

Configuration Manual

MSc Research Project Programme Name

Anurodhan Pradhan Student ID: X22134638

School of Computing National College of Ireland

Supervisor: Eugene Mclaughlin

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Anurodhan Pradhan
Student ID:	X22134638
Programme:	MSc Cybersecurity Year:2023-24
Module:	MSc Research Project
Lecturer:	Eugene Mclaughlin
Due Date:	14 December 2023
Project Title:	Homomorphic Encryption as a Counter Measure for Data Breach and Insider Threat

Word Count:	573	Page Count:	5
-------------	-----	-------------	---

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:Anurodhan Pradhan.....

Date:14 December 2023.....

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only

Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Anurodhan Pradhan Student ID:X22134638

1 Introduction

This document provides a detailed description for setting up and executing the proposed project. This project maps out the technical gap in the traditional encryption technique and implements Homomorphic Encryption in data as data security. This implementation is done using Python. This configuration manual will help to replicate and execute the proposed project.

2 System Requirements

Table 1:Software requirements

Software	Version
Python	3.9.6
PyCharm	2023.3 community edition

Table 2: Hardware requirements

Operating System	Windows 11
Processor	Inte I5 10 th generation
Hard Drive(SSD)	6 GB
Memory(RAM)	8 GB
Python 3	3.9.6
PyCharm	2023.3 community edition

3 Dependency

3.1 Installing Python

Step 1: Download Python from the official site <u>https://www.python.org/downloads/</u>

- Step 2: Run the installer
- Step 3: Verify installation by checking in command line interface(CLI) type 'python –version' and press Enter.

3.2 Installing PyCharm

Step 1: Download PyCharm from

https://www.jetbrains.com/pycharm/download/?section=windows and choose the community version as it is free. Step 2: Run the installer.

Step 3. Launch PyCharm.

4 Libraries Required

NumPy	It stands for Numerical Python, renowned for its powerful N-
	dimensional array object. It deals with numerical operations. It offers
	comprehensive mathematical functions, random number generators,
	linear algebra, and polynomials. The speed and versatility come from
	efficiently handling large arrays and matrices in numeric data and its
	ability to perform complex mathematic operations on arrays
	efficiently.

5 Project Setup

.

In this section we are going to show the step-by-step process to execute the code.

Project ~	nain.py ×
 homoalpha E:\NCl\Research\homoalpha venv library root D Lib C Scripts 	<pre>import numpy as np from numpy.polynomial import polynomial as poly G usages def polymul(x, y, modulus, poly_mod): """Add two polynoms</pre>
 <i>Q</i> main.py 	<pre>6 Args: 7</pre>
	6 usages 18 def polyadd(x, y, modulus, poly_mod): 19 """Multiply two polynoms 20 Args: 21 x, y: two polynoms to be multiplied. 22 modulus: coefficient modulus. 23 poly_mod: polynomial modulus. 24 Returns: 25 A polynomial in Z_modulus[X]/(poly_mod). """" 26

1. Opening the file in PyCharm

2. Go to Python Packages and install NumPy library

E:\NCI\Research\homoalpha\venv\Scripts\python.exe E:\NCI\Research\homoalpha\main.py
Enter the value: Test
Original String: Test
Encrypted String [(array([28208, 31803, 3370, 28243, 14294, 11792, 26668, 19156, 27022,
21207, 18567, 1632, 7108, 6238, 26604, 6162], dtype=int64), array([18478, 2107, 25978, 1428, 19153, 16495, 11504, 20790, 18150,
27836, 25473, 25292, 16894, 4139, 12846, 8632], dtype=int64)), (array([17258, 22610, 25719, 29142, 21848, 29665, 19137, 14582, 27625,
24096, 18273, 28725, 11811, 6990, 29505, 3320], dtype=int64), array([20088, 15900, 11033, 22847, 18231, 9940, 12792, 14644, 31499,
4691, 19676, 11081, 22733, 16355, 7705, 24167], dtype=int64)), (array([20977, 7979, 8767, 158, 915, 27922, 10330, 1476, 10736,
29770, 17082, 19366, 12725, 21590, 4968, 2480], dtype=int64), array([368, 28199, 32221, 1600, 23628, 22861, 30212, 23746, 26517,
11886, 25937, 19380, 270, 22095, 21481, 7436], dtype=int64)), (array([10325, 29016, 8908, 32591, 29689, 31724, 21199, 1416, 32096,
1982, 19662, 7129, 5330, 19174, 20693, 17005], dtype=int64), array([21984, 26116, 15922, 29886, 11180, 15948, 17304, 20268, 23238,
784, 32246, 31650, 6775, 19621, 17295, 12810], dtype=int64))]
Decrypted String: Test

3. Run the code.

The code is executed successfully, and the output is displayed.

6 References

Foundation, T. P. (2023, Oct 2). *Python 3.12.0 documentation*. Retrieved from python.org: https://docs.python.org/release/3.12.0/

s.r.o, J. (2023, Dec 01). *Install PyCharm.* Retrieved from https://www.jetbrains.com/: https://www.jetbrains.com/help/pycharm/installation-guide.html