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Abstract 

In the digital era, where data breaches and insider threats are becoming common, securing 

sensitive data has become crucial. This research paper dives into Homomorphic Encryption 

(HE) as an innovative solution to these cybersecurity challenges, comparing it with 

traditional encryption methods. The motivation behind this study is driven by the need for 

encryption techniques that allow data processing while maintaining absolute confidentiality, 

even after the data gets exposed. This study assesses HE's ability to ensure data privacy 

during computing and resist potential quantum computing threats. This research compares 

HE with traditional encryption techniques, emphasising HE's unique potential to carry out 

calculations on encrypted data and providing a better way of maintaining data integrity and 

confidentiality in complex processing scenarios. This research plays a significant role in 

encountering data privacy and security threats. The advanced level of security enables the 

computation of encrypted data. However, a substantial amount of computation overhead and 

complexity will be there. Despite these challenges, the potential of HE to safeguard data 

against insider threats, data breaches and future quantum attacks makes this research 

important to the end users, which includes organisations and individuals. In this report, we 

presented an algorithm to perform HE on strings, numbers, and special characters. The 

implementation and details of the algorithm and results are shown. 

 

1 Introduction 
 

In this decade of digital technology, there has been a significant change in the data security 

in managing the data. Primarily, it focuses on the advanced measures for protecting it 

inside-out. The significant change has been driven by massive technological advancements, 

which have transformed the whole data structure, including data storage, access, and 

protection mechanisms (Patel, 2023). The technological revolution has led to exponential 

growth in the amount of data generated, stored, and processed online. From personal 

information to critical organisational data. Everything is stored digitally nowadays—the 

only way to get targeted by cybercriminals (ACAR, et al., 2018). The increase in 

digitalisation has also elevated the risks associated with data breaches, where unauthorised 

access to the data can lead to severe consequences, such as identity theft, which can end up 

causing substantial financial loss and reputation damage. 

We use the data by accessing it and utilising it with the help of cloud computing and in-

house servers. The data is no longer secure. It is frequently accessed and processed over 

various networks, sometimes over international boundaries. This widespread distribution of 

data poses a significant challenge in ensuring its security as the traditional structure and 
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defence mechanism to secure the data is no longer adequate as the technology is evolving 

with that cybercriminal as well. 

Advanced encryption methods are needed to overcome this challenge. Traditional 

encryption techniques are effective in a specific context but have some limitations in the 

new digital technology or digital environment. It often requires data to be decrypted for 

processing, which leads to a potential vulnerability exposure. Additionally, the increase in 

computation power available to cyber criminals has made it specific to breaking down the 

older encryption methods with the resources. According to the sources, 34% of businesses 

globally suffer the consequences of insider threats yearly, and 6.41 million of data was 

breached in the first quarter of 2023 (Sectara, 2023) (Petrosyan, 2023). 

As a result, the technology has switched to creating more robust and flexible encryption 

solutions that can protect data not only while it is in rest or in transit but also while the data 

is computing. Here is where HE comes into play, providing a novel way to safeguard data 

while it is in computation. HE encryption ensures the confidentiality and integrity of the 

data throughout its lifecycle by enabling the computations on encrypted data without 

needing to decrypt it first (Alaya, et al., 2023). This is how HE will prevent the insiders 

from accessing the data. Suppose the data is exposed in an incident. In that case, the data is 

secure due to the latest form of encryption, which can only be decrypted by a corresponding 

secret key. This research will address the current security gap in the digital era (TEK˙IN, 

2023). 

1.1 Question and Answer 

 

Table 1: Research question and answer 

Q1. What are the two primary security 

challenges faced by organisations in the 

digital age? 

 HE addresses both data breaches and 

insider threats by allowing secure 

computations on encrypted data. 

Q2. How do data breaches and insider 

threat typically occur in organisations? 

 HE mitigates data breaches and insider 

threat by keeping data encrypted even 

during processing, eliminating the need 

for decryption in vulnerable 

environments. 

Q3. What are the limitations of traditional 

encryption methods in preventing data 

breaches and insider threats? 

 HE overcomes the limitations of 

traditional encryption by encrypting data 

throughout its lifecycle, reducing the risk 

of exposure during processing. 

Q4. What role do vulnerabilities in 

traditional encryption play in facilitating 

insider threats and data breach? 

 HE reduces the window of opportunity 

for insider threats and data breaches by 

ensuring data remains encrypted even 

during computing, unlike traditional 

methods. 
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1.2 Structure of the report 
 

The report begins with abstract an in section 1 an introduction detailing the background, 

problem statement, solution strategy is described , followed by literature review on data 

breaches, insider threats, and HE and its types in section 2. A research methodology 

describing the research design and analysis techniques in section 3, a design specification 

explaining the technology, techniques, and algorithms in section 4, an Implementation 

discussing the use of tools and HE solutions in section 5, an evaluation assessing 

implementation across various data types in section 6. A discussion and comparative study 

on HE and other tradition algorithms in section 7. A conclusion and future work 

highlighting key findings and potential future research directions in section 8 and at last 

references in section 9. 

 

 

2 Related Work 

2.1 Data breach 
 

A data breach is an event when private, sensitive, or protected data is accessed or revealed 

without authority. It frequently results from security flaws like hacking, insider threats, or 

human error, which puts the people and organisations involved at risk of identity theft, 

financial loss, and reputational harm. This paper focuses on the creation of a database for 

data breach incidents, drawing from various public resources to analyze and understand 

trends in data breaches, particularly from 2018 to 2019. It addresses the challenges and 

limitations involved in building such a database, underscoring the importance of encryption 

and additional security measures for data protection. The research aims to enhance data 

security and privacy by providing insights into identity theft, financial losses, and 

reputational harm caused by data breaches due to hacking, insider threats, or human error. 

The findings offer valuable recommendations for improving organisational strategies and 

standard operating procedures to prevent future data breaches. (NETO, et al., 2021). At the 

end of the attack, the cybercriminals want the victim's data. To enhance data security, this 

research will fill the technical gap with the help of HE as a countermeasure against data 

breaches and insider threats. We will use HE to improve security. However, something 

happens, and the hackers manage to get access to the data, but they cannot read or decrypt 

it. Thus, the data is secured, reducing the risk of data breaches. 

2.2 Insider Threat 
 

An insider threat is a security risk from within the organisation and usually involves a 

person given authorised access, such as employees, business partners and contractors. This 

paper presents a detailed classification of insider threats into seven categories, including IT 

sabotage, fraud, intellectual property theft, social engineering, unintentional incidents, cloud 

computing, and national security threats. It explores how these threats impact organisational 

security objectives and are driven by human behavior. While offering insights into both 

technical and non-technical methods for mitigating these risks, the paper notes a lack of 

supporting data and practical case studies. It emphasizes the need for deeper analysis of 

preventive measures and the adaptation of these generic strategies to specific organisational 

contexts, particularly in the face of growing cloud computing risks. At the end of the attack, 

the cybercriminals want the victim's data. To enhance data security, this research will fill 
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the technical gap with the help of HE as a countermeasure against insider threats. We will 

use HE to improve security. However, something happens, and the hackers manage to get 

access to the data, but they cannot read or decrypt it. Thus, the data is secured, reducing the 

risk of data breaches (Elmrabit, et al., 2015). 

2.3 Homomorphic Encryption and its types 
 

This paper (Ogburn, et al., 2013) delves into HE, a method that enables computations on 

encrypted data, producing results that align with operations on plaintext, thereby maintaining 

data privacy during processing. It examines the theoretical aspects and different types of HE, 

including fully, somewhat, and partially homomorphic encryption, focusing on its application 

in cloud computing for secure data processing. The paper includes a proof-of-concept to 

demonstrate practical implementation but tends to be narrow in scope, mainly addressing 

specific applications. It highlights the need for a deeper exploration of real-world challenges, 

such as efficiency and computational demands, to enhance the practical applicability of HE in 

various industries. These types differ in their capabilities and limitations: 

 

2.3.1 Fully HE (FHE): Fully Homomorphic Encryption (FHE) has a unique ability to 

perform a variety of calculations, including multiplication and addition, directly on encrypted 

data, thereby enabling computations of any complexity while ensuring unparalleled data 

privacy and security. However, the significant computational complexity of FHE limits its 

practicality, particularly in real-time processing scenarios where efficiency and speed are 

crucial, making it less effective compared to other forms of HE. 

 

2.3.2 Somewhat HE (SWHE): Somewhat Homomorphic Encryption (SWHE) enables 

limited addition and multiplication operations on encrypted data, suitable for tasks with 

known and set computational complexity (Yang, 2012). SWHE offers a tailored approach to 

processing encrypted data, balancing operational practicality and security. Its efficiency 

advantage over FHE makes it a more viable option for practical applications with limited 

computing needs. 

 

2.3.3 Partial HE (PHE): Partially Homomorphic Encryption (PHE) excels in supporting 

only one operation, either addition or multiplication, on encrypted data, making it ideal for 

specific applications that require a single type of computation. Its focused operational ability 

ensures efficiency and practicality in specialized settings, especially where speed and 

simplicity are essential and computational demands are limited to a single, well-defined 

operation. 

 

Every one of these encryption techniques has benefits and drawbacks of its own. The most 

computational flexibility provided by FHE but at the expense of computational performance. 

While more efficient than FHE, SWHE maintains a balance by providing more computational 

choices than PHE. PHE has the lowest efficiency and is best suited for applications that need 

to perform single, repeating tasks despite its restricted capability. To enhance data security, 

this research will fill the technical gap with the help of HE as a countermeasure against 

insider threats. We will use HE to improve security. However, something happens, and the 

hackers manage to get access to the data, but they cannot read or decrypt it. Thus, the data is 

secured, reducing the risk of data breaches. In the upcoming paper, we will discuss the 

implementation of HE. 

 



5 
 

 

2.4 Implementing Homomorphic Encryption 

This paper (S, et al., 2022) explores the concept of HE in cryptography, highlighting its 

ability to perform computations on encrypted data without decryption, thus enhancing data 

security, particularly in cloud storage and big data contexts. It discusses the evolution of HE, 

notably through FHE by Gentry, which allowed for more complex computations compared to 

previous systems like RSA. The paper proposes an innovative method combining HE with 

Advanced Encryption Standard (AES) in Cipher Block Chaining mode, addressing 

significant data security concerns. However, it acknowledges the complexity and 

computational demands of this approach, particularly with AES. It suggests that more 

analysis is needed to fully understand the security vulnerabilities of this integrated system. 

Despite these challenges, the proposed system is a step forward in securing string operations 

and data types with minimal computational overhead. To enhance data security, this research 

will fill the technical gap with the help of HE as a countermeasure against insider threats. We 

will use HE to improve security. However, something happens, and the hackers manage to 

get access to the data, but they cannot read or decrypt the data. Thus, the data is secured, 

reducing the risk of data breaches.  

This paper (Vemula, et al., 2023) delves into the advancements in HE, particularly focusing 

on FHE for secure cloud-based data storage. It highlights the development of FHE 

algorithms, which allow unlimited arithmetic operations on encrypted data, emphasizing their 

practical application in scenarios requiring secure cloud computation. The paper notably 

explores Craig Gentry's groundbreaking work in FHE, underscoring its capability for 

arbitrary computations on encrypted data without compromising confidentiality. This is 

crucial for sectors like finance and healthcare requiring high data privacy. The paper also 

discusses FHE's computational challenges, including Gentry's bootstrapping method, and 

points out the need for more practical implementations and prototypes to address its 

limitations, suggesting avenues for future research. It also highlights the necessity to compare 

FHE with other encryption methods to evaluate its efficiency and effectiveness, 

acknowledging differences in capabilities and limitations. To enhance data security, this 

research will fill the technical gap with the help of HE as a countermeasure against insider 

threats. We will use HE to improve security. However, something happens, and the hackers 

manage to get access to the data, but they cannot read or decrypt it. Thus, the data is secured, 

reducing the risk of data breaches. 

 

2.5 Literature Summary and gap 

From the literature survey above, despite advancements in data security and encryption, 

current approaches face challenges like limited scope, computational inefficiencies, and a 

lack of comprehensive security evaluations. This underscores the need for further research 

into advanced and efficient encryption methods, particularly improved versions of HE, to 

address these limitations. Our research aims to bridge this gap by proposing HE as a robust 

solution against evolving cybersecurity threats, focusing on enhancing data security against 

insider threats and data breaches across various applications. 
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2.6 Inferences Drawn 
 

Table 2: Inferences drawn from literature survey 

Authors and Paper name Year of 

Publication 

Significance 

[1]N. N. NETO, S. MADNICK, A. M. 

G. D. PAULA and N. M. BORGES, 

"Developing a Global Data Breach 

Database and the Challenges 

Encountered” 

2021 Creating a database to analyse 

patterns in data breaches which 

emphasizing the need of encryption 

and security measures in databases. 

[2] N. Elmrabit, S.-H. Yang and L. 

Yang, "Insider Threats in Information 

Security" 

2015 Evaluates techniques for mitigating 

insider threats and categorise them 

to understand and control these risk, 

technology controls and human 

behaviour analysis are integrated. 

[3]M. Ogburn, C. Turner and P. 

Dahal, "Homomorphic Encryption"  

2013 Describes the three different forms 

of HE and offers theoretical 

explanations of their advantages 

and disadvantages for processing 

data securely. 

[4] R. S, V. B, A. B. Mehta and P. B. 

Honnavalli, "Homomorphic 

Encryption Approach for String" 

2022 The integration of HE with the 

Advanced encryption 

Standard(AES) in cipher block 

chaining mode is examined in this 

study, with a specific focus on safe 

string operations in big data and 

cloud computing. 

[5] S. Vemula, R. M. R. Kovvur and 

D. Marneni, "Algorithms for 

Implementing Repeated 

Homomorphic Operations on 

Restricted Data Type," 

2023 It particularly focuses on its use in 

cloud-based data storage, along 

with craig Gentry’s Fully HE 

approaches, which allows arbitrary 

computations on encrypted data 

without the need for decryption. 

 
 

In table 2 the significance of each paper has been described. 
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3 Research Methodology 
 

This research aims to demonstrate the implementation of HE of strings, numbers and special 

character using Python; it is a powerful form of encryption that uniquely allows 

computation to be performed directly on encrypted data without compromising its 

confidentiality. This feature of HE differentiates it from traditional encryption techniques 

and creates novel prospects for safe data processing in Complex environments. 

 

Figure 1: Workflow of the proposed system 

 

 

3.1 Key Generation 
 

Key generation keygen() is a crucial process in cryptography (Abdalrdha, et al., 2019). It 

creates a pair of cryptographic keys as the public and Secret keys. These keys are used for 

securing the communication and data. The key generation process usually involves selecting 

a large random number and performing mathematical operations to generate the key pair. 

This is also depending on the cryptographic algorithm that has been used. 

The purpose of key generation is to generate pair keys using keygen(), which will be used for 

encryption and decryption of data. 

  

3.2 Public Key 
 

 

Figure 2: Public key 

This is a publicly shared key pk() used to encrypt data. In most cryptographic systems, 

anything encrypted using a public key can only be decrypted by a suitable Secret(private) key 
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(Hellman, 1978). A public key is a fundamental cryptography component used for secure 

data transmission. 

The purpose of public key pk() is to encrypt the data. 

3.3 Secret Key 
 

 

Figure 3:Secret key 

The secret key sk() is kept confidential, and it is used to decrypt the data that has been 

encrypted with the public key. It is also used in some systems as a digital sign document, 

ensuring the authenticity and integrity of the data. A secret key is a crucial cryptography 

component, forming one-half of a cryptographic key pair. 

The secret key sk() is to decrypt the encrypted data. 

 

3.4 Encryption 
 

It is a process in cryptography where data is referred to as plaintext and is converted into a 

coded form known as ciphertext. This transformation is done to prevent unauthorized access 

or reading of the data. The primary purpose of encryption is to protect the confidentiality of 

digital information stored on the computer or transmitted via the internet or another network 

(S.Suguna, et al., 2016).  

 

3.4.1 Types of encryptions: 

Symmetric encryption: Data encryption and decryption with a single key are the 

characteristics of symmetric encryption. The key, known as the secret key, needs to be shared 

between the parties to communicate. Because of its efficiency and speed, it is ideal for 

encrypting considerable amounts of data. Common algorithms such as Triple DES, Data 

Encryption Standard (DES), and Advance Encryption Standard (AES) are used. 

Asymmetric encryption: This is also known as public key encryption, in which two keys are 

used: a public key for encrypting the data and a private or secret key to decrypt the data. The 

private key needs to be kept confidential. Only the matching private key can decrypt the 

encrypted data. It is specially used for establishing secure communication over insecure 

channels like the internet and for the digital signature. Algorithms like Elliptic curve 

cryptography (ECC) and Rivest-Shamir-Adleman(RSA) are used in this encryption.  
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The purpose of encryption is to encrypt the data using the public key. Here, 

the encrypt() takes the plain text and the public key as input and encrypts the data as cipher 

text. 

3.5 Decryption 
 

It is a process of converting encrypted data(cipher text) back into its original text( plain text), 

making it understandable. It is also the reverse operation of encryption in the field of 

cryptography. The primary purpose of the decrypt() is to convert the unreadable, encrypted 

data back into its original, readable form, with the secret key allowing authorized users to 

access and interpret the information. 
 

3.6 Operation 
 

The core component of this project, and its primary objective, revolves around executing 

arithmetic operations on encrypted data using HE. This is accomplished through two 

functions: 'add_plain' and 'mul_plain'. The 'add_plain' function performs addition 

between ciphertext and plaintext, giving new encrypted data without decrypting the original 

ciphertext, thereby maintaining data security and confidentiality. Similarly, the 'mul_plain' 

function multiplies plaintext with ciphertext, producing a new encrypted result, ensuring the 

data remains encrypted throughout the process.  
 

3.7 Evaluation 
 

The effectiveness of HE in this project is evaluated through various measurements using a 

Python framework.  

Functional accuracy: is assessed by controlled tests on encryption, processing, and 

decryption, ensuring system integrity and reliability.  

Performance metrics: focus on processing speed and resource utilization, identifying 

bottlenecks and scalability.  

Security analysis: tests the system's robustness against cryptographic attacks and assesses 

algorithm strength for data privacy and protection.  

Usability and flexibility: evaluation looks at the ease of integration and adaptation in various 

applications, enhancing developer accessibility.  

Finally, a comparative analysis positions HE against traditional encryption methods, 

highlighting its unique advantages and limitations in performance, security, and usability. 
 

 

4 Design Specification 

 

Figure 4: Flow chart 

We have illustrated the process of proposed methodology for the implementation of the HE in 

Figure 4 which is followed by: 
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4.1 Key Generation 
 

The key generation process in HE starts with creating a secret key ‘sk’ as a binary 

polynomial, where coefficients are either 0 or 1, and its degree is determined by the 

parameter 'size'. This key is crucial for decryption. Next, a polynomial ‘a’ with uniformly 

random coefficients is created, each chosen from a uniform distribution within a specified 

modulo space defined by ‘modulus’. Following this, a noise polynomial ‘e’ is generated, 

with coefficients from a normal distribution, essential for the scheme's security. The 

polynomial ‘b’ is computed by multiplying ‘a’ with the negative of ‘sk’ and adding the noise 

polynomial ‘e’ denoted as ‘polymul(-a, sk, modulus, poly_mod)’ and ‘polyadd(polymul(-

a, sk, modulus, poly_mod), -e, modulus, poly_mod)’ respectively, followed by modular 

reduction and division by the polynomial modulus ‘poly_mod’. The public key ‘pk’ is 

formed as the tuple ‘(b, a)’, facilitating the encryption process. This method ensures the 

security of the encryption process by involving the secret key in the formation of the public 

key without direct usage in encryption, leveraging polynomial arithmetic under modular 

constraints. 
 

4.2 Encrypt String 
 

The 'Encrypt String' process in HE involves converting each character of an input string into 

its corresponding ASCII (American Standard Code for Information Interchange) value, a 

standard numerical representation used in electronic communication. For instance, 'A' and 

'B' are represented as 65 and 66, respectively. This conversion is essential since the 

encryption operates on numerical values. Each ASCII value is then encrypted individually: it 

is encoded as a polynomial with the integer as its constant term and all other coefficients set 

to zero. This polynomial undergoes scaling, aligning it with the ciphertext space, and is 

fortified with added noise for enhanced security, making it resilient against various 

cryptographic attacks. 

The encryption process includes polynomial arithmetic using the public key, where the 

plaintext polynomial is combined with the polynomials from the public key and additional 

noise, culminating in a tuple of polynomials that represent the encrypted ASCII value. The 

outcome of the 'encrypt string' function is an array of such tuples, each signifying the 

encrypted form of a character from the original string (Gangula, 2022). This array can be 

securely stored or transmitted, ensuring that only individuals with the appropriate secret key 

can decrypt it back to the original string. In essence, the 'encrypt_string' function transforms 

each character into an ASCII value, encrypts it using polynomial based HE, and outputs an 

array of tuples representing the encrypted string. 

 

4.3 Encryption Process 
 

Encryption in HE specifically focuses on encrypting ASCII values of characters as integers. 

The process begins with encoding an integer into a polynomial 'm', setting it as the constant 

term while other coefficients are zero. For example, the integer 65 is encoded into the 

polynomial 'm' as 65 + 0x + 0x² + ... up to the required size. This polynomial is then scaled 

by a delta factor, derived from the ciphertext modulus 'q' and plaintext modulus 't', aligning 

the plaintext with the ciphertext space, crucial for HE's functionality. Noise polynomials 'e1' 

and 'e2', generated from a normal distribution, along with a random binary polynomial 'u', 

add cryptographic security and randomness to each encryption. The ciphertext components 
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'ct0' and 'ct1' are calculated using polynomial arithmetic with the public key, under the 

modular arithmetic defined by 'q'. The resulting tuple '(ct0, ct1)' represents the encrypted 

integer, encapsulating encrypted data in a manner that permits computations without 

decryption, thus fulfilling the homomorphic property. 

 

4.4 Decrypt String 
 

The 'decrypt_string' function decrypts an encrypted string by processing an array of 

ciphertext tuples, each representing an encrypted ASCII value of a character. The decryption 

involves two main steps: first, each ciphertext tuple undergoes polynomial arithmetic using 

the secret key, reversing the encryption process. This includes polynomial multiplication, 

addition, modular reduction, and scaling down to map the ciphertext back to plaintext space, 

thus retrieving the original ASCII values. Second, these decrypted ASCII values are 

converted back to their corresponding characters based on the ASCII standard (e.g., an 

integer 65 is converted to 'A'). The function iteratively decrypts each tuple in the ciphertext 

array, reconstructing the original string by converting the decrypted integers back to 

characters, effectively reversing the encryption process. 

 

4.5 Decryption Process 
 

The 'decrypt' function is key in reversing the encryption process in HE. It starts by 

performing polynomial arithmetic with the secret key and ciphertext, where 'ct1' is multiplied 

by the secret key, and 'ct0' is added, all under modular constraints. The resulting polynomial 

is then scaled down to align the values from ciphertext to plaintext space, followed by 

rounding off the coefficients to nearest integers to counteract fractional values introduced 

during encryption. The final step involves extracting the first coefficient of the scaled 

polynomial, representing the decrypted integer value. This process effectively retrieves the 

original plaintext integers through a series of strategic polynomial operations and 

adjustments. 

 

4.6 Algorithm 
 

Step 1: Key Generation (keygen) 

• Inputs: size (polynomial size), modulus, poly_mod (polynomial modulus). 

• Generate sk using gen_binary_poly(size). 

• Generate a using gen_uniform_poly(size, modulus). 

• Generate e using gen_normal_poly(size). 

• Calculate b using polyadd(polymul(-a, sk, modulus, poly_mod), -e, 

modulus, poly_mod). 

• Outputs: Public key (pk) as (b, a), secret key (sk). 

 

Step 2: Encrypt Integer (encrypt) 

• Inputs: Public key (pk), integer (pt), size, q (ciphertext modulus), t (plaintext 

modulus), poly_mod. 

• Encode pt into a polynomial m. 

• Scale m to scaled_m. 
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• Generate e1, e2, and u using gen_normal_poly(size) and 

gen_binary_poly(size). 

• Calculate ct0 and ct1 using polynomial operations with pk and u. 

• Output: Ciphertext as (ct0, ct1). 

 

Step 3: Encrypt String (encrypt_string) 

• Inputs: Public key (pk), plaintext string. 

• For each character: 

• Convert to ASCII value. 

• Encrypt using encrypt function. 

• Output: Array of ciphertext tuples. 

Step 4: Decrypt Integer (decrypt) 

 

• Inputs: Secret key (sk), ciphertext tuple (ct), size, q, t, poly_mod. 

• Compute the scaled polynomial from ct and sk. 

• Scale down and round off the result. 

• Extract the first coefficient as the decrypted integer. 

• Output: Decrypted integer (ASCII value). 

 

Step 5: Decrypt String (decrypt_string) 

• Inputs: Secret key (sk), array of ciphertext tuples. 

• For each tuple: 

• Decrypt using decrypt function. 

• Convert decrypted integer to character. 

• Output: Decrypted string. 

 

This pseudocode represents the key processes in HE algorithm, including key generation, 

encryption and decryption of both integers and strings. Each function is outlined with its 

inputs, operations, and outputs, providing a structured and clear representation of the 

algorithm's workflow. 

 

5 Implementation 
 

In this section, the whole implementation of HE, along with the result, tools used, and the 

libraries used, will be discussed. The goal was to implement HE in strings, which is under 

development in cryptography. Here, in this research, we will show the implementation of 

HE in Strings. 
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5.1 Tools and language used: 

Python is chosen for its extensive libraries and tools, was utilized to implement HE in 

strings. The project, aimed at simplicity, effectiveness, and flexibility, did not use inbuilt 

HE libraries due to maintenance and resource demands. 

 

Figure 5: NumPy 

NumPy is chosen for its compatibility across systems and specialization in numerical 

computing, it offers efficient polynomial arithmetic operations crucial for HE. Its advantages 

include smooth system-wide code execution and fast computation capabilities. 

 

5.2 Final Configuration of the solution: 
 

This project successfully implements HE on strings, a crucial advancement as HE allows for 

computation on encrypted data without exposing it. With data increasingly stored digitally, 

traditional encryption methods are vulnerable to cybercriminals with advanced computing 

resources. HE stands out as a robust encryption technique, offering a simple, effective, and 

resource-efficient solution. This implementation, utilizing SWHE, marks a significant step 

in enhancing data security in the digital age. 

This project focuses on implementing HE for string operations, specifically addition and 

multiplication, outputting results as encrypted numbers. These can be securely stored in 

databases and updated or retrieved using a secret key, effectively mitigating insider threats 

and data breaches. The encryption is robust enough to resist decryption even with advanced 

computing resources, requiring a quantum computer to break. HE facilitates secure data 

migration to the cloud, a capability lacking in traditional encryption methods. The use of 

NumPy enhances performance, making HE a crucial tool in data security across various 

digital storage technologies. Future work involves integrating this implementation into 

databases and data storage technologies. 

 

6 Evaluation 
 

In this section, we will critically assess the results and the findings of the implementation, 

focusing on the practical and theoretical aspects of the findings. We have implemented 

SWHE on strings. The arithmetic operations that are being performed are addition and 

multiplication. The purpose of the research is to assess the effectiveness of HE in data 

security against insider threats and data breaches. The evaluation is based on various 

parameters, which include data security, computational efficiency, and practical feasibility. 

Here are some of the case studies regarding the evaluation: 
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6.1  Case Study 1: Testing in Integers 
 

 

Figure 6: Output for integers 

 

In figure 6 it shows the output of an integer as input which has been encrypted and being 

displayed in tuples as ciphertext and after the encryption the decryption is also shown in the 

output which is similar as input which defines the success of implementation of HE in 

Integers.  

6.2 Case Study 2: Testing in special characters 
 

 

Figure 7: Output for special characters 

In figure 7 it shows the output of symbols as input which has been encrypted and being 

displayed in tuples as ciphertext and after the encryption the decryption is also shown in the 

output which is similar as input which defines the success of implementation of HE in 

symbols.  

6.3 Case Study 3: Testing in strings 
 

 

Figure 8:Output for strings 

In figure 8 it shows the output of strings as input which has been encrypted and being 

displayed in tuples as ciphertext and after the encryption the decryption is also shown in the 

output which is similar as input which defines the success of implementation of HE in strings. 
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6.4 Case Study 4: Testing the combination of integers, special characters 

and strings 
 

 

Figure 9:Output for combination of integer, special character and strings 

In figure 9 it shows the output of combined input which has been encrypted and being 

displayed in tuples as ciphertext and after the encryption the decryption is also shown in the 

output which is similar as input which defines the success of implementation of HE. 

 

 

 

7 Discussion 
 

The key finding of this project is to maintain the data integrity and the confidentiality of the 

data using HE. This study shows that HE can be implemented on strings and in special 

characters and integers. This highlights flexibility in data security. With the help of this 

study, HE could be implemented in the database to perform certain operations on data. We 

have to run SQL queries, which include a mixer of special characters, integers and strings, 

which make HE advantageous over other encryption techniques. The implementation is easy 

and efficient using a standard and lightweight library. This improves the accessibility to HE 

but also makes it useful for devices with low processing power, giving more advantages over 

other traditional techniques that use huge libraries, which require high computer power. From 

an academic perspective, this research significantly contributes to cryptography and data 

security by implementing HE in real-world situations, especially cloud computing. A 

significant weakness in traditional encryption techniques has been addressed by HE to 

maintain the data encrypted even in processing. This report also emphasises the strategic 

significance of HE in preventing insider threats and data breaches. HE offers an essential 

layer of security in situations like data breaches and insider threats by ensuring that the 

compromised data stays safe and unreadable without the required secret key. This research 

concludes that HE's versatility and vast application possibilities are especially significant. 

Because HE can maintain confidentiality and integrity throughout a wide range of data 

formats, it is a solid and adaptable encryption technique that can be used in various 

industries, such as government, healthcare, and finance. In short, this study not only shows 

how homomorphic encryption can improve data security but also creates new opportunities 

for cryptography research and development, creating safer and more effective data 

management techniques. 
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7.1 Comparative analysis 
 

Table 3: Comparative analysis for Traditional encryption and HE 

Traditional Encryption Homomorphic 

Encryption(HE) 

HE advantages 

Security in data processing 

required decryption, posing 

potential security threats. 

Security in data processing 

enables computation on 

encrypted data, Security is 

maintained throughout the 

process 

Superior security during 

data processing 

Cloud computing data must 

be decrypted for processing 

in the cloud, leading to 

privacy and compliance 

issues 

Cloud computing data 

utilisation allows secure 

outsourcing of computation 

tasks on encrypted data in 

cloud environments 

Enhanced privacy and 

utility in cloud computing 

Many algorithms are 

vulnerable to quantum 

computing attacks 

Resistance to quantum 

threats some HE is resistant 

to quantum computing 

attack as it offers future-

proof security 

Future-proof against 

emerging quantum threats 

Not capable of supporting 

complex application  where 

encrypted data needs to be 

processed 

Complex application 

support  such as secure 

electronic voting, 

maintaining data encryption 

during processing. 

Supports complex scenarios 

maintaining data privacy. 

Simpler and well-

understood, making it easier 

to implement and manage 

Highly complex due to 

advance mathematical 

operations 

Allows more secure and 

advanced operations. 

Less flexible as it requires 

data decryption for 

computation 

Flexible in terms of 

computation on data 

Flexibility in secure data 

processing. 

 

In Table 3 we have a comparative analysis table of HE with other traditional algorithm and 

stated the advantages of HE over traditional algorithm. 
 

8 Conclusion and Future Work 

8.1 Conclusion 
 

This research aimed to implement HE on strings, which started with implementing HE on the 

numbers and then moving forward to strings. The implementation was successfully 

completed on strings. This research aimed to implement HE on strings, which was 

successfully achieved. This research also addresses the weakness in traditional encryption 

techniques by implementing HE and using minimal computer power, which can be adaptable 

in every environment, making it robust. This project showcases a security layer in data that 

can be a countermeasure against insider threats and data breaches. This research also 



17 
 

 

addressed the gap in implementing HE in the database, where the problem was executing 

SQL queries on the database. In this research, the implementation is not only done in strings. 

It is also in numbers and Special characters, which makes it robust and can be implemented 

in the database. The comparative analysis further underscores HE's advantages in terms of 

enhanced security during processing, resistance to quantum threats, and support for complex 

applications while acknowledging its computational complexity. 

8.2 Future Work 
 

Future research should focus on the implementation in HE in databases and objects. Further 

exploration into reducing the complexity and enhancing the user-friendliness of HE systems 

would also broaden its adoption. Additionally, developing advanced HE schemes that are 

resistant to quantum computing attacks would future-proof data security against emerging 

threats. The implementation of HE in databases and its integration with current 

cybersecurity infrastructure offer promising avenues for further exploration, potentially 

revolutionizing how sensitive data is processed and protected in an increasingly digital 

world. 
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