

Configuration Manual

MSc Research Project

MSc. Cybersecurity

 Keshav Singh

Student ID: 22101624

School of Computing

National College of Ireland

Supervisor: Prof. Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Keshav Singh …………………………………………………………………………

Student ID:

X22101624………………………………………………………………………………..……

Programme:

Msc Cybersecurity………………………………………

Year:

…2023………………..

Module:

Research project……………………………………………………………………….………

Lecturer:

Imran Khan…………………………………………………………………………………….………

Submission Due

Date:

…14-12-12…………………………………………………………………………………….………

Project Title:

………Quantum-safe IAM……………………………………………………………….………

Word Count:

………2116………………………… Page Count: …13…………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……Keshav Singh……………………………………………………………………

Date:

…14-12-12……………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Keshav Singh

Student ID: 22101624

1 Introduction

The manual provides a step-by-step guide for identifying the IAM components that require

post-quantum cryptographic protection, evaluating and selecting post-quantum cryptographic

algorithms, ciphers, and digital signatures, installing the liboqs library, modifying the Apache

configuration file, generating X.509 certificates, configuring the IAM components to use the

chosen post-quantum cryptographic algorithms, and testing and monitoring the IAM

infrastructure for potential issues or vulnerabilities. By following these steps, IAM

administrators can successfully implement post-quantum cryptographic algorithms in their

IAM infrastructure, providing a defence against potential quantum computer attacks and

ensuring the security of sensitive data. As suggested in the main thesis report, we try to create

a prototype for integrating post quantum cryptography. A TLSv1.3 architecture is created the

details of which have been provided in the report. The steps to replicate the same has been

provided below along with suitable links for the same. The subsequent parts include the

hardware and software configurations used which is mostly not very demanding.

DISCLAIMER: The current algorithms used in this manual are approved by NIST but are

still under development stage. It is not suggested to utilise the same in a production

environment.

2 System configuration

The hardware configurations and software configuration used in the implementation of this

prototype have been described in the part that follows. Hardware configurations were all

easily available while it did require the download and installation of a wide variety of

software programs. Detailed steps for installation and configuration have been made

available along with required links for the same.

2.1 Hardware configuration

The below table gives out the hardware components used in the process of making this

prototype along with specs for the same.

Item Item Specification
CPU AMD Ryzen 5 5600H with Radeon Graphics

RAM 16.0 GB (15.4 GB usable)

Disk space 475 GB

System type 64-bit operating system, x64-based processor

2

2.2 Software configuration

All software used and referred to in the prototype has been provided in the table below. The

table also includes a brief description, version and name of the software utilized.

Item name Brief Description Software Version

OpenSSL OQS enabled fork It is a fork of the original

openssl library which is

integrated with liboqs. This

allows it support Post

quantum cryptography.

OQS-OpenSSL_1_1_1-stable

Liboqs Liboqs is an open source

library created to aid in the

development of Quantum

resistant services. The

library is written in C.

0.7.0

wolfSSL lightweight SSL/TLS

library

wolfSSL Release 5.6.4

Apache httpd server open-source web server

software

httpd-2.4.51

Apache Portable Runtime

(APR)

APR provides a set of APIs

that abstract operating

system-specific

functionality

apr-1.7.0

Apache Portable Runtime

Utility (APR-util)

APR-util includes utility

functions and abstractions

for database connectivity

apr-util-1.6.1

libpcre3-dev package development files and static

library for compiling

applications that use PCRE

2:8.39-12ubuntu0.1

Expat Expat is an open source

XML parsing library

expat-2.4.1

GNOME Web

Browser(epiphany)

web browser developed for

the GNOME desktop

environment

Web 3.6.4

libpcre3 shared library that is needed

at runtime by applications

using PCRE for regular

expression support

2:8.39-12ubuntu0.1

3 Prototype configuration and installation guideline

3.1 Hybrid key exchange prototype

We first create a prototype of hybrid Key exchange mechanism between a server and a client

both on different terminals. We run first the server and wait for the TLS handshake after

3

which we run the client to complete the TLS hybrid handshake. But the key part here to note

is that we run it using the post quantum cryptography algorithm P521_KYBER_LEVEL5.

But to get this, we use WolfSSL as normal linux programs do not support post quantum

cryptography yet. We start off by following the initial steps to install, build and configure the

software to be required for the prototype. We are currently using a ubuntu 10.0.8 virtual box

VM.

Step 0: Set home directory as current working directory

cd ~

Step 1: Before installing liboqs and OQS OpenSSL, we Install pre-requisites for liboqs and

OQS OpenSSL build.

sudo apt install cmake

sudo apt install gcc

sudo apt install libtool

sudo apt install make

sudo apt install ninja-build

sudo apt install git

sudo apt install libssl-dev

Step 2: Clone the Open Quantum Safe OpenSSL repository into our current directory.

git clone --branch OQS-OpenSSL_1_1_1-stable https://github.com/open-quantum-

safe/openssl.git

Step 3: We also clone, configure, build, and install liboqs before OQS OpenSSL as liboqs is

the C library used by OQS OpenSSL.

git clone --branch main https://github.com/open-quantum-safe/liboqs.git

cd liboqs

git checkout 0.8.0

mkdir build

cd build

cmake -DOQS_USE_OPENSSL=0 ..

make all

sudo make install

Step 4: After liboqs is completed, we build and install the OQS OpenSSL fork, configured

to work all current Level 5 NIST Round 3 hybrid TLS handshake algorithms.

cd ~/openssl

./Configure no-shared linux-x86_64 -

DOQS_DEFAULT_GROUPS=\"p521_kyber1024:p521_kyber90s1024:p521_ntru_hps40961

229:p521_ntru_hps4096821:p521_ntru_hrss1373:p521_firesaber:secp521_r1\" -lm

make -j 1

sudo make install

4

Step 5: Confirm that installed OpenSSL version is the Open Quantum Safe build

cd ~

/usr/local/bin/openssl version

This should return "OpenSSL 1.1.1u , Open Quantum Safe as shown in the figure below.

Figure 1: OQS OpenSSL version

To make it easier, a bash file has been created for the setup to run seamlessly and attached

with the code.

Figure 2: Configuration Bash file

After installation of dependecies and required libraries, we move onto install wolfSSL which

is the main library for our prototype. This is done via the following steps.

 git clone --depth 1 https://github.com/wolfssl/wolfssl

 cd wolfssl

 ./autogen.sh (Might not be necessary)

 ./configure --with-liboqs

 make all

5

After successful installation of wolfssl, we create the TLS1.3 Hybrid handshake by creating a

server and a client. After the successful Key exchange mechanism, we get the following

confirmations.

Figure 3: TLSv1.3 Server Hybrid key exchange

Figure 4: TLSv1.3 Client Hybrid key exchange

After successfully testing out the prototype, we utilise the same concept to create our own

web application which supports TLS1.3 web server architecture. As well as X.509 certificates

and TLS hybrid key exchange mechanism. In order to do this, we make use of the liboqs

library and configure the Apache web server to support post quantum cryptography.

Since we already have both liboqs and OpenSSL OQS installed, we only need to install other

dependencies for apache server.

Step 0: Download, configure, build required dependencies of httpd, apr and apr-util along

with other requirements. Here we subsequently, use wget command to download followed by

tar to extract.

wget https://archive.apache.org/dist/httpd/httpd-2.4.51.tar.bz2

tar -xvf httpd-2.4.51.tar.gz

wget https://archive.apache.org/dist/apr/apr-1.7.0.tar.gz

tar -xvf apr-1.7.0.tar.gz

wget https://archive.apache.org/dist/apr/apr-util-1.6.1.tar.gz

tar -xvf apr-util-1.6.1.tar.gz

Step 1: we move necessary files around to apache directory.

mv apr-1.7.0 httpd-2.4.51/srclib/apr

mv apr-util-1.6.1 httpd-2.4.51/srclib/apr-util

6

Step 2: we install libpcre3-dev and libpcre3 as they are required dependencies followed by

expat install.

sudo apt install libpcre3-dev libpcre3 -y

wget https://src.fedoraproject.org/repo/pkgs/expat/expat-

2.4.1.tar.gz/sha512/1f08861e9b766fdbbc40159404a3fe1a86451d635ef81874fa3492845eda83

ac2dc6a0272525891d396b70c9a9254c2f6c907fe4abb2f8a533ccd3f52dae9d5a/expat-

2.4.1.tar.gz

tar -xvf expat-2.4.1.tar.gz

Step 3: We configure and install required files.

cd expat-2.4.1

./configure

make

sudo make install

cd ~/httpd-2.4.51

./configure --with-ssl=/usr/local/bin/openssl --with-expat=/usr/local/include

make

sudo make install

cd ~

Step 4: We generate a Certificate Authority key and certificate. We use the

p521_falcon1024 hybrid signature scheme. To serve as a trusted authority in the system.

/usr/local/bin/openssl req -x509 -new -newkey p521_falcon1024 -keyout

p521_falcon1024_CA.key -out p521_falcon1024_CA.crt -nodes -subj "/CN=oqstest CA" -

days 365 -config /usr/local/ssl/openssl.cnf

Figure 5: Generating p521_falcon1024 private key

Step 5: We place the certificate in the directory where it is accessible and we add it as a

trust anchor for the web browser. This ensures that the system trusts the certificate which is

signed by the CA.

sudo cp p521_falcon1024_CA.crt /etc/ssl/certs

sudo trust anchor /etc/ssl/certs/p521_falcon1024_CA.crt

Step 6: we generate a Certificate Signing Request and Server's Hybrid Private Key. A

hybrid private key and Certificate Signing Request (CSR) for the server are generated using

the p521_falcon1024 hybrid signature scheme. The CSR is a request sent to the CA to obtain

a digital certificate which includes the public key.

7

/usr/local/bin/openssl req -new -newkey p521_falcon1024 -keyout p521_falcon1024_srv.key

-out p521_falcon1024_srv.csr -nodes -subj "/CN=localhost" -config /usr/local/ssl/openssl.cnf

Step 7: Generate Server's Hybrid Certificate and Sign it using the CA Hybrid Key. The

server's CSR is used to generate a hybrid certificate for the server. This certificate is then

signed by the CA's hybrid key, creating a trusted hybrid certificate for the server. The -days

365 parameter specifies the validity period of the certificate which has been set for 365 days.

/usr/local/bin/openssl x509 -req -in p521_falcon1024_srv.csr -out p521_falcon1024_srv.crt -

CA p521_falcon1024_CA.crt -CAkey p521_falcon1024_CA.key -CAcreateserial -days 365

Step 8: We customise Apache configuration files (httpd.conf and httpd-ssl.conf) - these

configure Apache to use only TLS 1.3 with 2 high-security cipher suites with forward secrecy

and authenticated encryption with associated data (ECDHE with AES-256 in Galois Counter

Mode and SHA-384 hashing, or ECDHE with ChaCha20 and Poly1305). These files also set

Apache to announce the NIST Round 3 Level 5 hybrid handhake algorithms to clients.

cd Downloads

sudo mv httpd.conf /usr/local/apache2/conf/httpd.conf

sudo mv httpd-ssl.conf /usr/local/apache2/conf/extra/httpd-ssl.conf

Step 9: we move the generated server certificate and key to appropriate Apache folder from

home working folder.

cd ~

sudo mv p521_falcon1024_srv.crt /usr/local/apache2/conf/p521_falcon1024_srv.crt

sudo mv p521_falcon1024_srv.key /usr/local/apache2/conf/p521_falcon1024_srv.key

Step 10: We create a simple flask application and write a code for app.py and index.html.

We place the files in the apache directory to view the same.

8

Figure 6: App.py

Figure 7: index.html

The provided Python script, app.py, represents a simple Flask web application incorporating

the liboqs library for post-quantum cryptography. In this script, the Flask framework is

utilized to create a web server, and liboqs is employed for quantum-resistant key exchange.

The template, index.html, structures a basic webpage with placeholders for displaying the

chosen key exchange algorithm, the client's public key, and the shared secret. When web

9

server is launched, we visit the root URL (http://localhost:4433/) in a browser triggers the

display of a webpage showing details about the quantum-resistant key exchange, including

the algorithm used, the client's public key, and the shared secret.

Step 11: Now since normal browsers are not able to support Post quantum cryptography,

we install epiphany browser.

sudo apt install build-essential clang meson gnome-pkg-tools libglib2.0-dev libproxy-dev

gsettings-desktop-schemas-dev ca-certificates epiphany-browser -y

Step 12: Clone GNOME's glib-networking back-end, and configure it to use OQS OpenSSL

instead of its built-in GNU TLS library

git clone --branch 2.60.4 https://gitlab.gnome.org/GNOME/glib-networking.git

cd glib-networking

mkdir build

cd build

env PKG_CONFIG_PATH=$HOME/local/lib/pkgconfig CPATH=$HOME/local/include

LIBRARY_PATH=$HOME/local/lib meson --prefix=$HOME/local -Dopenssl=enabled -

Dgnutls=disabled ..

env CPATH=$HOME/local/include ninja

ninja install

cd ~

Step 13: Start the apache server in order to connect with the local host.

sudo /usr/local/apache2/bin/apachectl -k start

Step 14: Next we configure epiphany browser, which will force the Epiphany browser to

use the glib-networking back-end we built, as well as the p521_firesaber hybrid TLS

handshake. We do this by creating a client OpenSSL configuration file and environment

variables.

Figure 8: OpenSSL client configuration file

export OPENSSL_CONF=$HOME/openssl-client.cnf

10

export LD_LIBRARY_PATH=$HOME/local/lib

export GIO_MODULE_DIR=$HOME/local/lib/x86_64-linux-gnu/gio/modules

We can check our browser to see if it is supporting post quantum cryptography, this can be

done using the Test.openquantumsafe.org website. This site offers a range of algorithms to be

tested. This gives us a positive reply and confirms that our epiphany browser is correctly set

up.

Figure 9: Test successful

Step 15: we start our browser and connect to local Apache server on port 4433

epiphany https://localhost:4433

This should deploy our epiphany browser where we can check if our website is working fine

by https://localhost:4433.

https://localhost:4433/
https://localhost:4433/

11

References

https://github.com/open-quantum-safe/openssl/blob/OQS-OpenSSL_1_1_1-stable/README.md

https://github.com/open-quantum-safe/liboqs

https://src.fedoraproject.org/repo/pkgs/expat/expat-

2.4.1.tar.gz/sha512/1f08861e9b766fdbbc40159404a3fe1a86451d635ef81874fa3492845eda83

ac2dc6a0272525891d396b70c9a9254c2f6c907fe4abb2f8a533ccd3f52dae9d5a/expat-

2.4.1.tar.gz

https://archive.apache.org/dist/httpd/httpd-2.4.51.tar.bz2

https://archive.apache.org/dist/apr/apr-1.7.0.tar.gz

https://archive.apache.org/dist/apr/apr-util-1.6.1.tar.gz

https://github.com/wolfssl/wolfssl

https://gitlab.gnome.org/GNOME/glib-networking.git

https://github.com/open-quantum-safe/openssl/blob/OQS-OpenSSL_1_1_1-stable/README.md
https://github.com/open-quantum-safe/liboqs
https://src.fedoraproject.org/repo/pkgs/expat/expat-2.4.1.tar.gz/sha512/1f08861e9b766fdbbc40159404a3fe1a86451d635ef81874fa3492845eda83ac2dc6a0272525891d396b70c9a9254c2f6c907fe4abb2f8a533ccd3f52dae9d5a/expat-2.4.1.tar.gz
https://src.fedoraproject.org/repo/pkgs/expat/expat-2.4.1.tar.gz/sha512/1f08861e9b766fdbbc40159404a3fe1a86451d635ef81874fa3492845eda83ac2dc6a0272525891d396b70c9a9254c2f6c907fe4abb2f8a533ccd3f52dae9d5a/expat-2.4.1.tar.gz
https://src.fedoraproject.org/repo/pkgs/expat/expat-2.4.1.tar.gz/sha512/1f08861e9b766fdbbc40159404a3fe1a86451d635ef81874fa3492845eda83ac2dc6a0272525891d396b70c9a9254c2f6c907fe4abb2f8a533ccd3f52dae9d5a/expat-2.4.1.tar.gz
https://src.fedoraproject.org/repo/pkgs/expat/expat-2.4.1.tar.gz/sha512/1f08861e9b766fdbbc40159404a3fe1a86451d635ef81874fa3492845eda83ac2dc6a0272525891d396b70c9a9254c2f6c907fe4abb2f8a533ccd3f52dae9d5a/expat-2.4.1.tar.gz
https://archive.apache.org/dist/httpd/httpd-2.4.51.tar.bz2
https://archive.apache.org/dist/apr/apr-1.7.0.tar.gz
https://archive.apache.org/dist/apr/apr-util-1.6.1.tar.gz
https://github.com/wolfssl/wolfssl
https://gitlab.gnome.org/GNOME/glib-networking.git

