
Configuration Manual 
This document provides a comprehensive guide on using software and tools for project 
execution, including detailed instructions for software installation and a systematic 
approach to project success. The report details the specific hardware requirements needed 
to efficiently run Machine Learning algorithms. 

1. Hardware Specifications 
 

Hardware Component Requirements 
Processor (CPU) HP Pavilion 
Memory (RAM) 12th Gen Intel(R) Core(TM) i5-1235U   1.30 GHz 
Network Connection Stable internet connection 
Operating System Compatible with various OS 
System type 512 SSD 
ML Model (if applicable) HP Pavilion 

2. Software Specifications 
 

Software Component Requirements 
Python Python 3.10.12 
Flask Flask web framework 
NumPy Numerical computing library 
pandas Data manipulation library 
scikit-learn Machine learning library 
mlxtend Machine learning library 
Requests HTTP library for making requests 
URLFeatureExtraction Custom Python module (dependencies may vary) 
pickle Python object serialization library 
smtplib SMTP email library for sending emails 
A web browser For accessing and testing the web application 
An operating system Compatible with the required software 

Visual studio version 
Version: 1.85.0 
OS: Windows_NT x64 10.0.22621 



Software Component Requirements 
Google Colab 3.10.12 



3. Python Packages and Imports 

1. Flask Packages: 

• Flask: The Flask web framework is the core of the application, used for 
routing and handling HTTP requests. 

• request: Routing and handling HTTP requests are handled by the Flask 
web framework, which is the core of the application. 

• render_template: Used to render HTML templates for web pages. 

2. Data Manipulation and Machine Learning Packages: 

• numpy and pandas: Used for data manipulation and 
handling.(Introduction to NumPy, n.d.) 

• pickle: Used for loading a pre-trained machine learning model from a 
saved file.(Libraries in Python - GeeksforGeeks, n.d.) 

• sklearn: Scikit-learn, a machine learning library, is used for making 
predictions with the loaded model.(Libraries in Python - GeeksforGeeks, 
n.d.) 

• mlxtend: An extension library for scikit-learn that may contain additional 
functionality for machine learning.(Libraries in Python - GeeksforGeeks, 
n.d.) 

3. Email Handling: 

• email.mime: A module that facilitates the creation and management of 
email messages 



• smtplib: Used for sending email messages via the Simple Mail Transfer 
Protocol (SMTP). 

4. Custom Modules: 

• urlfeatureextraction: A custom Python module that is imported to 
perform URL feature extraction. The specific dependencies for this 
module may vary and should be installed separately. 

5. Other General Imports: 

• Various Python modules and functions for general functionality within the 
code, such as string manipulation and handling data structures. 

4. Dataset Overview and Data Loading 
This study aims to tackle online criminal activities, with particular emphasis on URLs. Our 
approach to categorizing malicious URLs into five types is lightweight. Over 45,000 
instances are included in the dataset, which provides a comprehensive understanding of 
online threats. We scrutinize the obfuscation techniques employed by hackers. Our 
research is aided by this dataset, which enables us to explore online security effectively. 

Data Loading 

The provided code snippet demonstrates data loading using the Pandas library. It displays 
the first 10 rows of the loaded data using the head method. This operation allows for 
quick exploration and understanding of the dataset's structure and content. 

#data loading 
data = 
pd.read_csv('/content/drive/MyDrive/phishing_url_classification/Data/final_dataframe.cs
v') 
data.head(10) 
 



 

Figure 1 Output of the dataset loading 

 

Figure 2 output of dataset loading 

5. Data Cleaning and Preprocessing 
To prepare a dataset for analysis and modeling, data cleaning and preprocessing are 
necessary tasks. The task involves handling missing values, eliminating duplicates, 
transforming and encoding data, addressing outliers, feature engineering, and separating 
the dataset for evaluation. Data quality and compatibility with machine learning algorithms 
are ensured by the specific tasks that depend on the dataset's nature and objectives. 

#checking for null values 
data.isna().sum() 
 

 
The provided code snippet checks for and counts the number of null (missing) values in 
the dataset 'data' using the isna().sum() method. This operation helps identify the extent of 
missing data in the dataset, which is a crucial step in data quality assessment and data 
preprocessing 



 

A count of null values in each column of the 'data' dataset is generated by the 
'data.isna().sum()' code scribble. Identifying columns with missing data is crucial, and this 
step can help make decisions about handling null values, such as imputation or removal, 
during data preprocessing. 

 

Figure 3Output of data cleaning and preprocessing 

#statistic of data 
data.describe() 
 

Pandas are utilized in this code, which has the comment '#statistic of data', to generate 
descriptive statistics for a dataset. 'data.description()' computes important statistical metrics 
for numerical columns, including count, mean, and percentiles. The statistical data provides 
a quick overview of the dataset's numerical features, which aids in data exploration and 
analysis. 

 

Figure 4 Output of the statistical data 



 

Figure 5 Output of the statistical data 

#data information 
data.info() 
 

 

Figure 6 Output of data information 

#pie chart of target class(Label) 
df1 = 
data['Label'].value_counts().reset_index().rename(columns={'index':'Label','Label':'count'
}) 
fig = px.pie(df1, values='count', names='Label', title='count plot of target class(Label)') 
fig.show() 
 



 

Figure 7 Output of visualization pie chart of phishing and legitimate URLs 

This code, indicated by the comment '#dropping unnecessary columns,' uses Pandas to 
remove the 'Domain' column from the dataset using the 'data.drop()' function. By setting 
the 'axis' argument to 'columns' and setting 'inplace=True', the change will be applied 
directly to the current dataset. When certain columns are deemed unnecessary for analysis 
or model training, this step is useful. The first five rows of the updated dataset can be seen 
using 'data.head(5)', which gives a glimpse of the data without the 'Domain' column. 

 

Figure 8 Output of featureextration 

 

Figure 9 Output of feature extraction 

Data correlation 

#correlation matrix 
correlation = data.corr().round(2) 
plt.figure(figsize = (10,7)) 
sns.heatmap(correlation, annot = True, cmap='BuPu') 
 



 
This Python code, using Pandas, Matplotlib, and Seaborn, generates and visualizes a 
correlation matrix for a dataset. It calculates correlations between columns with 'data.corr()' 
and displays the matrix as a heatmap. The heatmap includes annotated values, and color 
mapping helps visualize positive correlations in lighter shades and negative correlations in 
darker shades.  

 

Figure 10 Output of statistic correlation 

Data splitting 

#splitting data into X and y. 
X = data.drop('Label',axis='columns') 
Y = data['Label'] 
 

This Python code splits the dataset into features (X) and the target variable (Y) for machine 
learning. 'X' contains the features, excluding the 'Label' column, while 'Y' holds the 'Label' 
column as the target variable. This separation sets up the data for subsequent machine 
learning tasks, clarifying the distinction between features and the target. 

#splitting data into train, test 
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.1, stratify=Y) 
 



This Python code snippet performs two key tasks in machine learning. First, it splits the 
dataset into training and testing sets using 'train_test_split' from scikit-learn, crucial for 
model evaluation and generalization assessment. Second, it conducts feature importance 
analysis with the Extra Trees Classifier, helping identify significant features for model 
interpretation and refinement. 

6. Machine Learning Algorithms 
1. Logistic regression 

This code segment establishes a list called 'select_from_model_list' that contains feature 
names in order of importance, with the most significant ones at the top. All feature names 
are stored in feature_name, and indices ensure that they are in the correct order. The Extra 
Trees Classifier's influential features are represented in a user-friendly way in this list. 
'select_from_model_list' is an invaluable tool for further analysis or feature selection, 
which improves model interpretability and optimization. 

log_model = LogisticRegression(max_iter=4) 
logit = log_model 
logit.fit(X_train,y_train) 
y_pred = logit.predict(X_test) 
 

 

#accuracy score 
print("Accuracy Score: ",accuracy_score(y_test,y_pred)) 
 

 
Output: Accuracy Score: 0.825 

The code is responsible for calculating and displaying the accuracy score of a logistic 
regression model. The actual labels ('y_test') and the predicted labels ('y_pred') from the 
model are compared using the 'accuracy_score' function of' sklearn.metrics'. The accuracy 
score indicates the proportion of correctly classified instances in the test dataset, providing 
an assessment of the model's predictive performance. 

2. Confusion matrix 

#confusion Matrix 
matrix =confusion_matrix(y_test, y_pred) 
class_names=[0,1] 
fig, ax = plt.subplots() 
tick_marks = np.arange(len(class_names)) 
plt.xticks(tick_marks, class_names) 



plt.yticks(tick_marks, class_names) 
sns.heatmap(pd.DataFrame(matrix), annot=True, cmap="BuPu" ,fmt='g') 
ax.xaxis.set_label_position("top") 
plt.tight_layout() 
plt.title('Confusion matrix', y=1.1) 
plt.ylabel('Actual label') 
plt.xlabel('Predicted label') 
plt.show() 

The code creates a confusion matrix using'sklearn.metrics' to assess the classification 
performance of a logistic regression model. 'Seaborn' is used to visualize the matrix as a 
heat map, which aids in evaluating the model's ability to distinguish between phishing and 
legitimate URLs in the test data. 

 

Figure 11 Output of confusion matrix 

#Classification Report 
print(classification_report(y_test, y_pred)) 
visualizer = ClassificationReport(logit, support=True, cmap="BuPu") 
visualizer.fit(X_train, y_train) 



visualizer.score(X_test, y_test) 
g = visualizer.poof() 
 

 

A classification report for the performance of a logistic regression model is generated by 
the code snippet. The model uses'sklearn.metrics' to calculate precision, recall, and F1-
score for phishing and legitimate URLs, and it also uses 'yellowbrick.classifier' to produce 
a visual report that helps evaluate the model's ability to distinguish between the two classes 
in test data. 

 

Figure 12 Classification Report of logistic regression 

 

7. Visualization Techniques 
Focus on confusion matrices and classification reports for model assessment. 
Utilizes Matplotlib and Seaborn for heatmap visualizations. 
Detailed analysis of true positives, negatives, and error distribution. 



After running the python code and the successful training of the model, Now for the 
detection phase, whenever a website is visited, the URL of that website is transmitted to 
the feature extractor. Feature extractor extracts the required features of this currently visited 
website’s URL. These extracted features are then transmitted to the classifier. Based on the 
knowledge gained by the classifier from its previous training, it decides whether the 
website is legitimate or not. It then displays a pop-up to the user based on its results and 
then a mail notification is sent to the user with the malicious URL link. 

 

 

 
Figure 13 Output of the website detection 



 

Figure 14 Output when the website is unsafe 



 

Figure 15 Output for the mail notification 
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