, this 

has been considered out of scope for the present work. The encryption parameters such as 

plaintext and polynomial moduli would also play a key role strengthening the encryption 

system. On the performance aspect of the solution, there is enough evidence to state that 

ciphertext size stands to be an open challenge still, while execution time of the programs has 

been shown to be reasonable ranging in few milliseconds, with the selective encryption 

approach. The selective encryption approach could be challenged as it involves identifying 

attributes with PII data and only encrypting these. As such attributes increase, the ciphertext 

size could be a growing concern. It is also possible to improve the solution further by feeding 

a number of integers as a vector to the encryption algorithm at once and reducing multiple 

ciphertexts into only one, similar to how the string encryption was achieved. Finally, utility 

of homomorphically encrypted data for training and inference on machine learning models is 
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an active area of research. A simple use case of training and testing a regression model using 

transaction amount was presented. As explained in research methodology, transaction amount 

can be considered as a sensitive attribute rather than a PII attribute. But it has been chosen for 

model testing and training for simplicity and due to limited time available. As can be 

observed in the above evaluation details, the accuracies with encrypted inference (only) and 

encrypted training and inference have been shown to be over 90% for most data sets used 

with simple logistic regression model. It is important to note that the time required for 

training rises significantly with increase in the number of elements in the dataset. Also, the 

real-life use cases around machine learning would involve much more complex neural 

network circuits, so the cost implications around training and evaluation of these would be 

significant. While the present research work has been successful in showing that it is feasible 

to homomorphically encrypt standard open banking payloads, much more thought is required 

to make this a practical solution.  

 

7 Conclusion and Future Work 
 

This section concludes the thesis and highlights challenges encountered during the research 

process. In the end, several interesting future works have been discussed. 

7.1 Conclusion 
 

The journey through this research work has been quite intriguing, starting with limitations of 

data minimization techniques to understanding current homomorphic encryption landscape 

and the latest advances in it. The concern expressed in the introduction, around data security 

in the open banking ecosystem would have to be alleviated appropriately as we intend to 

encourage its usage. This research thesis offers an initial insight into what is achievable using 

homomorphic encryption to make data in open banking ecosystem more secure. Continued 

research in the field of Homomorphic encryption and increasing usage of the technology in 

other fields such as Healthcare are bringing the technology so much closer to being practical 

in its performance and ease of use. At the time of this research work, there are still non-

negligent cost and size overheads to implementing HE in the open banking context. But these 

parameters have significantly improved through the four generations of the homomorphic 

encryption algorithms as evident from the literature review, trending towards more practical.  

 

There is also active effort required to standardize the Homomorphic encryption 

technology across the industries, to encourage safe and consistent usage. A noteworthy 

article20 by Alan Turing institute reviews the key role homomorphic encryption could play in 

the financial services sector in tracking money laundering and detecting fraudsters. The 

article applauds the work being carried out by Homomorphic Encryption Standardization 

project21 to this end. The proposed system design with homomorphic encryption in Open 

Banking might not only assuage the initial concern of data security and privacy in the 3rd 

party aggregator environment, but it might also offer an end-to-end payload encryption 

 
20 https://www.turing.ac.uk/blog/homomorphic-encryption-future-secure-data-sharing-finance 
21 https://homomorphicencryption.org/ 
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optionality for open banking interactions. This is not too different from payload encryption in 

transaction processing with entities such as MasterCard22 and Visa23. Such an end-to-end 

encryption could act as an additional layer of security on top of the existing TLS layer among 

the entities, while leaving the doors open for multi-party computations among all the 

concerned. Finally, it is prudent to call out the community support among Homomorphic 

Encryption developers, enthusiasts, open groups and cryptographers in offering guidance 

when approached, as it has been a key factor in successful completion of the research work. 

7.2 Challenges 
 

In Homomorphic Encryption, parameter sizes limit the maximum size of an input value that 

can be safely encrypted by a scheme, thus certain encryption schemes may not accept certain 

input sizes with smaller parameters. At the same time, larger parameters could imply larger 

encryption/decryption time and ciphertext size. Thus, it was bit challenging to arrive at a 

feasible combination of parameters for the encryption program. Another noteworthy aspect is 

string encryption. After extensive investigation to find a high-level API to encrypt strings in 

HE and failing to find any, a unique approach was adopted to treat string types separately. 

Each sting was broken down into an array of characters, followed by ASCII code conversion 

of each character and then the entire array was fed into the encryption method as BFV 

encryption scheme accepts a vector of integers. One of the libraries investigated at the 

beginning of the research work was Concrete by Zama AI, which is a Python library based on 

TFHE. But it proved to be slightly challenging to work with compared with Pyfhel as it is 

available only on Docker for windows. Also, Concrete doesn’t allow for training on 

encrypted data at the moment unlike TenSEAL, while there is active research being 

conducted to achieve the same. APIs offered by the high-level language libraries to save the 

ciphertext, security context, keys in a feasible format are limited in terms of options. Another 

point to note is most of the core homomorphic encryption libraries such as SEAL, OpenFHE, 

HELib are based on C++, so a C++ compiler is a prerequisite to be able to execute any of the 

libraries. 

7.3 Future Work 
 

There are several open questions which can be researched as part of future work for this 

paper, some of which include but are not limited to the following. Key exchange between 

source and destination financial institutions needs to be investigated further, as this is an 

important aspect for successful implementation of homomorphic encryption in open banking. 

At the same, the need for destinations to have access to cleartext customer data could be 

challenged too, since the encrypted data is proved to be useful for important use cases such as 

machine learning model training and inference. Parameters such as ciphertext size, execution 

time, algorithm parameters (plaintext modulus and polynomial modulus), key sizes etc. can 

not only be optimized to make the implementation more practicable, but the automatic 

 
22 https://developer.mastercard.com/platform/documentation/security-and-authentication/securing-sensitive-data-using-

payload-encryption/ 
23 https://developer.visa.com/pages/encryption_guide 
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selection of parameters as mentioned in literature review of the paper (Naehrig, et al., n.d.) 

could be investigated further to enhance the practicality of HE libraries. Another area of 

research would be optimized storage of homomorphically encrypted payloads on aggregator 

platforms. Multiparty computation (Damgard, et al., 2022) between AISP/PISP and ASPSP 

for payment transactions is a curious area that can take the application of homomorphic 

encryption a step further. MPC would prove to play a key role in the future of secure 

interaction at the advent of quantum computing. Finally, investigation of homomorphic 

encryption library in different high level programming languages other than Python such as 

Java would be deemed useful for the industry considering majority of enterprise applications 

are based on Java as of 202324. Finally, while it is understandable that the necessity for lower-

level optimisations offered by C++ with respect to operations is prudent for the performance 

of homomorphic encryption, more work could be carried out on how to implement and 

optimize the schemes with other prevalent compilers such as Java. 
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