
Configuration Manual
This document provides a comprehensive guide on using software and tools for project
execution, including detailed instructions for software installation and a systematic
approach to project success. The report details the specific hardware requirements needed
to efficiently run Machine Learning algorithms.

1. Hardware Specifications

Hardware Component Requirements
Processor (CPU) HP Pavilion
Memory (RAM) 12th Gen Intel(R) Core(TM) i5-1235U 1.30 GHz
Network Connection Stable internet connection
Operating System Compatible with various OS
System type 512 SSD
ML Model (if applicable) HP Pavilion

2. Software Specifications

Software Component Requirements
Python Python 3.10.12
Flask Flask web framework
NumPy Numerical computing library
pandas Data manipulation library
scikit-learn Machine learning library
mlxtend Machine learning library
Requests HTTP library for making requests
URLFeatureExtraction Custom Python module (dependencies may vary)
pickle Python object serialization library
smtplib SMTP email library for sending emails
A web browser For accessing and testing the web application
An operating system Compatible with the required software

Visual studio version
Version: 1.85.0
OS: Windows_NT x64 10.0.22621

Software Component Requirements
Google Colab 3.10.12

3. Python Packages and Imports

1. Flask Packages:

• Flask: The Flask web framework is the core of the application, used for
routing and handling HTTP requests.

• request: Routing and handling HTTP requests are handled by the Flask
web framework, which is the core of the application.

• render_template: Used to render HTML templates for web pages.

2. Data Manipulation and Machine Learning Packages:

• numpy and pandas: Used for data manipulation and
handling.(Introduction to NumPy, n.d.)

• pickle: Used for loading a pre-trained machine learning model from a
saved file.(Libraries in Python - GeeksforGeeks, n.d.)

• sklearn: Scikit-learn, a machine learning library, is used for making
predictions with the loaded model.(Libraries in Python - GeeksforGeeks,
n.d.)

• mlxtend: An extension library for scikit-learn that may contain additional
functionality for machine learning.(Libraries in Python - GeeksforGeeks,
n.d.)

3. Email Handling:

• email.mime: A module that facilitates the creation and management of
email messages

• smtplib: Used for sending email messages via the Simple Mail Transfer
Protocol (SMTP).

4. Custom Modules:

• urlfeatureextraction: A custom Python module that is imported to
perform URL feature extraction. The specific dependencies for this
module may vary and should be installed separately.

5. Other General Imports:

• Various Python modules and functions for general functionality within the
code, such as string manipulation and handling data structures.

4. Dataset Overview and Data Loading
This study aims to tackle online criminal activities, with particular emphasis on URLs. Our
approach to categorizing malicious URLs into five types is lightweight. Over 45,000
instances are included in the dataset, which provides a comprehensive understanding of
online threats. We scrutinize the obfuscation techniques employed by hackers. Our
research is aided by this dataset, which enables us to explore online security effectively.

Data Loading

The provided code snippet demonstrates data loading using the Pandas library. It displays
the first 10 rows of the loaded data using the head method. This operation allows for
quick exploration and understanding of the dataset's structure and content.

#data loading
data =
pd.read_csv('/content/drive/MyDrive/phishing_url_classification/Data/final_dataframe.cs
v')
data.head(10)

Figure 1 Output of the dataset loading

Figure 2 output of dataset loading

5. Data Cleaning and Preprocessing
To prepare a dataset for analysis and modeling, data cleaning and preprocessing are
necessary tasks. The task involves handling missing values, eliminating duplicates,
transforming and encoding data, addressing outliers, feature engineering, and separating
the dataset for evaluation. Data quality and compatibility with machine learning algorithms
are ensured by the specific tasks that depend on the dataset's nature and objectives.

#checking for null values
data.isna().sum()

The provided code snippet checks for and counts the number of null (missing) values in
the dataset 'data' using the isna().sum() method. This operation helps identify the extent of
missing data in the dataset, which is a crucial step in data quality assessment and data
preprocessing

A count of null values in each column of the 'data' dataset is generated by the
'data.isna().sum()' code scribble. Identifying columns with missing data is crucial, and this
step can help make decisions about handling null values, such as imputation or removal,
during data preprocessing.

Figure 3Output of data cleaning and preprocessing

#statistic of data
data.describe()

Pandas are utilized in this code, which has the comment '#statistic of data', to generate
descriptive statistics for a dataset. 'data.description()' computes important statistical metrics
for numerical columns, including count, mean, and percentiles. The statistical data provides
a quick overview of the dataset's numerical features, which aids in data exploration and
analysis.

Figure 4 Output of the statistical data

Figure 5 Output of the statistical data

#data information
data.info()

Figure 6 Output of data information

#pie chart of target class(Label)
df1 =
data['Label'].value_counts().reset_index().rename(columns={'index':'Label','Label':'count'
})
fig = px.pie(df1, values='count', names='Label', title='count plot of target class(Label)')
fig.show()

Figure 7 Output of visualization pie chart of phishing and legitimate URLs

This code, indicated by the comment '#dropping unnecessary columns,' uses Pandas to
remove the 'Domain' column from the dataset using the 'data.drop()' function. By setting
the 'axis' argument to 'columns' and setting 'inplace=True', the change will be applied
directly to the current dataset. When certain columns are deemed unnecessary for analysis
or model training, this step is useful. The first five rows of the updated dataset can be seen
using 'data.head(5)', which gives a glimpse of the data without the 'Domain' column.

Figure 8 Output of featureextration

Figure 9 Output of feature extraction

Data correlation

#correlation matrix
correlation = data.corr().round(2)
plt.figure(figsize = (10,7))
sns.heatmap(correlation, annot = True, cmap='BuPu')

This Python code, using Pandas, Matplotlib, and Seaborn, generates and visualizes a
correlation matrix for a dataset. It calculates correlations between columns with 'data.corr()'
and displays the matrix as a heatmap. The heatmap includes annotated values, and color
mapping helps visualize positive correlations in lighter shades and negative correlations in
darker shades.

Figure 10 Output of statistic correlation

Data splitting

#splitting data into X and y.
X = data.drop('Label',axis='columns')
Y = data['Label']

This Python code splits the dataset into features (X) and the target variable (Y) for machine
learning. 'X' contains the features, excluding the 'Label' column, while 'Y' holds the 'Label'
column as the target variable. This separation sets up the data for subsequent machine
learning tasks, clarifying the distinction between features and the target.

#splitting data into train, test
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.1, stratify=Y)

This Python code snippet performs two key tasks in machine learning. First, it splits the
dataset into training and testing sets using 'train_test_split' from scikit-learn, crucial for
model evaluation and generalization assessment. Second, it conducts feature importance
analysis with the Extra Trees Classifier, helping identify significant features for model
interpretation and refinement.

6. Machine Learning Algorithms
1. Logistic regression

This code segment establishes a list called 'select_from_model_list' that contains feature
names in order of importance, with the most significant ones at the top. All feature names
are stored in feature_name, and indices ensure that they are in the correct order. The Extra
Trees Classifier's influential features are represented in a user-friendly way in this list.
'select_from_model_list' is an invaluable tool for further analysis or feature selection,
which improves model interpretability and optimization.

log_model = LogisticRegression(max_iter=4)
logit = log_model
logit.fit(X_train,y_train)
y_pred = logit.predict(X_test)

#accuracy score
print("Accuracy Score: ",accuracy_score(y_test,y_pred))

Output: Accuracy Score: 0.825

The code is responsible for calculating and displaying the accuracy score of a logistic
regression model. The actual labels ('y_test') and the predicted labels ('y_pred') from the
model are compared using the 'accuracy_score' function of' sklearn.metrics'. The accuracy
score indicates the proportion of correctly classified instances in the test dataset, providing
an assessment of the model's predictive performance.

2. Confusion matrix

#confusion Matrix
matrix =confusion_matrix(y_test, y_pred)
class_names=[0,1]
fig, ax = plt.subplots()
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names)

plt.yticks(tick_marks, class_names)
sns.heatmap(pd.DataFrame(matrix), annot=True, cmap="BuPu" ,fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
plt.show()

The code creates a confusion matrix using'sklearn.metrics' to assess the classification
performance of a logistic regression model. 'Seaborn' is used to visualize the matrix as a
heat map, which aids in evaluating the model's ability to distinguish between phishing and
legitimate URLs in the test data.

Figure 11 Output of confusion matrix

#Classification Report
print(classification_report(y_test, y_pred))
visualizer = ClassificationReport(logit, support=True, cmap="BuPu")
visualizer.fit(X_train, y_train)

visualizer.score(X_test, y_test)
g = visualizer.poof()

A classification report for the performance of a logistic regression model is generated by
the code snippet. The model uses'sklearn.metrics' to calculate precision, recall, and F1-
score for phishing and legitimate URLs, and it also uses 'yellowbrick.classifier' to produce
a visual report that helps evaluate the model's ability to distinguish between the two classes
in test data.

Figure 12 Classification Report of logistic regression

7. Visualization Techniques
Focus on confusion matrices and classification reports for model assessment.
Utilizes Matplotlib and Seaborn for heatmap visualizations.
Detailed analysis of true positives, negatives, and error distribution.

After running the python code and the successful training of the model, Now for the
detection phase, whenever a website is visited, the URL of that website is transmitted to
the feature extractor. Feature extractor extracts the required features of this currently visited
website’s URL. These extracted features are then transmitted to the classifier. Based on the
knowledge gained by the classifier from its previous training, it decides whether the
website is legitimate or not. It then displays a pop-up to the user based on its results and
then a mail notification is sent to the user with the malicious URL link.

Figure 13 Output of the website detection

Figure 14 Output when the website is unsafe

Figure 15 Output for the mail notification

References:

Introduction to NumPy. (n.d.). Retrieved December 14, 2023, from
https://www.w3schools.com/python/numpy/numpy_intro.asp

Libraries in Python - GeeksforGeeks. (n.d.). Retrieved December 14, 2023, from
https://www.geeksforgeeks.org/libraries-in-python/

	1. Hardware Specifications
	2. Software Specifications
	3. Python Packages and Imports
	1. Flask Packages:
	 Flask: The Flask web framework is the core of the application, used for routing and handling HTTP requests.
	 request: Routing and handling HTTP requests are handled by the Flask web framework, which is the core of the application.
	 render_template: Used to render HTML templates for web pages.
	2. Data Manipulation and Machine Learning Packages:
	 numpy and pandas: Used for data manipulation and handling.(Introduction to NumPy, n.d.)
	 pickle: Used for loading a pre-trained machine learning model from a saved file.(Libraries in Python - GeeksforGeeks, n.d.)
	 sklearn: Scikit-learn, a machine learning library, is used for making predictions with the loaded model.(Libraries in Python - GeeksforGeeks, n.d.)
	 mlxtend: An extension library for scikit-learn that may contain additional functionality for machine learning.(Libraries in Python - GeeksforGeeks, n.d.)
	3. Email Handling:
	 email.mime: A module that facilitates the creation and management of email messages
	 smtplib: Used for sending email messages via the Simple Mail Transfer Protocol (SMTP).
	4. Custom Modules:
	 urlfeatureextraction: A custom Python module that is imported to perform URL feature extraction. The specific dependencies for this module may vary and should be installed separately.
	5. Other General Imports:
	 Various Python modules and functions for general functionality within the code, such as string manipulation and handling data structures.
	4. Dataset Overview and Data Loading
	5. Data Cleaning and Preprocessing
	6. Machine Learning Algorithms
	7. Visualization Techniques

