

ML Advancements in Malware Detection: Bridging
Memory and Behavior

MSc Research Project
Cybersecurity

Ajay Kumar Oad
Student ID: 22183841

School of Computing

National College of Ireland

Supervisor: Dr. Arghir-Nicolae Moldovan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Ajay Kumar Oad
……..…….………………………………………………………………………………………………

Student ID:

22183841
……….

Program:

MSc Cybersecurity
………………………………………………………………

Year:

2023
………………….

Module:

MSc Research Project
…….…

Supervisor:

Dr. Arghir-Nicolae Moldovan
…….…

Submission
Due Date:

14/12/2023
…….…

Project
Title:

MSc Research Project
…….…

Word
Count:

8602
……………………………………… Page Count……22……………………………………….

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on a computer.

□

Assignments that are submitted to the Program Coordinator Office must be placed into
the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

ML Advancements in Malware Detection: Bridging
Memory and Behavior

Ajay Kumar Oad
22183841

Abstract

Malware remains a persistent and evolving challenge in the digital landscape, often
evading detection by traditional security measures. As new malware types emerge with
increasing frequency, it is crucial to develop effective tools and techniques to combat these
threats. This study investigates the potential of advanced machine learning (ML)
techniques to enhance the detection and classification of malicious software. Employing
a variety of ML models on three distinct datasets, we conducted AV detection on each
dataset to assess its effectiveness in identifying and classifying malware within the
datasets. Our findings suggest that hybrid detection models, which combine both memory
and behavioral features, hold the most promise for improving malware detection accuracy
and adaptability. We discovered that using both memory and behavioral features
significantly increased detection accuracy from 73.72% to 81.02%, highlighting the
effectiveness of ML models in detecting malware. Our next step is to investigate the
stability of these methods when incorporating specific data features or employing
optimization techniques.

 Keywords: Malware detection, Fileless malware, Malware behaviors, Memory dumps.

1 Introduction
Malware, a program designed to harm computer systems, poses a significant threat to
individuals and organizations. Malware can disrupt operations, damage systems, and steal
sensitive data. Cybercriminals create malware to make money, often demanding ransom
payments in exchange for restoring access to a victim's computer. Malware is spread through
various methods, including infected software, phishing emails, and malicious websites.

Among the multitude of malware types, "fileless malware" stands out for its stealth. Unlike
typical malware, it does not reveal itself as identifiable files as it avoids signature-based
detection, file scanning, sandboxing, and others. Instead, it sneaks into a computer's memory,
making detection quite challenging. It is related to a skilled intruder navigating hidden
pathways to dodge security measures, evading detection by dwelling solely in a computer's
memory. This covert malware infiltrates memory without leaving the usual traces, behaving
like an undercover agent collecting personal information or causing disturbances without
noticeable signs.

For instance, (Hendler et al., 2018) explains that PowerShell Empire and Kovter are notable
fileless malware types tricky to detect as they do not rely on conventional files and lurk in less
obvious parts of a computer, making their identification complex.

There are varies signs indicating a system is under a fileless malware attack, such as suspicious
network activity, unusual activity in the registry or WMI, excessive use of legitimate tools,
abnormal spikes/behavioral in CPU or memory usage, unexpected changes to system settings
or permissions and abnormal behavior from users.

2

Both individuals and organizations face outcomes from these elusive fileless malware types.
Individuals might suffer personal data breaches or financial losses, while organizations endure
severe consequences like data breaches, operational disruptions, financial setbacks, and
damaged reputations.

To counter these elusive threats, this research introduces novel contributions:
 A specialized dataset containing 215 fileless malware instances, focusing on unique API-

based features, offering a fresh perspective on understanding fileless malware behavior—
a novel endeavor in this field.

 Improvement of existing datasets through thorough analysis, leading to substantial
enhancements in classification accuracy, particularly for detecting fileless malware.

 Integration of behavioral features from the initial dataset into commonly used memory
dump datasets, allowing for a more comprehensive analysis, improving the capability to
detect fileless malware within memory dumps.

The goal is to use new ways like spotting behavior and recognizing patterns to make our
defenses stronger against tricky online dangers. It is like using smart plans to catch enemies
and make sure our digital stuff stays safe.

1.1 Research Objectives
We studied how well computer programs can predict malware in different sets of data. We
wanted to know if these programs can still do a better job when the information they're given
is not strongly connected. Our investigation explores how to enhance the detection of fileless
malware through a synergistic application of Memory features and behavioral features. This
aligns with our overarching research question:

How the combination and separate use of Memory features and behavior features enhance
the malware detection accuracy?
Our exploration delves into the potential impacts and implications of creating a hybrid
detection model, as well as its separate utilization, on system performance and resource
utilization.
 Our research contribution lies in combining memory and behavior features that boosted

malware detection accuracy from 73.72% to 81.02%, showcasing the effectiveness of
machine learning models.

1.2 Contribution to Academic Understanding
This study aims to contribute valuable insights to the academic discourse on cybersecurity by
delving into the potential of machine learning methodologies in handling diverse malware
datasets. The comparative analysis of these datasets, varying in correlation levels, promises to
shed light on the predictive capacities of machine learning algorithms in detecting malware
instances.

1.3 Structure of the Report
This section explains the structure of our report. By looking at what experts have already
studied about this in Section II. Then, in Section III, it explains how we did our research, talking
about the data we used, how we prepared it, and the computer programs we used. Sections IV,
V, and VI go into the details of how we planned and designed our research, how we put it into
action, and then how we checked if it worked well. Lastly, in Section VII, we wrap it up by

3

summarizing what we found and suggesting what could be explored next in the field of finding
and stopping malware.

2 Related Work
The literature review section serves as a foundation for understanding the landscape of malware
detection within the realm of behavioral and memory dump analysis, with most recent studies,
aligning with our exploration using the three different types of datasets, see section 3.1.

2.1 Fileless malware: Detection Techniques and Challenges
(Sudhakar & Kumar, 2020), explores the changing landscape of cyber threats, shifting from
traditional malware to more advanced fileless malware. Unlike usual malware, this type doesn't
rely on regular executables, making it harder to detect with standard antivirus tools. Enterprises
face challenges due to their persistence and ability to bypass security measures by using trusted
operating system tools. This study also examines detection techniques and proposes an incident
response model but notes gaps and associated difficulties. It stresses the urgency of focusing
on detecting and preventing fileless malware attacks, especially as attackers exploit trusted
applications to evade detection. Recent high-profile attacks on entities like SWIFT and the
Ukraine power grid highlight the ongoing threat to critical infrastructure from such
sophisticated cyber-attacks.

(Khushali, 2020), in this paper, examines malware a harmful software threatening computer
systems. Traditional types like viruses, worms, and Trojans are known, but a new threat called
fileless malware operates in system memory, leaving minimal trace. This type targets Windows
tools like PowerShell and WMI, making detection challenging. This paper also researches into
various detection and mitigation methods, aiming to clarify misconceptions. It concludes by
stressing the critical nature of fileless malware, advocating for solutions that automatically
analyze system behavior to prevent its infiltration into memory.

(Borana et al., 2021) examines fileless malware, a tricky threat as it avoids detection by not
leaving traces. They propose a tool to help forensic experts spot unusual system activities
linked to this malware. The study stresses how fileless malware persists and avoids detection,
showing the growing risk it poses. It calls for more research on security methods to tackle this
evolving threat, suggesting behavioral analysis despite its resource use. Additionally, they
recommend using machine learning and AI-based systems to combat these attacks, highlighting
the need for specific defenses against different types of fileless malware.

(Dang et al., 2019), highlighted the rising threat of cyber-attacks on Linux based IoT devices,
particularly focusing on fileless attacks rather than traditional malware-based ones. Their
research, utilizing IoT honeypots, revealed insights into the frequency, strategies, and impacts
of these fileless attacks, often evading conventional defense methods. This shift in attention
emphasizes the necessity to fortify IoT security beyond malware defense, stressing the
importance of integrating heightened awareness and robust defense mechanisms against
fileless attacks. The study underscores the critical need for updated defense tactics to safeguard
widely used IoT systems.

In this research, (Bozkir et al., 2021) addressed countering fileless malware, which evades
detection by not leaving traces on devices. They proposed a method using computer vision and
machine learning to convert memory dumps into images for malware identification. Testing on
diverse data showed a 96.39% accuracy in detection and employed UMAP, boosting
recognition by 21.83%. This method proved both effective and speedy, taking only 3.56

4

seconds on standard computers. The future involves exploring neural networks for improved
accuracy and leveraging UMAP's capabilities for synthetic image feature generation,
promising advancements in malware defense strategies.

2.2 In Memory Detection Techniques and Mitigation Strategies
(Lee et al., 2021) studied ten recent cyberattacks using fileless malware in the last five years,
aiming to understand these attacks better. Current defense systems struggle to catch these
fileless attacks, leading to fragmented reports from security vendors. To bridge this gap, the
study closely examined the specific methods and traits of these attacks using both real samples
and published reports. They used Cuckoo Sandbox to analyze samples and proposed a
classification method dividing attacks into evasion, attack, or collection categories based on
techniques used. The goal is to create a solid framework for recognizing and categorizing
fileless cyberattacks, helping to deal with future cybersecurity threats more effectively.

(Bucevschi et al., 2019), focuses on cybersecurity's changing landscape, especially in detecting
evolving cyber threats. Traditional methods struggle with non-persistent attacks, prompting the
proposal of entry-level anomaly detection using command line arguments from system tools.
This approach, based on a modified Perceptron, aims to spot anomalies in files with PowerShell
code often used by attackers. UAnomaly, the proposed solution, targets file-less attacks using
legitimate Windows processes, offering a potential supplement to existing antivirus solutions.
It could aid in creating new datasets for training, advancing defenses against file-less attacks
and zero-day vulnerabilities that harm businesses.

(Varlioglu et al., 2022) critically examines the evolving threat landscape of "Fileless
Cryptojacking," merging fileless malware and cryptojacking into a discreet and challenging
issue post-2020. It researches academic and industry literature, emphasizing the lack of
exploration around in-memory fileless cryptojacking despite attention to in-browser and in-
host cryptojacking. The parallels between ransomware and cryptojacking, operating within
computer memory using legitimate Windows processes for malicious activities, are
highlighted. The paper proposes a novel threat-hunting approach within Digital Forensics and
Incident Response (DFIR) to combat these challenges effectively, emphasizing shared patterns
in Tactics, Techniques, and Procedures (TTPs).

(Zhang et al., 2023), tackle the significant challenge of detecting threats operating solely in
computer memory. They propose using convolutional neural networks “CNN” and memory
forensics to address this issue. By analyzing binary fragments from memory-based portable
executable “PE” files, they create a dataset and train a CNN model, achieving a 97.48%
accuracy in detecting fileless attacks, surpassing traditional methods. The study underscores
the importance of deep learning in scrutinizing dynamic PE files housing malicious code,
highlighting the need to improve the model's ability to identify diverse malicious behaviors and
reduce false positives. This research has profound implications for memory forensics and sets
the stage for future investigations into broader threats.

(Botacin et al., 2020), they point out how software-based antivirus struggles with scanning
memory due to delays. They propose MINI-ME, a new hardware solution acting as an in-
memory antivirus booster. This hardware method uses memory-based techniques, scanning for
malware while data moves in memory, sidestepping software AV issues. MINI-ME is compact,
using small bloom filters, and impressively spots 500 real threats without slowing down or
making mistakes. This hardware-based approach looks promising for beefing up cybersecurity
by strengthening memory-based threat spotting.

5

(Carrier, 2021), focuses on the tough task of spotting hidden and tricky malware, which can
sneak past usual detection methods. Memory analysis is key here, but current techniques
struggle to catch these smart forms of malware accurately. To tackle this, they upgraded
VolMemLyzer, a memory tool, to better find obfuscated malware. Using a specific dataset
(MalMemAnalysis2022) mimicking real tricky malware, they use machine learning and show
a 99.00% accuracy and 99.02% F1-Score in finding hidden malware. The paper stresses the
ever-changing nature of malware targeting Windows weaknesses and suggests a solution using
memory tools to quickly find tricky malware. Their approach beats existing methods in both
speed and accuracy, which is big for fighting smart malware like Spyware, Ransomware, and
Trojan Horse types. This research paves a hopeful path for future detection methods.

(Dener et al., 2022), critically examines malware challenges and the limitations of traditional
detection methods against advanced threats. Focusing on memory analysis, it employs cutting-
edge deep learning techniques using the CIC-MalMem2022 dataset. By rigorously testing nine
algorithms, Logistic Regression notably achieves 99.97% accuracy in detecting malware,
highlighting memory analysis' significance. However, the study acknowledges dataset
limitations and suggests refining models for diverse data. This research establishes a foundation
for using machine learning in memory analysis for malware detection, encouraging future
studies on multiclass classification and addressing data imbalances in this field.

(Talukder et al., 2023), present a new method blending machine learning and deep learning for
stronger network intrusion detection systems (NIDSs). This special model deals well with data
imbalance by using SMOTE and carefully selecting features with XGBoost. It outperforms
regular methods by handling data issues, boosting accuracy, and defending against various
cyber threats. Using SMOTE cuts down on mistakes, and XGBoost improves feature selection,
making the whole model work better. This combo offers a dependable way to spot intrusions
in real-time on internet-connected IDS devices. Future work wants to test it with new threats
using updated data and compare it to other methods for even stronger systems.

(Louk & Tama, 2022), thoroughly assesses tree-based ensemble learning methods for
analyzing PE malware. It compares techniques like random forest, XGBoost, CatBoost, GBM,
and LightGBM using accuracy, precision, recall, and other metrics across datasets (BODMAS,
Kaggle, CIC-MalMem-2022). Findings consistently favor tree-based ensembles, highlighting
their superiority in malware detection. This study contributes by statistically evaluating these
models and suggesting future exploration in interpretability and neural network models like
TabNet. It critically engages with theories, emphasizing the potential of tree-based models in
diverse malware detection systems. Room for future research in explainable models and
broader neural network use is acknowledged.

(Roy et al., 2023), their study focused on the intricate challenge of detecting complex malware,
highlighting gaps in current research and the need for more comprehensive detection methods.
Their MalHyStack model merges traditional and deep learning, showcasing improved accuracy
and faster processing by selecting critical features. Tested on the CIC-MalMem2022 dataset,
this model surpasses existing techniques, excelling in spotting obfuscated malware. The paper
stresses the urgency of early detection for system security, suggesting future research directions
like automated tuning algorithms to enhance performance and reduce computational
complexities. By critically evaluating theories and offering insightful analysis, this work shows
a deep understanding of literature, providing valuable avenues for further exploration in the
field.

6

(Mezina & Burget, 2022), this research dives into the ongoing challenge of spotting hidden
malware in cybersecurity, recognizing the ever-changing threats. It suggests using artificial
intelligence to detect disguised malware in computer memory, highlighting the struggle of
antivirus programs to keep up. They used advanced neural networks, like the dilated
convolutional network, with the latest CIC-MalMem-2022 dataset, achieving a 0.99 accuracy
in detection. Traditional machine learning combined with optimization techniques showed the
random forest model excelling in binary classification, but for multiclass issues, the proposed
neural network performed better with 0.8353 accuracy. This emphasizes the need for better
methods to accurately classify diverse malware types. Overall, this study urges advancements
in identifying and categorizing evolving malware, summarizing the current state and future
pathways in the field.

(Nugraha & Zeniarja, 2022) carefully examines how memory-based analysis helps detect
evolving polymorphic threats in malware. It studied a Decision Tree-based classification
method using a big dataset of 58,596 records containing both harmless and harmful data. The
results were impressive: accuracy stood at 99.982%, with only a 0.1% false positive rate and a
precision of 99.977%. This approach efficiently pinpointed key features, making computations
faster. The model excelled at recognizing and signaling malware behavior, highlighting the
Decision Tree's effectiveness. Overall, this study significantly boosts detection accuracy while
reducing false alarms, emphasizing the importance of memory-based analysis against ever-
changing malware threats.

(Naeem et al., 2023) introduces an advanced malware detection system using memory forensics
and a deep ensemble model. It effectively detects elusive malware like fileless and memory-
resident threats. The model achieved high accuracies (99.1% for Windows, 94.3% for Android,
and 99.8% for obfuscated Windows malware) but faces complexity in training due to numerous
features. It suggests a memory agent for streamlined training. Future research aims to explore
additional memory characteristics, real-time monitoring during execution, and stronger
defenses against attacks.

2.3 Advanced Techniques and Novel Approaches
(Al-Qudah et al., 2023), introduced a fresh way to tackle complex memory dump malware.
They combined OCSVM and PCA to create the OCC-PCA model, boosting malware detection
to an impressive 99.4%, a big jump from the 55% seen with older methods. Using the
'MalMemAnalysis2022' dataset, this method not only showed better performance but also
highlighted PCA's strength in spotting irregularities in memory dump files. This combo of
OCSVM and PCA stands out as a strong way to tell apart good and bad behaviors in the ever-
changing malware scene.

(Keyes et al., 2021), focus on Android malware's swift growth, highlighting the need for
stronger analysis methods. Current techniques focus on fixed and moving features like API
calls but lack insight into malware behavior using various dynamic traits. The study introduces
EntropLyzer, employing entropy-based behavioral analysis, successfully categorizing 12
Android malware types and 147 families from the CCCS-CIC-AndMal2020 dataset. It
examines six dynamic traits but faces limitations in emulator-based analysis, reducing the
sample size due to malware detection. To overcome this, employing real devices for analysis
could broaden the study's scope. Despite strides, the study underscores ongoing challenges in
battling evolving Android malware, calling for refined analysis approaches.

7

(Sihwail et al., 2019), introduced a new way to find malware, which works better than regular
antivirus software. They mixed memory investigations and dynamic analysis using a support
vector machine (SVM) model. This combo spotted malware with 98.5% accuracy, cutting
down wrong alerts to just 1.7%. By blending memory clues with dynamic analysis, it gave a
wider view of how malware acts, going beyond just one way it works. Even though using API
calls was good for sorting malware, the study says we should also investigate registries and
networks to find it even better. They plan to grow the dataset of malware and make the test
areas stronger to fight against tricky tactics used to avoid detection.

2.4 Summary Table of previous work
Table 1 The following summary table lists previous studies in the field of malware detection.

Study Methods dataset Evaluation
performance
- Binary

Evaluation
performance –
multi-class

(Khushali, 2020) Survey of previous studies,
in fileless malware detection
techniques

N/A N/A N/A

(Sudhakar & Kumar,
2020)

Survey of previous studies
of fileless malware and it’s
challenges

N/A N/A N/A

(Bozkir et al., 2021) SMO (RBF) Own dataset of 4294
samples (3686 malwares
and 608 benign)

96.39% N/A

(Bucevschi et al., 2019) Monitoring suspicion,
harmful and other hiding
actions

Own dataset containing
500,551 command lines,
WMI Scripts and others

N/A N/A

(Lee et al., 2021) Kuckoo Sandbox malware
attack traced with MITRE

Samples from GitHub
and Hybrid-analysis

N/A N/A

(Dang et al., 2019) By examining 4 software
and honeypots across public
cloud environments through
profiling.

N/A N/A N/A

(Borana et al., 2021) Network and System’s run
time behavior

N/A N/A N/A

(Varlioglu et al., 2022) Fileless malware pattern,
Techniques and Procedure,
malware for Tactics

N/A N/A N/A

(Zhang et al., 2023) Memory Forensics coupled
with CNN-Based
Classification

4896 memory dump
samples.

97.48% N/A

(Botacin et al., 2020) MINI-ME: Hardware AV
using memory techniques

21 thousand in-the-wild
malware samples

100% N/A

(Carrier, 2021) Stack ensemble CICMalMem-2022 99.00 N/A
(Dener et al., 2022) LR CICMalMem-2022 99.97 N/A
(Mezina & Burget,
2022)

Dilated CNN CICMalMem-2022 99.00 N/A

(Nugraha & Zeniarja,
2022)

DT CICMalMem-2022 99.98 N/A

(Louk & Tama, 2022) GBM/ XgBoost/RF Kaggle, BODMAS,
CICMalMem-2022

 N/A

(Naeem et al., 2023) Deep stacked ensemble
(MLP+CNN)

CICMalMem-2022 99.8 N/A

(Al-Qudah et al., 2023) SVM CICMalMem-2022 99.4 N/A
(Keyes et al., 2021) Decision Tree CIC-AndMal-2020 N/A 98.3 (12 class)
(Roy et al., 2023) Hybrid Stack Ensemble CICMalMem-2022 99.98 85.04 (4 Class)

70.29 (16 Class
(Sihwail et al., 2019) SVM VirusTotal 98.5% N/A
Our proposed (2023) RF CICMalMem-2022

and Behavioral
100% with 55
features

81.02% with 69
features

8

3 Research Methodology
In this study, our aim is to enhance malware detection using three distinct datasets our own
behavioral-based, (Khalid et al., 2023) and CICMalMem-2022 consisting of memory dumps
information. The journey towards refining these datasets and improving detection accuracy
involves a structured methodology inspired by the KDD which is also known as “Knowledge
Discovery in Databases” framework.

Figure 1. The process of KDD methodology being followed in our research study.

3.1 Data Selection
We gathered diverse datasets including our own fileless malware samples collection of 215
from VirusTotal, dataset obtained from (Khalid et al., 2023), and CICMalMem2022, obtained
from the Canadian Institute for Cybersecurity. These datasets cover a wide spectrum of sources
and types, offering a comprehensive foundation for our research.

Table 2 Lists our all datasets used in this study.

Dataset name Samples Dataset Containing Source Dataset Source

Dataset 1 (Own dataset) 215 malware samples Malware samples returned
when searched for
“fileless” on VirusTotal

VirusTotal Created

Dataset 2 (Khalid et al.,
2023)

45 (24 legitimate and
21 fileless)

33 features extracted from
memory dumps

(Khalid et al.,
2023)

Obtained

Dataset 3
(CICMalMem2022)

58596 (29298 benign,
29298 malware)

55 features extracted from
memory dumps

Canadian Institute
for Cybersecurity

Downloaded

Dataset 1: Our search for fileless malware samples began by leveraging VirusTotal's unique
capabilities. Initially, we used VirusTotal's search engine, finding 215 SHA-256 hashes
specifically associated with fileless malware, searching with ‘fileless’ keyword. VirusTotal
stood out as a primary source, notably surpassing other platforms due to its proficiency in
providing fileless malware samples, a relatively new and challenging type of malware to find.

We chose VirusTotal, because other platforms such as Hybrid-Analysis, Any Run, and
VirusShare did not provide the required and enough information on fileless malware. Where
VirusTotal offered 215 labeled as ‘fileless’ samples when searched on VirusTotal, which was
crucial for my research, additionally it has many benefits such as easy to use and integrate API
(Kantola, 2022).

Dataset 2: This dataset for exploring malware detection is obtained from the work of (Khalid
et al., 2023), as detailed in their research paper. It's a collection of memory dumps categorized

9

into two groups: one holds data on legitimate applications, while the other comprises fileless
malware samples. They used this dataset to learn how to distinguish fileless malware from
normal applications using information from memory dumps.

Originally, the dataset was published with 40 samples which includes memory dumps dataset
of legitimate application fileless malwares by (Abeydeera, 2020), which later modified by
(Khalid et al., 2023), as they argued that the original dataset was unbalanced and wanted to add
more to get better classification results, to do that they added additional 26 fileless malware
samples but they dropped 21 samples as they did not execute as per needs and added 5 which
were executed successfully. This way by adding 5 fileless malware samples (Khalid et al.,
2023) used 45 malware samples in total in their study.

Table 3 shows the sample distribution for dataset 2.

Category Percentage Count
File-base 53.33% 24
Fileless 46.66% 21

Dataset 3: CICMalMem-2022, which is released by the Canadian Institute of Cybersecurity
also known as, serves as a tool to test how well systems can detect hidden malware. It contains
two types of data: one representing harmful software and the other representing harmless
software. This collection mirrors real-life situations by including a variety of malicious
programs commonly encountered. (CICMalMem2022 is available at
https://www.unb.ca/cic/datasets/malmem-2022.html).

 Table 4 shows data distribution of dataset 3.

Table 5 shows details about all malware families for dataset 3.

Malware Category Family name Malware Percentage Count

Ransomware

Ako 6.83% 2000
Conti 6.79% 1988

MAZE 6.68% 1958
Pysa 5.86% 1717

Shade 7.26% 2128

Spyware

Coolwebsearch 6.83% 2000
Gator 7.51% 2200

Transponder 8.23% 2410
TIBS 4.81% 1410

180Solutions 6.83% 2000

Trojan Horse

Emotet 6.71% 1967
Refroso 6.83% 2000
Reconyc 5.36% 1570

Scar 6.83% 2000
Zeus 6.66% 1950

3.2 Data Preprocessing
Dataset 1:

 Accessing Behavioral Information: As our dataset 1 is related to behavioral information
of Fileless malwares, we utilized VirusTotal's API 'Get objects related to a file' to
access API-based behavioral information associated with 215 identified fileless
malware SHA-256 hashes. The reason we selected the behavioral section, as it has

Category Percentage Count
Benign 50% 29298
Malware 50% 29298

10

comprehensive behavioral information as compared to other sections such as overview,
details which contains general and identifications information accordingly.

 Automated Retrieval: Integrated the VirusTotal API into a Python script to
automatically download and collect the behavioral information in JSON files.

 Data Validation and Cleaning: The integration of API to our own python script to
automate the downloading of JSON files gave us chances to validation procedures
within the Python script to ensure data integrity through followings:

o Removed duplicate sample hashes to maintain dataset accuracy.
o Excluded samples lacking behavioral information from the dataset to ensure

completeness.
 Security Measures: Conducted the iterative retrieval process within a Kali Linux VM

for a secure environment while handling sensitive data.

Dataset 2:
1. Label Refinement: Binary labels representing legitimate applications and fileless malware

were transformed into descriptive strings non-malware for legitimate apps and malware
for fileless malware.

2. Focused Feature Selection: We pinpointed six features highly significant in memory
dumps, enhancing our ability to predict outcomes based on crucial system characteristics.

Dataset 3:
1. Refining Data Fields: The removal of the 'Category' column containing extensive malware

names and hashes allowed for a more normalized dataset. Additionally, the class column
was renamed to 'label' for ML clarity and ease of understanding.

2. Removed Duplicates: As we identified that each sample was run 10 times as per the need
of research (Carrier, 2021), there were many duplicated malwares. To maintain the integrity
and data validation we removed the duplicates and worked with unique malware only.

3. Focused Feature Selection: We identified six specific characteristics related to memory
dumps; we also extracted our 6 features as explained in Table 8.

3.3 Feature Selection and Extraction
In this section, we extracted the features programmatically and manually for each dataset
using our own C# written scripts.

Dataset 1: Upon acquiring behavioral details, the obtained JSON files were securely
transferred to our primary environment securely. Following Tables 5 lists the features for our
own dataset.

Table 6 List of 14 features extracted based on VirusTotal API behavior data for all 3 datasets.

No. Feature Explanation
1 Detections Number of antivirus engines that detected the file as malicious, in network end.
2 MitreSignatures Number of signatures from the MITRE ATT&CK Framework that the file matched.
3 IDS_Rules Number of IDS (intrusion detection system) rules that the file triggered.
4 Sigma_Rules Number of Sigma detection rules that the file triggered.
5 DroppedFiles Whether the file created or dropped any files on the system.
6 NetworkComms Whether the file established any network connections.
7 FileSystemActions Whether the file performed any file operations, such as creating, modifying, or deleting files.
8 RegistryActions Whether the file performed registry operations, such as creating, modifying, or deleting registry keys or values.
9 ProcessServiceActions Whether the file spawned any new processes or services.
10 SyncMechanisms Whether the file used any synchronization mechanisms, such as mutexes or semaphores.
11 MutexesCreated Whether the file created any new mutexes.
12 MutexesOpened Whether the file opened any existing mutexes.
13 ModulesLoaded Whether the file loaded any additional modules.
14 RuntimeModules Whether the file loaded any specific runtime modules, such as rundll32.exe or kernel32.dll.

11

Dataset 2: This dataset contains 33 features, as listed below.

Table 7 lists all features from datasets 2.

No Feature name No No Feature name
1 handles_num 12 processes_psxview_exited_num 23 threads_thrdscan_num
2 hiveList 13 processes_psxview_false_columns_num 24 pslist
3 dlls_ldrmodules_num 14 processes_psxview_false_rows_num 25 tcp/udp_connections
4 dlls_ldrmodules_unique_mappedpaths_num 15 processes_psxview_num 26 total_reg_events
5 dlls_ldrmodules_InInit_fales_num 16 processes_psxview_pslist_true_num 27 read_events
6 dlls_ldrmodules_InLoad_false_num 17 processes_psxview_psscan_true_num 28 write_events
7 dlls_ldrmodules_InMem_False_num 18 services_svcscan_num 29 del_events
8 dlls_ldrmodules_all_false_num 19 services_svcscan_running_num 30 executable_files
9 modules_num 20 services_svcscan_stopped_num 31 unknown_types
10 callbacks_num 21 dlls_dlllist_unique_paths_num 32 http(s)_requests
11 processes_privs_enabled_not_default_num 22 mutex_mutantscan_num 33 dns_requests

Table 8 lists Six specific features selected for Dataset 2.

No Feature name Description
1 handles_num Number of handles used by the system
2 dlls_ldrmodules_num Count of loaded DLLs
3 callbacks_num Number of callback functions registered in the system
4 services_svcscan_num Count of services scanned by the system
5 mutex_mutantscan_num Number of mutex (mutant) objects scanned
6 threads_thrdscan_num Total count of threads scanned within the system

Justification of Feature Selection: During our research for datasets 2 and 3, a correlation
analysis of their memory dumps unveiled above six common features (Table 8). Leveraging
these identified features for machine learning applications led to notable improvements in
predictive outcomes across both datasets. This empirical observation underscores the
significance of these features in contributing to enhanced model performance. Thus, the
selection of these six features was rooted in empirical evidence, consolidating their relevance
and utility in improving the accuracy and efficiency of our machine learning approach.

Dataset 3: This dataset contains 55 memory-based features, as listed below.

Table 9 lists all features from dataset 3.

No. Feature name No. Feature name No# Feature name

1 pslist.nproc 20 handles.nmutant 39 psxview.not_in_eprocess_pool_false_avg
2 pslist.nppid 21 ldrmodules.not_in_load 40 psxview.not_in_ethread_pool_false_avg
3 pslist.avg_threads 22 ldrmodules.not_in_init 41 psxview.not_in_pspcid_list_false_avg
4 pslist.nprocs64bit 23 ldrmodules.not_in_mem 42 psxview.not_in_csrss_handles_false_avg
5 pslist.avg_handlers 24 ldrmodules.not_in_load_avg 43 psxview.not_in_session_false_avg
6 dlllist.ndlls 25 ldrmodules.not_in_init_avg 44 psxview.not_in_deskthrd_false_avg
7 dlllist.avg_dlls_per_proc 26 ldrmodules.not_in_mem_avg 45 modules.nmodules
8 handles.nhandles 27 malfind.ninjections 46 svcscan.nservices

9 handles.avg_handles_per_proc 28 malfind.commitCharge 47 svcscan.kernel_drivers

10 handles.nport 29 malfind.protection 48 svcscan.fs_drivers
11 handles.nfile 30 malfind.uniqueInjections 49 svcscan.process_services
12 handles.nevent 31 psxview.not_in_pslist 50 svcscan.shared_process_services
13 handles.ndesktop 32 psxview.not_in_eprocess_pool 51 svcscan.interactive_process_services
14 handles.nkey 33 psxview.not_in_ethread_pool 52 svcscan.nactive
15 handles.nthread 34 psxview.not_in_pspcid_list 53 callbacks.ncallbacks
16 handles.ndirectory 35 psxview.not_in_csrss_handles 54 callbacks.nanonymous
17 handles.nsemaphore 36 psxview.not_in_session 55 callbacks.ngeneric
18 handles.ntimer 37 psxview.not_in_deskthrd
19 handles.nsection 38 psxview.not_in_pslist_false_avg

12

3.4 Data Mining
Our study seeks to detect several types of malwares using following two techniques:

 AV Detection Rates
 ML classifications

Machine Learning Algorithms for Malware Detection: A Comparative Analysis

 Random Forest (RF): Random Forest is an excellent method for malware detection. By
merging multiple decision trees, it produces more accurate results and reduces the risk
of overfitting. It's applicable to both binary (malicious vs. benign) and multi-class
classification tasks, making it a versatile tool for malware analysts. Random Forest
effectively handles noisy and outlier data, high-dimensional data with numerous
features, and its non-parametric nature makes it adaptable to diverse malware types. It's
also highly accurate, efficient, and scalable, making it an asset for security analysts.

 J48: This is a well-structured decision tree algorithm that efficiently separates data
points based on their attributes. It's widely used in classification tasks, including
malware detection. J48's decision tree structure is easy to comprehend, making it
simpler for security analysts to interpret the classifier's predictions and gain insights
into the malware's behavior. Its ability to handle correlated features, making it suitable
for analyzing malware datasets, and its efficiency in learning from small datasets make
it a valuable tool for security analysts.

 Naive Bayes (NB): Naive Bayes is a probabilistic classifier that utilizes Bayes' theorem
to assign class probabilities. It's flexible for both binary and multi-class classification
tasks, making it a versatile tool for malware analysts. Naive Bayes is computationally
efficient, making it ideal for large-scale malware detection. It effectively handles
imbalanced data, where benign samples significantly outnumber malicious ones, and
its probabilistic nature provides insights into the relative importance of features in
determining the class label. These features make it a valuable tool for security analysts.

 Sequential Minimal Optimization (SMO): SMO is an algorithm for training support
vector machines (SVMs), which are supervised learning models that distinguish
between data points based on their attributes. SMO is used for classification tasks,
including malware detection. Its ability to handle high-dimensional data, which is
common in malware analysis, its relative robustness to noise and outliers, and its ability
to provide insights into the decision boundaries and feature importance makes it an
effective tool for security analysts.

 Instance-Based Learning (IBk): IBk is a lazy learning algorithm that classifies new data
points by comparing them to previously stored instances. It's used for classification
tasks, such as malware detection. IBk is highly scalable, making it efficient for
processing large-scale malware datasets. It's also versatile for both binary and multi-
class classification tasks, making it capable of handling both benign and malicious
samples without requiring explicit labels. IBk effectively handles imbalanced data,
making it suitable for malware detection where benign samples outnumber malicious
ones, and its nearest neighbor approach provides insights into the similarity between
malware samples. These features make it a valuable tool for security analysts.

3.5 Evaluation
 AV Detection: The effectiveness of an anti-virus (AV) program in detecting and

blocking malware is crucial for cybersecurity. By effectively detecting and blocking
malware at the initial point of entry, AV programs act as a frontline defense against
malware attacks, protecting devices from potential damage and data breaches. It

13

measures how well an AV program can identify and prevent malware from infecting a
device. A high AV detection rate is essential for effective cybersecurity, as it ensures
that malicious software is detected and blocked before it can cause harm. By serving as
a first line of defense against malware attacks, AV programs play a critical role in
protecting sensitive data and maintaining system integrity.

 Precision: Precision assesses a classifier's accuracy in predicting positive samples. It
indicates the proportion of correctly identified malware samples among all samples
predicted to be malware. A high precision score implies that the classifier is less likely
to mistakenly label benign samples as malware, minimizing false positives.

 Recall: Recall evaluates a classifier's completeness in identifying positive samples. It
measures the fraction of actual malware samples accurately identified as malware. A
high recall score indicates the classifier's ability to effectively detect most malware
samples, minimizing false negatives.

 F1-score: The F1-score balances precision and recall, providing a single metric to
evaluate a classifier's overall performance. It is calculated by averaging precision and
recall, considering their reciprocals. A high F1-score suggests the classifier strikes a
good balance between not falsely labeling benign samples and identifying malware.

 Accuracy: Accuracy measures the overall correctness of a classifier, indicating the
proportion of correctly predicted samples among all samples. It provides a
straightforward assessment of the classifier's ability to correctly classify samples.
However, accuracy can be misleading when dealing with imbalanced datasets, where
one class significantly outnumbers the other.

 ROC-AUC: The ROC-AUC curve visualizes a classifier's performance over a range of
sensitivity (recall) and specificity (1 - false positive rate) trade-offs. It provides a
comprehensive view of a classifier's performance, considering both precision and recall
simultaneously. A high ROC-AUC score indicates a classifier's ability to effectively
identify both true positives and true negatives across different operating points.

4 Design Specification
This section describes and lists the technologies and designs used in our research.

Technologies and Tools Utilized:
We researched and utilized 2 different types of VirusTotal APIs by creating a free account and
acquiring an API key necessary for accessing the public API endpoints.

 Programming Languages and Environments:
 Python: Used for data retrieval, utilizing libraries such as os, json, time,

requests, and hashlib for data manipulation and API interaction.
 C# in Visual Studio 2022: Utilized for further processing and extraction of

specific features from the retrieved data. Utilizing libraries such as
Newtonsoft.Json, GemBox.Spreadsheet and OfficeOpenXml;

Dataset Composition:
 Features Obtained: Detailed the specific features extracted from the VirusTotal

API data (e.g., file hashes, scan results, timestamps).
Privacy and Ethical Considerations:

 API Key Usage: Stressed the responsible and ethical use of the API key in compliance
with VirusTotal's terms of service and privacy policies.

Limitations and Challenges:
 Rate Limit Constraints: Highlighted challenges faced due to rate limitations on public

APIs and strategies employed (like delay implementation) to manage these constraints.

14

For which we implemented a 20-second delay between requests due to limitations on
the public API (4 requests per minute) to avoid exceeding the rate limit.

Class Diagram: The following class diagram shows a map of different classes and how they
are associated to one another. This diagram helps to understand the basic and logical structure
of code, which was created for Dataset 1.

Figure 2 shows the class diagram of C# program.

5 Implementation
This section foces on breif description of implementation of our 3 datasets and technolgoies
used along with their justifications.

Dataset 1:
Following figure 3 gives breif overview of all steps taken in creating dataset 1.

Figure 3 shows he process flow of creating our own Dataset 1.

Step 1: VirusTotal API Identification & Parameters Setup
Our initial step involved pinpointing the relevant VirusTotal API. This API required specific
parameters file identification (SHA-256, SHA-1, or MD5), relationship type ('behavior'), a
limit on related objects and an API key for authentication.

Table 10 Lists parameters used in API.

Parameter Description
Id A string type value representing the file's identification (SHA-256, SHA-1, or MD5).

relationship A string denoting the relationship type, such as 'behavior' in this case.

Limit An int32 type representing the maximum number of related objects to retrieve, set at 40 for this extraction.

x-apikey A string type representing the user's API key necessary for API access and authentication.

Justification: We connected an API to a Python program to automatically fetch large number
Json files containing malware data. Specifically, we focused on the behavior section of the
malware because the important information we needed was only found there. This helped us
gather the necessary data efficiently.

15

Step 2: Python Code Integration (API Access)
To interact with the identified API, a Python script was developed. This script successfully
accessed the VirusTotal API, retrieving behavioral details for the 215 fileless malware samples
in the form of json extension, on a VM environment.

 Json files sizes: 1 kb to 663 kb
 Python version: 3.11.2
 Kali Lunix version: 2023.1

Justification: The reason for running python script on VM was simple. Our VM was set up on
Kali Linux, which has pre-installed python libraries which were up to date.

Step 3: C# Code Development (Behavioral Data Processing)
Transitioning to our primary environment, we thoroughly constructed a C# codebase within
Visual Studio 2022. This program was developed to validate, process, and extract the identified
15 crucial behavioral features from the obtained 215 JSON files.

 Visual Studio version: 2022
 C# version: 12

Justification: We used C# programming as it provides a wide variety of libraries to manage
files easily. The debugging was much better and easy to work with.

Step 4: CSV Compilation (Data Integration)
The final phase involved compiling the extracted behavioral features into a comprehensive
CSV file. This file condensed crucial data points for each malware sample, offering a
consolidated overview of their behavioral characteristics. Additionally, to maintain the
validation and integrity of malware detection, we removed the malware which had no data.

 15 malware samples did not have behavioral information.
 Final CSV file compiled with 200 malwares with size of 20 kb.

Justification: We compiled final data into a CSV file because we will use this file into Weka
tool, for ML classification as Weka accepts this file extension and Weka is easy to use too.

Dataset 2:
We refined Dataset 2 by transforming labels into clearer descriptions, removing irregular data,
and focusing on significant features found in memory dumps. This helped enhance the dataset
for better analysis.

Technologies Used:

 We developed C# programing within Visual Studio 2022 for automating the refinement
process due to the dataset's size.

Justification: Visual Studio 2022: Its automation capabilities expedited the process, crucial
when dealing with a large dataset. Its user-friendly interface also facilitated manual
interventions where needed.

Dataset 3:
For Dataset 3, we refined the data by normalization, renaming columns for clarity, and
selecting critical memory dump-related features. This ensured a more organized and useful
dataset for analysis.

16

Technologies: Like Dataset 2, we developed C# code through Visual Studio 2022 for
refinement. This choice was due to the consistency needed between the datasets and the
efficiency required for handling memory dump-related information.

Justification: Visual Studio 2022: Its automation support was pivotal. The need for manual
intervention was efficiently managed within this environment, streamlining the overall process.

6 Evaluation
During the evaluation, we aimed to do AV detections on 3 datasets and thoroughly check how
well different models can spot malware in all datasets. We did many tests, trying out different
features and classification setups to really understand how good our models are at this task.

6.1 Dataset 1
In this section we performed statistical analyses using AV detection methods.

6.1.1 AV Detection Rate
We looked at Dataset 1 and checked 215 fileless malware samples. We found some important
trends in how these malware things get noticed, which helped us understand them better.

Table 11 shows the detection rate information for Dataset 1.

Statistic Number Detections Total Number of AVs Detection Rate
Mean 51.2 67.2 0.759
Min. 21 55 0.370
Max. 64 73 0.900
Std. 6.2 2.7 0.078

Overall, these malwares identify such instances 76% of the time, meaning roughly three
quarters of the cases. We also found differences from a 37% detection rate to a high of 90%.
The standard deviation, a measure of how much detection rates deviate from the average, was
around 0.078, showing a moderate level of fluctuation around the mean detection rate.

6.2 Dataset 2
In our second dataset, we conducted AV detection Rates and binary classification tests with a
67% split, dividing the dataset into training and testing sets. Binary classification experiments
aimed to distinguish between legitimate applications and fileless malware.

6.2.1 AV Detection Rates
The following table shows the AV detection rates on malware samples of dataset 2.

Table 12 shows the detection rate information for Dataset 2.

Statistic Number Detections Total Number of AVs Detection Rate
Mean 45.6 63.8 0.706
Min. 0 51 0
Max. 65 72 0.9
Std. 14.2 6.1 0.185

Overall, the systems spotted around seven out of ten malware instances, with an average
detection rate of 70.6%. Some were completely missed (0% detection), while the best detection
rate hit 90%. The slight difference of around 0.19 shows that the systems varied in how well
they spotted these malwares. This suggests big differences in their identification abilities.

17

6.2.2 ML Results on Original 33 Features
This experiment involved utilizing the complete set of 33 original features dataset 2.

Table 13 shows Binary classification results on 33 features.

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC

RF 0.893 0.867 0.863 86.66 1.000
J48 0.867 0.867 0.867 86.66 0.884

Naive Bayes 0.941 0.933 0.933 93.33 1.000
SMO 0.893 0.867 0.863 86.66 0.857
IBk 0.893 0.867 0.863 86.66 0.857

6.2.3 ML Results on Selected 6 Features
This test is focused on a dataset comprising only 6 critical features identified as significant in
memory dump analysis, see Table 8.

Table 14 shows Binary classification results on 6 specific features.

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC
RF 0.941 0.933 0.933 93.33 1.000
J48 0.941 0.933 0.933 93.33 0.929

Naive Bayes 0.795 0.667 0.614 66.66 0.821
SMO 0.795 0.667 0.614 66.66 0.643
IBk 0.804 0.800 0.798 80 0.795

6.3 Dataset 3
For our third dataset, experiments encompassed binary and multi-classification tasks using a
70% split. We started our analysis on Dataset 3, from AV Detection and then to ML training.

6.3.1 Detection rates and Statistical Analysis
Table 15 shows the detection rate information for Dataset 3.

Statistic Number Detections Total Number of AVs Detection Rate
Mean 55.4 68.3 0.811
Min. 10 40 0.14
Max. 70 74 0.97
Std. 8.8 4.6 0.113

The Following Table compares AV detection of malware families from 1945 malwares.

Table 16 Lists the AV Detection by 3 Malware families.

Statistic Number Detections Total Number of AVs Detection Rate
Ransomware Mean 55.5 69 0.804

Std 8.5 2.3 0.120
Min 10 55 0.14
Max 69 72 0.97

Spyware Mean 57.8 68.9 0.838
Std 7.1 2.3 0.099

Min 17 54 0.24
Max 70 73 0.97

Trojan Horse Mean 53.8 68.4 0.785
Std 10.2 2.8 0.139

Min 15 49 0.22
Max 69 73 0.96

18

Figure 4 shows visual comparison of 3 Malwares by AV Detection Rates

6.3.2 ML Results on Binary classification with original 55 feature
The following table shows the results of a binary classification intended to discern between
benign and malicious software instances within Dataset 3.

Table 17 shows Binary classification results on 55 features of CICMalMem2022.

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC
RF 1.000 1.000 1.000 100 1.000
J48 0.999 0.999 0.999 99.92 1.000

Naive Bayes 0.991 0.991 0.991 99.14 0.995
SMO 0.998 0.998 0.998 99.83 0.998
IBk 1.000 1.000 1.000 99.98 1.000

6.3.3 ML Results on Binary classification with Refined 6 feature
The following ML test focused on 6 specific features.

Table 18 shows Binary classification results on 6 specific features of Dataset 3.

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC
RF 1.000 1.000 1.000 99.97 1.000
J48 0.999 0.999 0.999 99.92 1.000

Naive Bayes 0.984 0.984 0.984 98.40 0.994
SMO 0.991 0.991 0.991 99.13 0.991
IBk 1.000 1.000 1.000 99.95 1.000

6.3.4 ML Results on Multi-classification with original 55 feature
The following table shows the results of a multi-classification test designed to categorize
diverse types of malwares within Dataset 3.

Table 19 shows multi-classification results on 55 features of CICMalMem2022.

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC
RF 0.738 0.737 0.737 73.72 0.892
J48 0.724 0.724 0.724 72.38 0.827

Naive Bayes 0.486 0.390 0.308 39.03 0.601
SMO 0.475 0.398 0.324 39.77 0.605
IBk 0.625 0.624 0.624 62.41 0.719

6.3.5 ML Results on Multi-classification with Refined 6 feature
The following table shows the results of a multi-classification using a reduced set of 6 specific
features. The result has some missing data as shown below Table 20.

19

Table 20 shows Binary classification results on 6 specific features of CICMalMem2022.

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC
RF 0.527 0.526 0.527 52.63 0.717
J48 0.516 0.511 0.512 51.10 0.689

Naive Bayes 0.437 0.353 0.250 35.30 0.545
SMO N/A 0.354 N/A 35.36 0.505
IBk 0.475 0.474 0.474 47.43 0.617

6.3.6 ML Results on Multi-classification [Memory dumps 55 + Behavior]
In this test combined the 14 behavioral features with 55 memory dumps features (our original
research question as mentioned in Section 1.1), which gave us 69 features in total. As we have
3 malware families, we did the multi-classification on this dataset.

By adding 14 f the accuracy has increased from 73.72% to 81.02%.

Table 21 shows the ML results of 69 features.

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC
RF 0.812 0.810 0.810 81.02 0.924
J48 0.797 0.792 0.792 79.19 0.862

Naive Bayes 0.537 0.468 0.430 46.83 0.735
SMO 0.716 0.696 0.691 69.58 0.802
IBk 0.741 0.741 0.741 74.08 0.804

6.3.7 ML Results on Multi-classification [Memory dumps 6 + Behavior]
In this test, we used 6 memory features and 14 behavioral features, the results decreased
significantly, from 73.72% to 73.47%.

Table 22 shows the ML result of 20 features.

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC
RF 0.738 0.735 0.736 73.47 0.879
J48 0.734 0.727 0.730 72.74 0.834

Naive Bayes 0.563 0.487 0.448 48.66 0.738
SMO 0.582 0.572 0.516 57.17 0.721
IBk 0.702 0.698 0.700 69.82 0.768

6.3.8 Comparing AV Detection Rates
This section compares the AV detection of 3 datasets by their detection rates.

Table 23 Compares three datasets by their AV detection rates.

 Mean Min Max Std.
Dataset 1 0.759 0.370 0.900 0.078
Dataset 2 0.706 0 0.9 0.185
Dataset 3 0.811 0.14 0.97 0.113

20

Figure 5 shows a Confusion matrix for experiment of selecting 30 features from Dataset 2, resulting RF 100% accuracy.

Figure 6 shows a Confusion matrix for experiment of selecting 55 features from Dataset 3, resulting RF 100% accuracy.

6.4 Discussion
Findings and Results:

 AV Detection Rates in Different Datasets: Across Dataset 1, 2, and 3, we observed
varying AV detection rates for malware samples. Dataset 3 demonstrated the highest
average detection rate (81.1%), followed by Dataset 1 (75.9%) and Dataset 2 (70.6%).

 ML Model Performance: In Dataset 2, machine learning models showed promising
results with features. Notably, utilizing the original 55 features with behaviors features
(section 6.3.6) in Dataset 3, where achieved remarkable accuracy score from 73.72%
to 81.02%.

Implications and Significance:
 Effectiveness of AV Detection: The analysis showcased the capabilities and limitations

of AV detection across different malware families. It highlights the necessity of robust
and adaptive detection systems to handle diverse threats effectively.

 ML Model Potentials: The ML models, especially when equipped with a
comprehensive set of features, exhibited high accuracy in distinguishing between
benign and malicious software. This suggests the potential for leveraging ML
techniques in strong malware detection systems.

Limitations and Challenges:
 Dataset Variability: While Dataset 3 demonstrated higher average detection rates, the

variability in AV detection across different malware families suggests the need for more
diverse and representative datasets to enhance model generalization.

21

 Feature Selection Impact: The experiments on reduced sets of features (6 critical
features) in Dataset 2 and 3 showcased varying performance, indicating the significance
of feature selection and its impact on model outcomes.

Moreover, the research question addressed how the combination and separate use of
memory and behavior features enhance malware detection accuracy. Our study found that
combining memory and behavior features resulted in improved detection accuracy compared
to using either feature set alone. This suggests that hybrid detection models that leverage both
types of features offer a promising approach to improving malware detection effectiveness.

7 Conclusion
This study investigated the efficacy of machine learning models for detecting malicious
software using both memory and behavior features of malware. Across all three datasets, we
observed varying detection rates and performance. Dataset 3, with the most comprehensive
feature set, demonstrated the highest detection accuracy, ranging from 73.72% to 81.02%.
These results highlight the potential of ML models to enhance malware detection effectiveness.

The combination of memory and behavior features proved to be more effective than using
either feature set alone. This suggests that hybrid detection models offer a promising approach
to countering the evolving landscape of malware.

Moreover, to address the limitations of existing datasets and optimize feature selection
techniques, future research should focus on developing data augmentation techniques to
expand the size and diversity of malware samples. Research should also explore methods for
selecting relevant features that are indicative of malicious behavior, ensuring that the ML
models are not biased towards specific patterns or artifacts.

In conclusion, this study provides valuable insights into the effectiveness of ML models for
detecting malware using memory and behavior features. The findings suggest that hybrid
detection models hold promise for improving malware detection accuracy and adaptability.
Future work should focus on addressing data variability, optimizing feature selection, and
integrating ML models into practical malware detection systems.

8 Future Study
Our next step is to investigate the stability of these methods when incorporating specific data
features or employing optimization techniques. This will involve evaluating the performance
of ML models across a broader range of datasets and using different feature selection and
optimization techniques. Additionally, we will examine the trade-offs among detection
accuracy, computational efficiency, and the inclusion of comprehensive memory features like
network, file, registry, and process relationships. These features are currently absent in dataset
2 and dataset 3.

By addressing the limitations of existing datasets, optimizing feature selection techniques, and
integrating ML models into practical systems, we can significantly enhance the ability of
cybersecurity systems to detect and combat malicious software, safeguarding users against the
evolving threat landscape.

References
Abeydeera, W. P. S. (2020). Fileless Malware Detection in the Cloud Using Machine Learning Techniques.

https://digikogu.taltech.ee/en/Item/87cb2a3a-7ef5-43f0-89a5-ef4cb588b0d5

22

Al-Qudah, M., Ashi, Z., Alnabhan, M., & Abu Al-Haija, Q. (2023). Effective One-Class Classifier Model for
Memory Dump Malware Detection. Journal of Sensor and Actuator Networks, 12(1), 5.

Borana, P., Sihag, V., Choudhary, G., Vardhan, M., & Singh, P. (2021). An assistive tool for fileless malware
detection. 2021 World Automation Congress (WAC), 21–25.

Botacin, M., Grégio, A., & Alves, M. A. Z. (2020). Near-memory & in-memory detection of fileless malware.
The International Symposium on Memory Systems, 23–38.

Bozkir, A. S., Tahillioglu, E., Aydos, M., & Kara, I. (2021). Catch them alive: A malware detection approach
through memory forensics, manifold learning and computer vision. Computers & Security, 103, 102166.

Bucevschi, A. G., Balan, G., & Prelipcean, D. B. (2019). Preventing file-less attacks with machine learning
techniques. 2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 248–252.

Carrier, T. (2021). Detecting obfuscated malware using memory feature engineering.
Dang, F., Li, Z., Liu, Y., Zhai, E., Chen, Q. A., Xu, T., Chen, Y., & Yang, J. (2019). Understanding fileless

attacks on linux-based iot devices with honeycloud. Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services, 482–493.

Dener, M., Ok, G., & Orman, A. (2022). Malware detection using memory analysis data in big data
environment. Applied Sciences, 12(17), 8604.

Hendler, D., Kels, S., & Rubin, A. (2018). Detecting malicious powershell commands using deep neural
networks. Proceedings of the 2018 on Asia Conference on Computer and Communications Security, 187–
197.

Kantola, T. (2022). Exploring VirusTotal for security operations alert triage automation.
Keyes, D. S., Li, B., Kaur, G., Lashkari, A. H., Gagnon, F., & Massicotte, F. (2021). EntropLyzer: Android

malware classification and characterization using entropy analysis of dynamic characteristics. 2021
Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge (RDAAPS), 1–12.

Khalid, O., Ullah, S., Ahmad, T., Saeed, S., Alabbad, D. A., Aslam, M., Buriro, A., & Ahmad, R. (2023). An
insight into the machine-learning-based fileless malware detection. Sensors, 23(2), 612.

Khushali, V. (2020). A Review on Fileless Malware Analysis Techniques. International Journal of Engineering
Research & Technology (IJERT), 9(05).

Lee, G., Shim, S., Cho, B., Kim, T., & Kim, K. (2021). Fileless cyberattacks: Analysis and classification. ETRI
Journal, 43(2), 332–343.

Louk, M. H. L., & Tama, B. A. (2022). Tree-based classifier ensembles for PE malware analysis: A
performance revisit. Algorithms, 15(9), 332.

Mezina, A., & Burget, R. (2022). Obfuscated malware detection using dilated convolutional network. 2022 14th
International Congress on Ultra Modern Telecommunications and Control Systems and Workshops
(ICUMT), 110–115.

Naeem, H., Dong, S., Falana, O. J., & Ullah, F. (2023). Development of a deep stacked ensemble with process
based volatile memory forensics for platform independent malware detection and classification. Expert
Systems with Applications, 223, 119952.

Nugraha, A., & Zeniarja, J. (2022). Malware Detection Using Decision Tree Algorithm Based on Memory
Features Engineering. Journal of Applied Intelligent System, 7(3), 206–210.

Roy, K. S., Ahmed, T., Udas, P. B., Karim, M. E., & Majumdar, S. (2023). MalHyStack: A hybrid stacked
ensemble learning framework with feature engineering schemes for obfuscated malware analysis.
Intelligent Systems with Applications, 20, 200283.

Sihwail, R., Omar, K., Zainol Ariffin, K. A., & Al Afghani, S. (2019). Malware detection approach based on
artifacts in memory image and dynamic analysis. Applied Sciences, 9(18), 3680.

Sudhakar, & Kumar, S. (2020). An emerging threat Fileless malware: a survey and research challenges.
Cybersecurity, 3(1), 1.

Talukder, M. A., Hasan, K. F., Islam, M. M., Uddin, M. A., Akhter, A., Yousuf, M. A., Alharbi, F., & Moni, M.
A. (2023). A dependable hybrid machine learning model for network intrusion detection. Journal of
Information Security and Applications, 72, 103405.

Varlioglu, S., Elsayed, N., ElSayed, Z., & Ozer, M. (2022). The dangerous combo: Fileless malware and
cryptojacking. SoutheastCon 2022, 125–132.

Zhang, S., Hu, C., Wang, L., Mihaljevic, M. J., Xu, S., & Lan, T. (2023). A Malware Detection Approach Based
on Deep Learning and Memory Forensics. Symmetry, 15(3), 758.

