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Abstract 

The exponential growth of the e-sports industry has been shadowed by the rise of 

sophisticated cheating methods, posing significant threats to the integrity and fairness of 

competitive gaming. This research addresses the pressing need for effective, non-invasive 

cheat detection mechanisms by exploring the integration of cloud-based computer vision 

techniques. Specifically, it investigates using a fine-tuned YOLOv8 model in the cloud for 

real-time cheat detection in e-sports. The motivation behind this study is to establish a 

robust anti-cheat framework that balances stringent security measures with paramount 

concerns for user privacy, a balance often overlooked in conventional anti-cheat systems. 

Our research involved developing a real-time object detection model trained on data 

from the open-source game AssaultCube. The model's performance was evaluated based 

on its accuracy, precision, recall, and processing speed, particularly in detecting cheats 

like Extra Sensory Perception (ESP) hacks. Significant findings include the model's high 

precision and recall rates for the classifications and its remarkable processing speed, 

achieving frame processing in less than 15 milliseconds on average when deployed on a 

GPU-enhanced cloud platform. This study not only demonstrates the feasibility of 

implementing AI-driven cheat detection in real-time but also opens new avenues for 

ethical and privacy-preserving approaches in gaming security. 

The research aims to provide a groundbreaking perspective in the application of vision 

AI and cloud computing in cybersecurity, particularly in the domain of e-sports, setting 

the stage for more advanced, efficient, and ethically conscious anti-cheat systems in the 

future. 
 

1 Introduction 
 

The global video game industry has witnessed extraordinary growth, reaching a remarkable 

valuation of $384.9 billion in 2023.1 This boom, however, has been paralleled by the 

emergence of sophisticated cheating methods that threaten the integrity of e-sports. 

Anonymous groups, adept in reverse engineering, have been developing and selling 

unauthorized plugins and bot programs. These illicit tools offer unfair advantages to users, 

tarnishing the gaming experience and posing financial risks to developers by alienating 

legitimate players. 

A variety of anti-cheat techniques have been developed and implemented to maintain the 

integrity of competitive gaming, ranging from software solutions to physical and procedural 

measures. Some of the popular software solutions are Steam’s Valve Anti-Cheat (VAC)2, Epic 

 
 
1 Statista Market Insights, July 2023: https://www.statista.com/study/39310/video-games/ 
2 Valve Anti-Cheat: https://developer.valvesoftware.com/wiki/Valve_Anti-Cheat 

https://www.statista.com/study/39310/video-games/
https://developer.valvesoftware.com/wiki/Valve_Anti-Cheat
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Games’ EasyAntiCheat (EAC)3, and the infamous Vanguard used in Valorant4. While these 

solutions have been proven to be effective in detection and automatic non-negotiable ban of 

most cheaters that use freely available cheat sources on the internet, custom made hacks and 

cheats which can cost thousands of dollars for the cheaters are harder to detect especially during 

an on-going event. The hosts or developers of the competitive game may dissect the logs and 

files directly to ascertain the possibility of cheating, but it costs both time and money and may 

take multiple days to report after the end of the event. 

Despite the deployment of advanced detection techniques, however invasive or authoritative 

they may be, cunning cheaters continue to outmanoeuvre these systems, exploiting 

vulnerabilities and evading capture. This ongoing battle against cheating underscores the 

necessity for more robust, innovative solutions. Recognizing this, our research pivots to 

harnessing the potential of vision AI and cloud-based technologies. These emerging 

approaches promise a leap forward in cheat detection capabilities, blending near-human 

cognizance with efficient, scalable frameworks. 

Central to our study is the exploration of cutting-edge vision AI technology, deployed in a 

cloud-based environment to create a formidable anti-cheat platform. This approach is designed 

to minimize resource usage and data collection, striking a critical balance between robust 

security and user privacy. By processing minimal data (frames from the game in this case) we 

are virtually collecting no user-data which protects our solution from the falling under data 

protection laws like the GDPR standards, ensuring privacy preservation alongside precise 

detection. 

This research is driven by a pivotal question: How can we leverage the latest advancements 

in vision AI to develop a robust anti-cheat framework for competitive e-sports, and how can 

its deployment in a high-performance cloud environment enhance security and privacy? 

Our endeavour is a trailblazing effort to develop AI models specialized in identifying cheating 

in video games, thereby expanding AI's footprint in cybersecurity. We aim to demonstrate the 

viability and effectiveness of a cloud-based anti-cheat system. The envisioned system promises 

to match or even surpass existing anti-cheat mechanisms, while prioritizing ethical 

considerations and minimizing user data and resource usage. 

The anticipated outcome of this research is the establishment of an open architecture for AI-

based anti-cheat systems. This will not only mark a significant advancement in the field but 

also lay the groundwork for future research and development, contributing to the ongoing 

discourse on balancing security, privacy, and ethical practices in the digital gaming realm. 

 

2 Related Work 
 

Cheating can ruin the experience for regular players and harm the game companies financially. 

Effective anti-cheat systems are needed to combat this. In their comparative study of anti-cheat 

methods in video games Samuli Lehtonen (2020), the author, categorized anti-cheat methods 

into server-side and client-side. Server-side techniques operate on the game server while client-

 
 
3 Easy Anti-Cheat: https://www.easy.ac/en-us/  
4 Vanguard: https://support-valorant.riotgames.com/hc/en-us/articles/360046160933-What-is-Vanguard-  

https://www.easy.ac/en-us/
https://support-valorant.riotgames.com/hc/en-us/articles/360046160933-What-is-Vanguard-
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side methods run on the player’s computer. While other authors like Zhang (2021) and 

Kedziora et al. (2020) explain kernel events based anti-cheats and blockchain based solutions. 

2.1 Existing Anti-Cheat Methods 

In a comparative study of existing anti-cheat methods by Samuli Lehtonen (2020), the author 

has emphasized that cheating has been an issue in online games since their inception and can 

have major impacts on game companies' revenues and reputations. Thus, having effective anti-

cheat systems is critical. The paper categorizes common cheating methods into “soft cheats” 

that exploit game mechanics, and “hard cheats” that utilize external programs and tamper with 

the game client or network traffic. It then systematically analyses major anti-cheat approaches, 

including not trusting client data, tamper-resistant protocols, network traffic obfuscation, 

statistical methods, client-side protections like code encryption and memory obfuscation, and 

kernel-level anti-cheat drivers. The analysis examines the techniques across several key 

criteria: resistance to tampering, ease of implementation, performance overhead, 

privacy/invasiveness, and suitability for different game types. An example game was 

implemented to demonstrate implementations and impacts. 

The paper finds that server-side methods generally provide the strongest protection against 

cheating but have difficulty catching certain client-side cheats. Hybrid server and client-side 

solutions are ideal. Among client protections, code encryption helps safeguard other methods 

from tampering. Memory obfuscation also proves powerful but introduces major overhead. 

The analysis highlights rising privacy concerns and favourability of non-invasive solutions 

like server-side statistical analysis. Game streaming is flagged as an emerging approach that 

could virtually eliminate cheating, but latency and adoption issues persist. 

Overall, the paper systematically validates strengths and weaknesses of anti-cheat 

techniques based on quantitative testing and multiple criteria. It provides guidance to 

developers on optimal implementations. The analysis points to server-side and hybrid solutions 

as the future, with machine learning and cloud analytics holding promise. 

The paper would benefit from more comparisons with real games using the various methods. 

The custom game example, while illustrative, lacks the complexity of commercial titles. 

Analysing case studies across genres could better highlight nuances and practical impacts. The 

criteria used for evaluation are appropriate but could weigh the importance of tamper resistance 

and overhead more, given their direct impacts on anti-cheat effectiveness. The paper could also 

examine techniques common in mobile games, which face unique cheating threats. 

Additionally, explicitly addressing legal and ethical concerns around invasive anti-cheat 

approaches could better cover industry best practices. Overall, the paper delivers a strong, 

structured analysis using apt examples and evaluation metrics like the table below. 
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Table 1: Comparison of different anti-cheat methods 

 Resistance to 

tampering 

Ease of 

implementation 

Lack of 

overhead 

Non-

invasiveness 

Suitability for wide 

variety of games 

Server-sided methods      

Not trusting the client 4 2 2 4 3 

Tampering resistant 

application protocol 

4 2 2 4 4 

Obfuscating the network 

traffic 

2 4 3 4 4 

Statistical methods 3 1 4 4 2 

Client-side methods      

Code encryption 2 1 2 4 4 

Verifying file by hashing 1 4 4 3 4 

Detecting known cheat 

programs 

1 2 4 1 4 

Obfuscating memory 2 2 2 4 4 

Kernel based anti-cheat 

driver 

3 2 4 2 4 

 

2.2 Use of Artificial Intelligence 

The integration of AI in anti-cheat systems offers a promising avenue and is exactly what our 

research project aims to achieve. One such research by Zhang (2021) proposes using artificial 

intelligence models to improve the timeliness of online game anti-cheat systems. It discusses 

the prevalence of cheating in online games and the limitations of current anti-cheat approaches, 

particularly the lag time in detecting and penalizing cheaters. Two AI-based solutions are 

presented - one analysing player behaviour based on game data, and one based on image 

recognition of the game screen. 

Existing Anti-Cheat Methods - The paper summarizes common cheating methods like 

network packet modification and RAM cheating, which exploit vulnerabilities in game data 

communication and storage. It then describes current anti-cheat techniques: 

• Improving packet encryption makes packets harder to intercept and crack but causes 

lag. 

• Server-side cheat detection is computationally expensive and requires constant 

updating. 

• Embedded anti-cheat programs are a privacy concern and can be circumvented. 

• Player reporting is manually intensive, and the response is delayed. 

The major weakness highlighted is the time lag between a cheat occurring and action taken, 

diminishing the gaming experience. 

Proposed AI Solutions - Two AI models are proposed to judge cheating based on behaviour 

rationality rather than just detecting malicious software. The first involves analysing player 

data like health levels and mouse coordinates to identify unnatural patterns indicative of cheats. 

The author suggests binary classification or one-class SVM models but does not implement 



5 
 

 

them due to lacking suitable training data. The second is an image recognition model to extract 

information from game screens and determine if player actions align with expectations. A basic 

model is built and tested on CS: GO screens, showing feasibility but needing larger datasets 

and additional logic algorithms. 

The paper makes a case for using AI to improve anti-cheat timeliness. The image 

recognition approach is more promising, generalizable to different games, and exactly what we 

hope to implement in this research project. With further development, such systems could 

complement existing methods and preserve multiplayer fairness. 

Key limitations are the lack of actual game data for training and testing, and no 

implementation of the full envisioned systems. Technically, we are using this paper as our 

baseline and further extrapolating on it by attempting to train and implement the AI model on 

cloud. As mentioned in the future work we must focus on accessing suitable datasets and 

integrating the models into commercial games for real-world trials. 

2.3 Risks of Kernel Anti-Cheat Software 

Existing anti-cheat systems take different approaches to detecting and preventing cheating in 

online games. Some client-side systems like VAC (Valve Anti-Cheat) rely on scanning for 

known cheat signatures and patterns in memory. If a detected cheat has checked-in with a DRM 

server, the user can then be banned. However, the downside with signature-based methods is 

that they cannot detect new or polymorphic cheats. Meanwhile, more invasive kernel-level 

anti-cheats run drivers at startup to block potentially vulnerable programs and drivers that 

cheats could exploit. But this risks stability issues, security vulnerabilities, and privacy 

concerns over their deep system access. 

To avoid the issues with client-side anti-cheat software, Maario et al. (2021) proposed 

improved server-side statistical and machine learning approaches to classify player behaviour 

and detect cheating probabilistically. This method processes large datasets on the server to 

identify suspicious trends without needing kernel access. However, the computational 

overhead and privacy implications around mass data collection remain open questions. 

In a separate study on cheat injectors, Karkallis et al. (2021) analysed online cheating 

communities and exploit marketplaces. They highlighted major hubs like UnknownCheats and 

MPGH facilitating widespread cheat distribution between hundreds of thousands of members. 

The advanced techniques and strong cooperation in these communities often underpinned by 

financial incentives were noted to technically overlap with malware development ecosystems. 

This illustrates the broader security risks certain game cheating tools can pose through arbitrary 

code execution. 

Overall, each approach balances effectiveness, performance, stability, privacy, and security 

trade-offs differently. But advanced server-side systems present a promising direction by 

avoiding invasive client access while improving detection rates through large-scale 

behavioural modelling. Tighter analysis of exploit marketplaces also merits continued attention 

on the interplay between game hacking and malware ecosystems. 
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2.4 Why secure video games? 

Online video games have become immensely popular, with millions of people around the world 

playing games like World of Warcraft, Fortnite, and League of Legends. However, as Yan and 

Randell (2009) discuss in their paper “An Investigation of Cheating in Online Games”, 

cheating has emerged as a major issue that threatens the integrity and enjoyment of these 

games. Securing online games is critical to maintain fairness and prevent cheating that ruins 

the gaming experience for honest players. A core appeal of video games is the sense of fair 

competition they create. As Yan and Randell explain, cheating enables dishonest players to 

gain unfair advantages over opponents. This destroys the spirit of fair play that makes games 

worthwhile. Cheating can allow players to exploit gameplay bugs, hack the game code, or use 

external tools to reveal hidden information. Effective security is necessary to ensure all players 

compete on a level playing field. Lax security enables cheating that gives cheaters unearned 

victories while honest players feel the game is rigged against them. Cheating scandals can 

seriously damage the reputation and trustworthiness of a game developer. If cheating is seen 

as rampant and unchecked, players lose faith that the developer cares about integrity. This 

causes loss of loyal customers and revenue. Robust security reassures players the developer 

takes fairness seriously and reduces situations where cheating undermines trust. Ongoing 

security also protects the brand reputation developers depend on for continued success. 

Most importantly, preventing cheating enhances enjoyment for gamers. As Yan and Randell 

make clear, cheating degrades the gaming experience for typical players. Facing opponents 

who cheat takes away the fun and satisfaction derived from playing by the rules and winning 

fairly. Effective security locks out cheaters so honest players can immerse themselves in the 

game world and derive fulfilment from legitimate competition and achievement. Stopping 

cheating enables developers to maximize entertainment value for customers. 

The authors effectively argue that securing online games is vital because cheating sabotages 

fair play, erodes developer trust, and diminishes gaming enjoyment. Game developers must 

prioritize robust security protections to foster gaming experiences that attract and delight 

players over the long term. Preventing cheating through ongoing security efforts helps online 

games reach their full potential as captivating entertainment.  

 

3 Research Methodology 
 

During the inception of this research project, it was understood that our experience with game 

development and C++ could prove as a strength to be able to write a proof of concept as the 

ability to write directly to a process memory is available in C/C++ using the Windows memory 

API5. Moreover, choosing an open-source game that closely resembles most popular titles was 

deemed to be the ideal tool for collection of datasets for training of the AI to simulate real-life 

performance in terms of functionality. 

 
 
5 Windows memoryapi.h header: https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/ 

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/
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3.1 Game Selection 

We selected the open-source first-person shooter game AssaultCube as our test environment. 

AssaultCube (Rabid Viper Productions, 2006) is an ideal choice due to its accessibility, 

modifiability, and simplicity of implementation that can be leveraged. 

3.2 Data Collection 

To generate training data, we developed an ESP (wallhack) cheat for AssaultCube using C++ 

(Abramov, 2022). The ESP cheat provides players with unfair advantages by revealing the 

locations of other players within the game world. With the cheat enabled, we automated the 

collection of in-game screenshots capturing various scenarios of the cheat in action, such as 

displaying outlines around enemy players. 

3.3 Data Annotation 

The collected screenshots were uploaded to Roboflow6 for annotation. Each image was 

manually labelled, marking the visual elements added by the wallhack cheat such as player 

outlines and position markers. Precise annotation of these cheating artifacts is essential for the 

model to learn to detect them. 

3.4 Model Development 

We trained a real-time object detection model using the YOLOv87 architecture on our 

annotated dataset. Training was performed for 100 epochs with an input resolution of 640x640. 

Extensive parameter tuning was conducted to optimize model accuracy and inference speed for 

real-time cheat detection during gameplay. 

3.5 Model Deployment 

The trained model was deployed locally where it was given a recorded gameplay session with 

ESP hack enabled. The next step in deployment was to containerize the model using docker 

and deploy on a cloud platform equipped with GPUs for efficient inferencing performance. A 

REST API endpoint was to be created to accept streams of game frames, run cheat detection 

on each frame using the model, and return predictions indicating potential cheating. 

3.6 Testing and Results 

Rigorous tests were conducted by playing AssaultCube with cheats enabled and monitoring 

warning outputs. Metrics gathered included model accuracy, inference lag, and impact on 

gameplay performance. Testing provided quantified estimates of model viability and areas for 

improvement. 

4 Design Specification 

4.1 Game Selection: AssaultCube 

AssaultCube, an open-source, first-person shooter game, was chosen as the test environment 

for this study. Its open-source nature allows for controlled testing conditions and the creation 

of a cheat program specifically for this research. 

 
 
6 Roboflow: https://roboflow.com/  
7 YOLOv8: https://yolov8.com/  

https://roboflow.com/
https://yolov8.com/
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Figure 1: AssaultCube open-source game 

4.2 Development of ESP (Extra Sensory Perception) Hack 

An ESP hack was developed in C++ for AssaultCube. ESP hacks provide players with unfair 

advantages by displaying extra information within the game, such as the locations of other 

players. This hack in general is designed specifically to visually augment the game 

environment, making it suitable for detection via computer vision techniques. The development 

process involved the following: 

• Reverse engineering the game’s memory. 

• Understanding the data structure used to describe in-game elements. 

• Parsing that data to isolate the segment describing player and enemy entities. 

• Fetching coordinates of the player model in the game world. 

• Converting the 3D coordinates to a 2D rectangle scaling with the players location and 

size of the screen using a special WorldToScreen function. 

• Rendering the rectangle graphics overlaying the player positions in real-time. 

 

Figure 2: ESP cheat enabled on AssaultCube 

4.2.1 Reverse engineering AssaultCube 

The process of reverse engineering AssaultCube begins with using a tool called CheatEngine 

(Heijnen, 2008) which is a memory scanning and editing tool. With the help of cheat engine, 

we attach a debugger to the game’s process “ac_client.exe” and start scanning the memory to 

find an address that stores an in-game value like player health, ammo, or name. 
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Figure 3: Attaching debugger to game process 

The debugger attached to a found address helps us in finding the base address which is 

needed to enumerate through the entity list in the game. In this case, we can see that the value 

in EBP is being compared (cmp) to 00 which is probably a check if the object is null. This 

could be a function checking the player status, reload status or existence of a player entity. The 

instruction with the highest execution counter is copying the content of register ECX, which 

can either have a value or pointer to a location in memory, to the destination ESI (essentially 

reading data from the memory). Hence, we conclude that the value in ESI (007D0C78) is the 

location of our entity list. 

 

 

Figure 4: Memory viewer 

Diving deep into the process memory, we begin dissecting the data structures from to 

generate the entity list we could use in writing the ESP. Essentially what we need is the game’s 

base address and the offset to the entity list. 

 

 

Figure 5: Hexadecimal representation of 8 byte segments of memory 

We start by using the data structure dissection tool and then try to figure out the values that 

exist in that region. 
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Figure 6: Data structure dissection 

With the player entity offsets found, we proceed to writing our code. 

4.2.2 Coding our ESP Cheat 

We pre-define our offsets into a header file as they will be needed multiple times throughout 

the code. 

 

Figure 7: Pre-defining base address and offsets 

We define a handle object to attach to the game’s process and store the window’s width and 

height. 

 

Figure 8: Handle definition 

Then we read the process memory using the ReadProcessMemory function available in 

memoryapi.h which is already included in Windows.h header file. The function returns the 

entity array read from the memory to the defined variable and sets the BOOL rpmEntityArray 

to true, signifying that a successful read has been executed. Otherwise, the BOOL value will 

be false. 

 

Figure 9: ReadProcessMemory function 

We loop through the array to individually store the x, y, and z coordinates of the enemy 

players in a Vec3 object which is a typedef of three float values to store the three coordinates. 

 

Figure 10: Vec3 typedef 

The coordinates and playerMatrix are then passed over to the WorldToScreen function for 

conversion to a flat rectangle that needs to be drawn onto the screen as an overlay. 
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Figure 11: WorldToScreen function 

 

Using the wm-paint library in windows, we draw the overlay and update it at a little over 60 

frames per second to achieve real-time display of enemy locations on screen. 

 

Figure 12: Main ESP function 

 

After compilation and execution, the result will highlight enemy players in red and allies in 

blue. 

 

Figure 13: Successful execution of the ESP 

4.3 Data Collection: Screenshot Capturing 

With the ESP hack enabled, a large dataset of screenshots was captured from the game. These 

screenshots represent the game environment as seen by a player using the ESP cheat, providing 

the necessary data for training the computer vision model. The capture process was automated 

to ensure a wide variety of game scenarios and player positions were represented in the dataset. 
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Figure 14: Sample of collected dataset for training 

4.4 Data Annotation: Roboflow 

Roboflow, an annotation and dataset management tool, was employed to annotate the collected 

screenshots. This involved manually labelling the elements added by the ESP hack, such as 

player outlines or position markers. Precise annotation is crucial for training the model to 

accurately identify the signs of cheating in the game environment. 

The following images showcase how the annotations were drawn on top of the training 

images. The drawn boxes are exported as coordinate values for the top left and bottom right 

corner of the annotation rectangles. These coordinates can be read by the AI model while 

training to determine exactly what to look for when predicting the presence of enabled cheats. 

  

Figure 15: Sample Annotation on Training Images 

The dataset was further enhanced by adding noise to the subjects that are to be identified. 

This helps in producing a much more robust training dataset where the model can be made 

efficient in case of compression algorithms reducing the visual fidelity of input while prediction 

is being performed. 
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Figure 16: Sample of Adding Noise to Dataset 

4.5 Model Training: YOLOv8 

The YOLOv8 architecture was selected to develop the computer vision model for its state-of-

the-art performance in real-time object detection tasks. As detecting visual cheating elements 

like ESP graphics requires accurately localizing multiple objects in real-time, YOLOv8 was an 

ideal fit. Its key advantages over alternative object detection models are: 

• Speed: YOLOv8 is extremely fast, achieving higher FPS (frames per second) than other 

accurate detectors like RetinaNet (Li and Ren, 2019) or Mask R-CNN (Bharati and 

Pramanik, 2020), which enables real-time cheat analysis. 

• Accuracy: Despite its high speed, YOLOv8 matches or exceeds state-of-the-art 

accuracy results as measured by common metrics like mAP. This ensures cheating cues 

are detected reliably. 

• Scalability: The model design scales well to large datasets and transfer learning 

scenarios like our novel anti-cheat task. This adaptability aids quick training. 

Other alternatives like Single-Shot Detectors (SSDs) were not selected due to marginally 

slower speeds while classic algorithms like R-CNNs were far too slow for real-time usage (Liu 

et al., 2016). Thus, YOLOv8 struck the best balance of speed, accuracy, and adaptability for the 

anti-cheat system. The small trade-off in precision versus higher-precision models was 

acceptable for proof-of-concept purposes. 

The annotated dataset was used to train a computer vision model using YOLOv8 (You Only 

Look Once, version 8). YOLOv8 was selected for its superior performance in real-time object 

detection tasks. The training process involved fine-tuning the model on the specific features of 

the ESP cheat in AssaultCube. This step required careful adjustment of model parameters to 

optimize for both accuracy and speed, ensuring that the system could operate effectively in 

real-time scenarios. 

The first iteration of model training was run for 100 epochs and image size parameter set to 

640. This was done to ensure a fast and efficient training on a basic consumer grade GPU that 

was used to train this model. 
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4.5.1 Confusion Matrix 

 

Figure 17: Confusion Matrix 

• The x-axis represents the true labels (actual classification). 

• The y-axis represents the predicted labels (model prediction). 

Each cell in the matrix represents the count of predictions for a pair of true and predicted 

labels. 

4.5.1.1 Classes 

• ESP_Ally: ESP box that is detecting an Ally. 

• ESP_Enemy: ESP box that is detecting an Enemy. 

• ESP_Enemy_Multi: A broader detection class where multiple ESP_Enemy 

classifications are clustered together. 

• background: All parts of the training image except the area bound by above 

classifications. 

The confusion matrix suggests that ESP_Enemy is being predicted relatively well, but there 

is confusion when distinguishing between ESP_Ally and ESP_Enemy, or when multiple 

enemies are present (ESP_Enemy_Multi). This can guide further refinement of our model; 

however, it is fundamentally justified for the current proof-of-concept presented in this paper. 

4.5.2 F1-Confidence Curve 

 

Figure 18: F1-Confidence Curve 

The F1 score is a harmonic mean of precision and recall. It is a measure of a test’s accuracy 

and considers both the false positives and the false negatives. The F1 score reaches its best 

value at 1 (perfect precision and recall) and worst at 0. The confidence threshold is the 

probability above which a prediction is considered positive by the model. Adjusting this 
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threshold affects both precision (the model's ability to avoid labeling a negative sample as 

positive) and recall (the model's ability to find all the positive samples). 

• The blue line for ESP_Ally shows a relatively stable but low F1 score across confidence 

thresholds, suggesting a consistent but potentially low precision and/or recall for this 

class. 

• The orange line for ESP_Enemy shows a high F1 score across a range of confidence 

thresholds, indicating that the model is more effective at identifying this class with both 

high precision and recall. 

• The green line for ESP_Enemy_Multi is not visible in the graph, which means that its 

F1 score is consistently low or that the data for this class is not properly displayed. 

• The aggregate line (labeled "all classes") shows the combined F1 score for all classes 

at different thresholds. The peak of this line indicates the best overall confidence 

threshold for the model, which in this case is around 0.28 with an F1 score of 

approximately 0.766. 

Our priority in this proof-of-concept is to produce an AI model with the ability to output a 

yes or no if an ESP cheat is enabled which is viable even in the model’s current accuracy. 

4.5.3 Precision-Confidence Curve 

 

Figure 19: Precision-Confidence Curve 

 

Precision is a metric that quantifies accuracy of the positive predictions made by the model. It 

is the ratio of true positive predictions to the total number of positive predictions (both true 

positives and false positives). A higher precision means that when the model predicts a class, 

it is more likely to be correct. 

• The blue line for ESP_Ally starts with high precision at low confidence thresholds but 

experiences a drop, which suggests that the model initially has high accuracy for this 

class, but as the confidence threshold increases, the model struggles to maintain 

precision. 

• The orange line for ESP_Enemy shows that the model maintains high precision across 

a wide range of confidence thresholds, indicating reliable performance for this class. 

• The green line for ESP_Enemy_Multi appears to be mostly flat, which may indicate 

that there are not enough data points or variability in predictions for this class to assess 

a trend. 

• The bold blue line going across the top of the graph and labeled "all classes" indicates 

the aggregate precision for all classes combined. This line shows a high precision level 

maintained across the confidence thresholds, peaking at a threshold of approximately 

0.804, where it reaches a precision of 1.00, implying no false positives at this point. 
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The Precision-Confidence Curve is crucial for evaluating the trade-off between having a 

confident model and maintaining a high precision rate. For an anti-cheat system where it's 

important to minimize incorrect bans, a high precision is desirable, and this curve helps in 

determining the appropriate confidence threshold to achieve that. 

4.5.4 Precision-Recall Curve 

 

Figure 20: Precision-Recall Curve 

Recall (also known as sensitivity or true positive rate) is defined as the number of true positives 

divided by the number of true positives plus the number of false negatives. It reflects the 

model’s ability to detect all actual positives. 

• The blue line for ESP_Ally starts with a precision just above 0.2 for all recall levels, 

which is relatively low. This suggests that the model is not very precise in predicting 

ESP_Ally; when it does predict ESP_Ally, it is correct only about 20% of the time. 

• The orange line for ESP_Enemy indicates much higher precision at almost all levels 

of recall, starting at a precision of about 0.9. This suggests that the model is quite 

accurate in predicting ESP_Enemy – it is correct 90% of the time when it predicts this 

class. 

• The green line for ESP_Enemy_Multi is not visible, which typically indicates a 

precision and recall of zero. This suggests that the model was not able to identify any 

true positives for this class, or the class was not present in the test set. 

• The bold blue line represents the model’s overall precision-recall performance across 

all classes, with a mean Average Precision (mAP) at a particular IoU (Intersection over 

Union) threshold (often 0.5). The mAP for this model is 0.387, which is an aggregate 

measure over all classes. 

• The annotations on the graph lines indicate the Average Precision (AP) score for each 

class, which summarizes the precision-recall curve as the weighted mean of precisions 

achieved at each threshold, with the increase in recall from the previous threshold used 

as the weight: 

• ESP_Ally: AP = 0.249 

• ESP_Enemy: AP = 0.912 

• ESP_Enemy_Multi: AP = 0.000 

• The aggregate mAP score across all classes is given as 0.387 at an IoU threshold of 0.5, 

which is the standard for object detection tasks. This score reflects the overall 

performance across all classes and suggests that while the model is quite good at 

detecting ESP_Enemy, it struggles with ESP_Ally and practically fails at 

ESP_Enemy_Multi. 
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4.6 Testing and validation 

To test our trained model, we recorded a session of AssaultCube with the ESP cheat turned on 

and then fed the recording to the model to see if it can detect the visual cues. 

We can easily do that in Python using the OpenCV library to load the video and feed it 

frame by frame to our model and draw its findings on the screen frame by frame using the plot 

function. 

As seen in the screenshots below, when loaded to be run on the CPU, the model works as 

expected and generates a frame-by-frame plot of detected classifications with the confidence 

of prediction alongside the labels. 

 

Figure 21: ESP_Enemy Classification plot 

 

 

Figure 22: Mixed classification plot 

 

 

Figure 23: ESP_Ally classification plot 

 

Looking at the console output, we can see the time it takes per frame to complete a detection 

cycle. 
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We observe a 1.86ms preprocessing time on average followed by an average inference time 

of 42.62ms and finally an average 1.1ms of postprocessing time. 

It is safe to say that the model takes less than 50ms of processing time per frame on a regular 

consumer grade computer with 16 Gigabytes of RAM and an 8-core processor. 

 

 

Figure 24: CPU powered local execution 

5 Implementation 

The final implementation of the testing was conducted by running the model on an Nvidia GPU 

instead of a CPU as they are significantly more efficient at running machine learning models 

since they can utilize the power of CUDA engine which has highly optimized ML pipelines to 

speed up the inference. 

 

Figure 25: Basic implementation schematic 

 

Now in the final implementation, the base YOLOv8 model was trained, and run on an Nvidia 

RTX 3060 GPU with 6 Gigabytes of VRAM. We used PyTorch library to feed the dataset to 
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the YOLOv8 model for training and inference and finally processed each frame in real-time by 

using display capture from OpenCV and running our model on each frame. 

As shown in section 4.6 Testing and Validation, the detections were plotted on the screen 

frame-by-frame in real-time while the console log showed a significant improvement over the 

instance running on CPU. 

The following console log was captured when running the model on a GPU. 

 

Figure 26: GPU powered local execution 

 

It can be observed that running the model on a GPU powered pipeline significantly reduces 

the amount of processing time taken per frame. In statistical terms, 1.7ms average 

preprocessing time, 7.37ms average inference time, and 1.83ms of average postprocessing time 

per frame. 

In conclusion, we can expect an average processing time of less than 15ms per frame which 

is about 30% of the processing time we needed on a CPU. 

The model is highly efficient and when deployed on a cloud service which can support 

multiple GPUs and much higher VRAM, this time can be virtually removed to achieve a real-

time response. 

 

 

Figure 27: Local execution time on GPU 

 

Further testing and statistical analysis revealed that when tested the trained model powered 

by a GPU (RTX 3060) on our test video which had 2428 frames captured at 60 fps, the model 

finished processing all the frames within 38.73 seconds which is slightly faster than real-time 

as the video duration was 40.46 seconds. Albeit with the same level of accuracy we observed 

in our past tests. 

5.1 Cloud deployment 

To test the deployment of our model on a cloud environment and compare the performance 

with the local instance we decided to use a private cloud service provider called RunPod. 

The reason we chose this service over services like Google Collab was because in initial testing 

it was found that storage is relatively slow on a Google Collab instance and when our model 

accessed the video file from the instance storage provided on Google Collab it suffered from a 

large overhead in I/O. This caused the model to perform worse than the local instance which 

was unexpected but informative. 
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Moving on to deploying our model on RunPod, we used an instance equipped with an Nvidia 

RTX 4090 which is a state-of-the-art GPU with 24 Gigabytes of VRAM. 
 

 

Figure 28: Cloud execution time on GPU 

On testing it was observed that the model completed execution on the same data input in 

about 33.4 seconds which is about 86.2% of the time taken by the local deployment. 

While this improvement may not appear groundbreaking, it is certainly a move in the right 

direction and with further optimization of the execution pipeline this time could possibly be 

brought down further. 

Ultimately, the complete processing of a 40 second video input, which is quite large 

compared to the real-life requirement of the model, we can conclude that this novel 

methodology can be reliably used to detect and ban cheaters in E-Sports without much delay. 

 

6 Evaluation 

6.1 Objective and Methodology 

The primary objective of this research was to develop and assess a cloud-based computer vision 

system for real-time cheat detection in e-sports using YOLOv8. We employed statistical tools 

to evaluate the model's performance, focusing on accuracy, precision, recall, and processing 

times. 

6.1.1 Findings 

• Model Performance: The model demonstrated high precision and recall rates, 

particularly for detecting ESP_Enemy classification, with a mean Average Precision 

(mAP) of 0.387 at an IoU threshold of 0.5. 

• Processing Speed: When deployed on a GPU (Nvidia RTX 3060), the model processed 

frames in less than 15ms on average. This increased efficiency was further enhanced in 

a cloud environment, where a 40-second video was processed in 33.4 seconds, faster 

than real-time. 

• Comparison with CPU Performance: The GPU deployment showed a significant 

reduction in processing time per frame compared to the CPU deployment, highlighting 

the advantage of cloud-based deployment for real-time applications. 

6.1.2 Implications 

• Academic: The research contributes to the field of AI in cybersecurity by 

demonstrating the effectiveness of vision AI in cheat detection, addressing a growing 

need in the e-sports industry. 

• Practical: From a practical standpoint, the system's ability to process data quickly and 

accurately makes it a viable solution for live e-sports events, offering a non-invasive, 

privacy-preserving alternative to current anti-cheat methods. 
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7 Conclusion and Future Work 

7.1 Recap 

Our research aimed to answer how vision AI can be leveraged to develop a robust anti-cheat 

framework for competitive e-sports and enhance security and privacy in a high-performance 

cloud environment. The study successfully demonstrated the viability and effectiveness of a 

cloud-based anti-cheat system using YOLOv8 for real-time cheat detection. 

7.2 Key Findings 

• High accuracy in detecting specific types of cheat (ESP). 

• The feasibility of real-time processing in a cloud-based environment. 

• Significant improvement in processing times when using GPU compared to CPU. 

7.3 Limitations 

• The study focused on a single game environment (AssaultCube), which may limit the 

generalizability of the findings. 

• The current model is only effective for ESP cheats which result in visual difference in 

the game. It is not trained to for other types of cheats, indicating a need for further 

refinement to add a full suite of detection abilities. 

7.4 Future Work 

• Expanding Game Environments: Testing the model across various game genres to 

validate its applicability in diverse gaming scenarios. 

• Model Enhancement: Incorporating advanced AI techniques like deep learning or 

reinforcement learning to improve accuracy and adaptability. 

• Dataset Enrichment: Acquiring more diverse and extensive training data to enhance 

the model's robustness and reduce classification errors. 

• Commercialization Potential: Exploring partnerships with game developers for real-

world implementation and further optimization for commercial use. 

• API Development: After deployment on a cloud hosted environment, a REST API 

with secure access could be developed that will allow game developers to directly 

integrate the service into their code. 

7.5 Closing Thoughts 

This research marks a significant step towards developing effective, privacy-preserving cheat 

detection systems in e-sports, contributing to the integrity of competitive gaming, and offering 

insights for future advancements in the field. 
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