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ML Advancements in Malware Detection: Bridging 
Memory and Behavior 

Ajay Kumar Oad  
22183841  

 
Abstract 

Malware remains a persistent and evolving challenge in the digital landscape, often 
evading detection by traditional security measures. As new malware types emerge with 
increasing frequency, it is crucial to develop effective tools and techniques to combat these 
threats. This study investigates the potential of advanced machine learning (ML) 
techniques to enhance the detection and classification of malicious software. Employing 
a variety of ML models on three distinct datasets, we conducted AV detection on each 
dataset to assess its effectiveness in identifying and classifying malware within the 
datasets. Our findings suggest that hybrid detection models, which combine both memory 
and behavioral features, hold the most promise for improving malware detection accuracy 
and adaptability. We discovered that using both memory and behavioral features 
significantly increased detection accuracy from 73.72% to 81.02%, highlighting the 
effectiveness of ML models in detecting malware. Our next step is to investigate the 
stability of these methods when incorporating specific data features or employing 
optimization techniques. 

           Keywords: Malware detection, Fileless malware, Malware behaviors, Memory dumps. 
 

1 Introduction 
Malware, a program designed to harm computer systems, poses a significant threat to 
individuals and organizations. Malware can disrupt operations, damage systems, and steal 
sensitive data. Cybercriminals create malware to make money, often demanding ransom 
payments in exchange for restoring access to a victim's computer. Malware is spread through 
various methods, including infected software, phishing emails, and malicious websites. 
 
Among the multitude of malware types, "fileless malware" stands out for its stealth. Unlike 
typical malware, it does not reveal itself as identifiable files as it avoids signature-based 
detection, file scanning, sandboxing, and others. Instead, it sneaks into a computer's memory, 
making detection quite challenging. It is related to a skilled intruder navigating hidden 
pathways to dodge security measures, evading detection by dwelling solely in a computer's 
memory. This covert malware infiltrates memory without leaving the usual traces, behaving 
like an undercover agent collecting personal information or causing disturbances without 
noticeable signs. 
 
For instance, (Hendler et al., 2018) explains that PowerShell Empire and Kovter are notable 
fileless malware types tricky to detect as they do not rely on conventional files and lurk in less 
obvious parts of a computer, making their identification complex. 
 
There are varies signs indicating a system is under a fileless malware attack, such as suspicious 
network activity, unusual activity in the registry or WMI, excessive use of legitimate tools, 
abnormal spikes/behavioral in CPU or memory usage, unexpected changes to system settings 
or permissions and abnormal behavior from users. 
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Both individuals and organizations face outcomes from these elusive fileless malware types. 
Individuals might suffer personal data breaches or financial losses, while organizations endure 
severe consequences like data breaches, operational disruptions, financial setbacks, and 
damaged reputations. 
 
To counter these elusive threats, this research introduces novel contributions: 
 A specialized dataset containing 215 fileless malware instances, focusing on unique API-

based features, offering a fresh perspective on understanding fileless malware behavior—
a novel endeavor in this field. 

 Improvement of existing datasets through thorough analysis, leading to substantial 
enhancements in classification accuracy, particularly for detecting fileless malware. 

 Integration of behavioral features from the initial dataset into commonly used memory 
dump datasets, allowing for a more comprehensive analysis, improving the capability to 
detect fileless malware within memory dumps. 

 
The goal is to use new ways like spotting behavior and recognizing patterns to make our 
defenses stronger against tricky online dangers. It is like using smart plans to catch enemies 
and make sure our digital stuff stays safe. 

1.1 Research Objectives 
We studied how well computer programs can predict malware in different sets of data. We 
wanted to know if these programs can still do a better job when the information they're given 
is not strongly connected. Our investigation explores how to enhance the detection of fileless 
malware through a synergistic application of Memory features and behavioral features. This 
aligns with our overarching research question: 
 
How the combination and separate use of Memory features and behavior features enhance 
the malware detection accuracy? 
Our exploration delves into the potential impacts and implications of creating a hybrid 
detection model, as well as its separate utilization, on system performance and resource 
utilization. 
 Our research contribution lies in combining memory and behavior features that boosted 

malware detection accuracy from 73.72% to 81.02%, showcasing the effectiveness of 
machine learning models. 

1.2 Contribution to Academic Understanding 
This study aims to contribute valuable insights to the academic discourse on cybersecurity by 
delving into the potential of machine learning methodologies in handling diverse malware 
datasets. The comparative analysis of these datasets, varying in correlation levels, promises to 
shed light on the predictive capacities of machine learning algorithms in detecting malware 
instances. 

1.3 Structure of the Report 
This section explains the structure of our report. By looking at what experts have already 
studied about this in Section II. Then, in Section III, it explains how we did our research, talking 
about the data we used, how we prepared it, and the computer programs we used. Sections IV, 
V, and VI go into the details of how we planned and designed our research, how we put it into 
action, and then how we checked if it worked well. Lastly, in Section VII, we wrap it up by 
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summarizing what we found and suggesting what could be explored next in the field of finding 
and stopping malware. 
 

2 Related Work 
The literature review section serves as a foundation for understanding the landscape of malware 
detection within the realm of behavioral and memory dump analysis, with most recent studies, 
aligning with our exploration using the three different types of datasets, see section 3.1. 
 
2.1 Fileless malware: Detection Techniques and Challenges 
(Sudhakar & Kumar, 2020), explores the changing landscape of cyber threats, shifting from 
traditional malware to more advanced fileless malware. Unlike usual malware, this type doesn't 
rely on regular executables, making it harder to detect with standard antivirus tools. Enterprises 
face challenges due to their persistence and ability to bypass security measures by using trusted 
operating system tools. This study also examines detection techniques and proposes an incident 
response model but notes gaps and associated difficulties. It stresses the urgency of focusing 
on detecting and preventing fileless malware attacks, especially as attackers exploit trusted 
applications to evade detection. Recent high-profile attacks on entities like SWIFT and the 
Ukraine power grid highlight the ongoing threat to critical infrastructure from such 
sophisticated cyber-attacks. 
 
(Khushali, 2020), in this paper, examines malware a harmful software threatening computer 
systems. Traditional types like viruses, worms, and Trojans are known, but a new threat called 
fileless malware operates in system memory, leaving minimal trace. This type targets Windows 
tools like PowerShell and WMI, making detection challenging. This paper also researches into 
various detection and mitigation methods, aiming to clarify misconceptions. It concludes by 
stressing the critical nature of fileless malware, advocating for solutions that automatically 
analyze system behavior to prevent its infiltration into memory. 
 
(Borana et al., 2021) examines fileless malware, a tricky threat as it avoids detection by not 
leaving traces. They propose a tool to help forensic experts spot unusual system activities 
linked to this malware. The study stresses how fileless malware persists and avoids detection, 
showing the growing risk it poses. It calls for more research on security methods to tackle this 
evolving threat, suggesting behavioral analysis despite its resource use. Additionally, they 
recommend using machine learning and AI-based systems to combat these attacks, highlighting 
the need for specific defenses against different types of fileless malware. 
 
(Dang et al., 2019), highlighted the rising threat of cyber-attacks on Linux based IoT devices, 
particularly focusing on fileless attacks rather than traditional malware-based ones. Their 
research, utilizing IoT honeypots, revealed insights into the frequency, strategies, and impacts 
of these fileless attacks, often evading conventional defense methods. This shift in attention 
emphasizes the necessity to fortify IoT security beyond malware defense, stressing the 
importance of integrating heightened awareness and robust defense mechanisms against 
fileless attacks. The study underscores the critical need for updated defense tactics to safeguard 
widely used IoT systems. 
 
In this research, (Bozkir et al., 2021) addressed countering fileless malware, which evades 
detection by not leaving traces on devices. They proposed a method using computer vision and 
machine learning to convert memory dumps into images for malware identification. Testing on 
diverse data showed a 96.39% accuracy in detection and employed UMAP, boosting 
recognition by 21.83%. This method proved both effective and speedy, taking only 3.56 



4 
 

 

seconds on standard computers. The future involves exploring neural networks for improved 
accuracy and leveraging UMAP's capabilities for synthetic image feature generation, 
promising advancements in malware defense strategies. 
 
2.2 In Memory Detection Techniques and Mitigation Strategies 
(Lee et al., 2021) studied ten recent cyberattacks using fileless malware in the last five years, 
aiming to understand these attacks better. Current defense systems struggle to catch these 
fileless attacks, leading to fragmented reports from security vendors. To bridge this gap, the 
study closely examined the specific methods and traits of these attacks using both real samples 
and published reports. They used Cuckoo Sandbox to analyze samples and proposed a 
classification method dividing attacks into evasion, attack, or collection categories based on 
techniques used. The goal is to create a solid framework for recognizing and categorizing 
fileless cyberattacks, helping to deal with future cybersecurity threats more effectively. 
 
(Bucevschi et al., 2019), focuses on cybersecurity's changing landscape, especially in detecting 
evolving cyber threats. Traditional methods struggle with non-persistent attacks, prompting the 
proposal of entry-level anomaly detection using command line arguments from system tools. 
This approach, based on a modified Perceptron, aims to spot anomalies in files with PowerShell 
code often used by attackers. UAnomaly, the proposed solution, targets file-less attacks using 
legitimate Windows processes, offering a potential supplement to existing antivirus solutions. 
It could aid in creating new datasets for training, advancing defenses against file-less attacks 
and zero-day vulnerabilities that harm businesses. 
 
(Varlioglu et al., 2022) critically examines the evolving threat landscape of "Fileless 
Cryptojacking," merging fileless malware and cryptojacking into a discreet and challenging 
issue post-2020. It researches academic and industry literature, emphasizing the lack of 
exploration around in-memory fileless cryptojacking despite attention to in-browser and in-
host cryptojacking. The parallels between ransomware and cryptojacking, operating within 
computer memory using legitimate Windows processes for malicious activities, are 
highlighted. The paper proposes a novel threat-hunting approach within Digital Forensics and 
Incident Response (DFIR) to combat these challenges effectively, emphasizing shared patterns 
in Tactics, Techniques, and Procedures (TTPs). 
 
(Zhang et al., 2023), tackle the significant challenge of detecting threats operating solely in 
computer memory. They propose using convolutional neural networks “CNN” and memory 
forensics to address this issue. By analyzing binary fragments from memory-based portable 
executable “PE” files, they create a dataset and train a CNN model, achieving a 97.48% 
accuracy in detecting fileless attacks, surpassing traditional methods. The study underscores 
the importance of deep learning in scrutinizing dynamic PE files housing malicious code, 
highlighting the need to improve the model's ability to identify diverse malicious behaviors and 
reduce false positives. This research has profound implications for memory forensics and sets 
the stage for future investigations into broader threats. 
 
(Botacin et al., 2020), they point out how software-based antivirus struggles with scanning 
memory due to delays. They propose MINI-ME, a new hardware solution acting as an in-
memory antivirus booster. This hardware method uses memory-based techniques, scanning for 
malware while data moves in memory, sidestepping software AV issues. MINI-ME is compact, 
using small bloom filters, and impressively spots 500 real threats without slowing down or 
making mistakes. This hardware-based approach looks promising for beefing up cybersecurity 
by strengthening memory-based threat spotting. 
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(Carrier, 2021), focuses on the tough task of spotting hidden and tricky malware, which can 
sneak past usual detection methods. Memory analysis is key here, but current techniques 
struggle to catch these smart forms of malware accurately. To tackle this, they upgraded 
VolMemLyzer, a memory tool, to better find obfuscated malware. Using a specific dataset 
(MalMemAnalysis2022) mimicking real tricky malware, they use machine learning and show 
a 99.00% accuracy and 99.02% F1-Score in finding hidden malware. The paper stresses the 
ever-changing nature of malware targeting Windows weaknesses and suggests a solution using 
memory tools to quickly find tricky malware. Their approach beats existing methods in both 
speed and accuracy, which is big for fighting smart malware like Spyware, Ransomware, and 
Trojan Horse types. This research paves a hopeful path for future detection methods. 
 
(Dener et al., 2022), critically examines malware challenges and the limitations of traditional 
detection methods against advanced threats. Focusing on memory analysis, it employs cutting-
edge deep learning techniques using the CIC-MalMem2022 dataset. By rigorously testing nine 
algorithms, Logistic Regression notably achieves 99.97% accuracy in detecting malware, 
highlighting memory analysis' significance. However, the study acknowledges dataset 
limitations and suggests refining models for diverse data. This research establishes a foundation 
for using machine learning in memory analysis for malware detection, encouraging future 
studies on multiclass classification and addressing data imbalances in this field. 
 
(Talukder et al., 2023), present a new method blending machine learning and deep learning for 
stronger network intrusion detection systems (NIDSs). This special model deals well with data 
imbalance by using SMOTE and carefully selecting features with XGBoost. It outperforms 
regular methods by handling data issues, boosting accuracy, and defending against various 
cyber threats. Using SMOTE cuts down on mistakes, and XGBoost improves feature selection, 
making the whole model work better. This combo offers a dependable way to spot intrusions 
in real-time on internet-connected IDS devices. Future work wants to test it with new threats 
using updated data and compare it to other methods for even stronger systems. 
 
(Louk & Tama, 2022), thoroughly assesses tree-based ensemble learning methods for 
analyzing PE malware. It compares techniques like random forest, XGBoost, CatBoost, GBM, 
and LightGBM using accuracy, precision, recall, and other metrics across datasets (BODMAS, 
Kaggle, CIC-MalMem-2022). Findings consistently favor tree-based ensembles, highlighting 
their superiority in malware detection. This study contributes by statistically evaluating these 
models and suggesting future exploration in interpretability and neural network models like 
TabNet. It critically engages with theories, emphasizing the potential of tree-based models in 
diverse malware detection systems. Room for future research in explainable models and 
broader neural network use is acknowledged. 
 
(Roy et al., 2023), their study focused on the intricate challenge of detecting complex malware, 
highlighting gaps in current research and the need for more comprehensive detection methods. 
Their MalHyStack model merges traditional and deep learning, showcasing improved accuracy 
and faster processing by selecting critical features. Tested on the CIC-MalMem2022 dataset, 
this model surpasses existing techniques, excelling in spotting obfuscated malware. The paper 
stresses the urgency of early detection for system security, suggesting future research directions 
like automated tuning algorithms to enhance performance and reduce computational 
complexities. By critically evaluating theories and offering insightful analysis, this work shows 
a deep understanding of literature, providing valuable avenues for further exploration in the 
field. 
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(Mezina & Burget, 2022), this research dives into the ongoing challenge of spotting hidden 
malware in cybersecurity, recognizing the ever-changing threats. It suggests using artificial 
intelligence to detect disguised malware in computer memory, highlighting the struggle of 
antivirus programs to keep up. They used advanced neural networks, like the dilated 
convolutional network, with the latest CIC-MalMem-2022 dataset, achieving a 0.99 accuracy 
in detection. Traditional machine learning combined with optimization techniques showed the 
random forest model excelling in binary classification, but for multiclass issues, the proposed 
neural network performed better with 0.8353 accuracy. This emphasizes the need for better 
methods to accurately classify diverse malware types. Overall, this study urges advancements 
in identifying and categorizing evolving malware, summarizing the current state and future 
pathways in the field. 
 
(Nugraha & Zeniarja, 2022) carefully examines how memory-based analysis helps detect 
evolving polymorphic threats in malware. It studied a Decision Tree-based classification 
method using a big dataset of 58,596 records containing both harmless and harmful data. The 
results were impressive: accuracy stood at 99.982%, with only a 0.1% false positive rate and a 
precision of 99.977%. This approach efficiently pinpointed key features, making computations 
faster. The model excelled at recognizing and signaling malware behavior, highlighting the 
Decision Tree's effectiveness. Overall, this study significantly boosts detection accuracy while 
reducing false alarms, emphasizing the importance of memory-based analysis against ever-
changing malware threats. 
 
(Naeem et al., 2023) introduces an advanced malware detection system using memory forensics 
and a deep ensemble model. It effectively detects elusive malware like fileless and memory-
resident threats. The model achieved high accuracies (99.1% for Windows, 94.3% for Android, 
and 99.8% for obfuscated Windows malware) but faces complexity in training due to numerous 
features. It suggests a memory agent for streamlined training. Future research aims to explore 
additional memory characteristics, real-time monitoring during execution, and stronger 
defenses against attacks. 
 
2.3 Advanced Techniques and Novel Approaches 
(Al-Qudah et al., 2023), introduced a fresh way to tackle complex memory dump malware. 
They combined OCSVM and PCA to create the OCC-PCA model, boosting malware detection 
to an impressive 99.4%, a big jump from the 55% seen with older methods. Using the 
'MalMemAnalysis2022' dataset, this method not only showed better performance but also 
highlighted PCA's strength in spotting irregularities in memory dump files. This combo of 
OCSVM and PCA stands out as a strong way to tell apart good and bad behaviors in the ever-
changing malware scene.  
 
(Keyes et al., 2021), focus on Android malware's swift growth, highlighting the need for 
stronger analysis methods. Current techniques focus on fixed and moving features like API 
calls but lack insight into malware behavior using various dynamic traits. The study introduces 
EntropLyzer, employing entropy-based behavioral analysis, successfully categorizing 12 
Android malware types and 147 families from the CCCS-CIC-AndMal2020 dataset. It 
examines six dynamic traits but faces limitations in emulator-based analysis, reducing the 
sample size due to malware detection. To overcome this, employing real devices for analysis 
could broaden the study's scope. Despite strides, the study underscores ongoing challenges in 
battling evolving Android malware, calling for refined analysis approaches. 
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(Sihwail et al., 2019), introduced a new way to find malware, which works better than regular 
antivirus software. They mixed memory investigations and dynamic analysis using a support 
vector machine (SVM) model. This combo spotted malware with 98.5% accuracy, cutting 
down wrong alerts to just 1.7%. By blending memory clues with dynamic analysis, it gave a 
wider view of how malware acts, going beyond just one way it works. Even though using API 
calls was good for sorting malware, the study says we should also investigate registries and 
networks to find it even better. They plan to grow the dataset of malware and make the test 
areas stronger to fight against tricky tactics used to avoid detection. 

2.4 Summary Table of previous work 
Table 1 The following summary table lists previous studies in the field of malware detection. 

Study Methods dataset Evaluation 
performance 
- Binary 

Evaluation 
performance – 
multi-class 

(Khushali, 2020) Survey of previous studies, 
in fileless malware detection 
techniques 

N/A N/A N/A 

(Sudhakar & Kumar, 
2020) 
 

Survey of previous studies 
of fileless malware and it’s 
challenges 

N/A N/A N/A 

(Bozkir et al., 2021) SMO (RBF) Own dataset of 4294 
samples (3686 malwares 
and 608 benign) 

96.39% N/A 

(Bucevschi et al., 2019) Monitoring suspicion, 
harmful and other hiding 
actions  

Own dataset containing 
500,551 command lines, 
WMI Scripts and others 

N/A N/A 

(Lee et al., 2021) Kuckoo Sandbox malware 
attack traced with MITRE 

Samples from GitHub 
and Hybrid-analysis 

N/A N/A 

(Dang et al., 2019) By examining 4 software 
and honeypots across public 
cloud environments through 
profiling. 

N/A N/A N/A 

(Borana et al., 2021) Network and System’s run 
time behavior 

N/A N/A N/A 

(Varlioglu et al., 2022) Fileless malware pattern, 
Techniques and Procedure, 
malware for Tactics 

N/A N/A N/A 

(Zhang et al., 2023) Memory Forensics coupled 
with CNN-Based 
Classification 

4896 memory dump 
samples. 

97.48% N/A 

(Botacin et al., 2020) MINI-ME: Hardware AV 
using memory techniques 

21 thousand in-the-wild 
malware samples 

100% N/A 

(Carrier, 2021) Stack ensemble CICMalMem-2022 99.00 N/A 
(Dener et al., 2022) LR CICMalMem-2022 99.97 N/A 
(Mezina & Burget, 
2022) 

Dilated CNN CICMalMem-2022 99.00 N/A 

(Nugraha & Zeniarja, 
2022) 

DT CICMalMem-2022 99.98 N/A 

(Louk & Tama, 2022) GBM/ XgBoost/RF Kaggle, BODMAS, 
CICMalMem-2022 

 N/A 

(Naeem et al., 2023) Deep stacked ensemble 
(MLP+CNN) 

CICMalMem-2022 99.8 N/A 

(Al-Qudah et al., 2023) SVM CICMalMem-2022 99.4 N/A 
(Keyes et al., 2021) Decision Tree CIC-AndMal-2020 N/A 98.3 (12 class) 
(Roy et al., 2023) Hybrid Stack Ensemble CICMalMem-2022 99.98 85.04 (4 Class)  

70.29 (16 Class 
(Sihwail et al., 2019) SVM VirusTotal 98.5% N/A 
Our proposed (2023) RF CICMalMem-2022 

and Behavioral 
100% with 55 
features 

81.02% with 69 
features 
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3 Research Methodology 
In this study, our aim is to enhance malware detection using three distinct datasets our own 
behavioral-based, (Khalid et al., 2023) and CICMalMem-2022 consisting of memory dumps 
information. The journey towards refining these datasets and improving detection accuracy 
involves a structured methodology inspired by the KDD which is also known as “Knowledge 
Discovery in Databases” framework. 
 

 
Figure 1. The process of KDD methodology being followed in our research study. 

3.1 Data Selection 
We gathered diverse datasets including our own fileless malware samples collection of 215 
from VirusTotal, dataset obtained from (Khalid et al., 2023), and CICMalMem2022, obtained 
from the Canadian Institute for Cybersecurity. These datasets cover a wide spectrum of sources 
and types, offering a comprehensive foundation for our research. 
 

Table 2 Lists our all datasets used in this study. 

Dataset name Samples Dataset Containing Source Dataset Source 

Dataset 1 (Own dataset) 215 malware samples Malware samples returned 
when searched for 
“fileless” on VirusTotal  

VirusTotal Created 

Dataset 2 (Khalid et al., 
2023) 

45 (24 legitimate and 
21 fileless) 

33 features extracted from 
memory dumps 

(Khalid et al., 
2023) 

Obtained 

Dataset 3 
(CICMalMem2022) 

58596 (29298 benign, 
29298 malware) 

55 features extracted from 
memory dumps 

Canadian Institute 
for Cybersecurity 

Downloaded 

 
Dataset 1: Our search for fileless malware samples began by leveraging VirusTotal's unique 
capabilities. Initially, we used VirusTotal's search engine, finding 215 SHA-256 hashes 
specifically associated with fileless malware, searching with ‘fileless’ keyword. VirusTotal 
stood out as a primary source, notably surpassing other platforms due to its proficiency in 
providing fileless malware samples, a relatively new and challenging type of malware to find.  
 
We chose VirusTotal, because other platforms such as Hybrid-Analysis, Any Run, and 
VirusShare did not provide the required and enough information on fileless malware. Where 
VirusTotal offered 215 labeled as ‘fileless’ samples when searched on VirusTotal, which was 
crucial for my research, additionally it has many benefits such as easy to use and integrate API 
(Kantola, 2022). 
 
Dataset 2: This dataset for exploring malware detection is obtained from the work of (Khalid 
et al., 2023), as detailed in their research paper. It's a collection of memory dumps categorized 
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into two groups: one holds data on legitimate applications, while the other comprises fileless 
malware samples. They used this dataset to learn how to distinguish fileless malware from 
normal applications using information from memory dumps.  
 
Originally, the dataset was published with 40 samples which includes memory dumps dataset 
of legitimate application fileless malwares by (Abeydeera, 2020), which later modified by 
(Khalid et al., 2023), as they argued that the original dataset was unbalanced and wanted to add 
more to get better classification results, to do that they added additional 26 fileless malware 
samples but they dropped 21 samples as they did not execute as per needs and added 5 which 
were executed successfully. This way by adding 5 fileless malware samples (Khalid et al., 
2023) used 45 malware samples in total in their study. 
 

Table 3 shows the sample distribution for dataset 2. 

Category Percentage Count 
File-base 53.33% 24 
Fileless 46.66% 21 

 
Dataset 3: CICMalMem-2022, which is released by the Canadian Institute of Cybersecurity 
also known as, serves as a tool to test how well systems can detect hidden malware. It contains 
two types of data: one representing harmful software and the other representing harmless 
software. This collection mirrors real-life situations by including a variety of malicious 
programs commonly encountered. (CICMalMem2022 is available at 
https://www.unb.ca/cic/datasets/malmem-2022.html). 
 

 Table 4 shows data distribution of dataset 3. 

 
 

 
Table 5 shows details about all malware families for dataset 3. 

Malware Category Family name Malware Percentage  Count 

 

Ransomware 

Ako 6.83% 2000 
Conti 6.79% 1988 

MAZE 6.68% 1958 
Pysa 5.86% 1717 

Shade 7.26% 2128 
 

Spyware 

Coolwebsearch 6.83% 2000 
Gator 7.51% 2200 

Transponder 8.23% 2410 
TIBS 4.81% 1410 

180Solutions 6.83% 2000 
 

Trojan Horse 

Emotet 6.71% 1967 
Refroso 6.83% 2000 
Reconyc 5.36% 1570 

Scar 6.83% 2000 
Zeus 6.66% 1950 

3.2 Data Preprocessing 
Dataset 1: 

 Accessing Behavioral Information: As our dataset 1 is related to behavioral information 
of Fileless malwares, we utilized VirusTotal's API 'Get objects related to a file' to 
access API-based behavioral information associated with 215 identified fileless 
malware SHA-256 hashes. The reason we selected the behavioral section, as it has 

Category Percentage Count 
Benign 50% 29298 
Malware 50% 29298 
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comprehensive behavioral information as compared to other sections such as overview, 
details which contains general and identifications information accordingly. 

 Automated Retrieval: Integrated the VirusTotal API into a Python script to 
automatically download and collect the behavioral information in JSON files. 

 Data Validation and Cleaning: The integration of API to our own python script to 
automate the downloading of JSON files gave us chances to validation procedures 
within the Python script to ensure data integrity through followings: 

o Removed duplicate sample hashes to maintain dataset accuracy. 
o Excluded samples lacking behavioral information from the dataset to ensure 

completeness. 
 Security Measures: Conducted the iterative retrieval process within a Kali Linux VM 

for a secure environment while handling sensitive data. 
 
Dataset 2: 
1. Label Refinement: Binary labels representing legitimate applications and fileless malware 

were transformed into descriptive strings non-malware for legitimate apps and malware 
for fileless malware. 

2. Focused Feature Selection: We pinpointed six features highly significant in memory 
dumps, enhancing our ability to predict outcomes based on crucial system characteristics.  

 
Dataset 3: 
1. Refining Data Fields: The removal of the 'Category' column containing extensive malware 

names and hashes allowed for a more normalized dataset. Additionally, the class column 
was renamed to 'label' for ML clarity and ease of understanding. 

2. Removed Duplicates: As we identified that each sample was run 10 times as per the need 
of research (Carrier, 2021), there were many duplicated malwares. To maintain the integrity 
and data validation we removed the duplicates and worked with unique malware only. 

3. Focused Feature Selection: We identified six specific characteristics related to memory 
dumps; we also extracted our 6 features as explained in Table 8. 

3.3 Feature Selection and Extraction 
In this section, we extracted the features programmatically and manually for each dataset 
using our own C# written scripts. 
 
Dataset 1: Upon acquiring behavioral details, the obtained JSON files were securely 
transferred to our primary environment securely. Following Tables 5 lists the features for our 
own dataset. 

Table 6 List of 14 features extracted based on VirusTotal API behavior data for all 3 datasets. 

No. Feature Explanation 
1 Detections Number of antivirus engines that detected the file as malicious, in network end. 
2 MitreSignatures Number of signatures from the MITRE ATT&CK Framework that the file matched. 
3 IDS_Rules Number of IDS (intrusion detection system) rules that the file triggered. 
4 Sigma_Rules Number of Sigma detection rules that the file triggered. 
5 DroppedFiles Whether the file created or dropped any files on the system. 
6 NetworkComms Whether the file established any network connections. 
7 FileSystemActions Whether the file performed any file operations, such as creating, modifying, or deleting files. 
8 RegistryActions Whether the file performed registry operations, such as creating, modifying, or deleting registry keys or values. 
9 ProcessServiceActions Whether the file spawned any new processes or services. 
10 SyncMechanisms Whether the file used any synchronization mechanisms, such as mutexes or semaphores. 
11 MutexesCreated Whether the file created any new mutexes. 
12 MutexesOpened Whether the file opened any existing mutexes. 
13 ModulesLoaded Whether the file loaded any additional modules. 
14 RuntimeModules Whether the file loaded any specific runtime modules, such as rundll32.exe or kernel32.dll. 
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Dataset 2: This dataset contains 33 features, as listed below. 
 

Table 7 lists all features from datasets 2. 

No Feature name No  No Feature name 
1 handles_num 12 processes_psxview_exited_num 23 threads_thrdscan_num 
2 hiveList 13 processes_psxview_false_columns_num 24 pslist 
3 dlls_ldrmodules_num 14 processes_psxview_false_rows_num 25 tcp/udp_connections 
4 dlls_ldrmodules_unique_mappedpaths_num 15 processes_psxview_num 26 total_reg_events 
5 dlls_ldrmodules_InInit_fales_num 16 processes_psxview_pslist_true_num 27 read_events 
6 dlls_ldrmodules_InLoad_false_num 17 processes_psxview_psscan_true_num 28 write_events 
7 dlls_ldrmodules_InMem_False_num 18 services_svcscan_num 29 del_events 
8 dlls_ldrmodules_all_false_num 19 services_svcscan_running_num 30 executable_files 
9 modules_num 20 services_svcscan_stopped_num 31 unknown_types 
10 callbacks_num 21 dlls_dlllist_unique_paths_num 32 http(s)_requests 
11 processes_privs_enabled_not_default_num 22 mutex_mutantscan_num 33 dns_requests 

 
Table 8 lists Six specific features selected for Dataset 2. 

No Feature name Description 
1 handles_num Number of handles used by the system 
2 dlls_ldrmodules_num Count of loaded DLLs 
3 callbacks_num Number of callback functions registered in the system 
4 services_svcscan_num Count of services scanned by the system 
5 mutex_mutantscan_num Number of mutex (mutant) objects scanned 
6 threads_thrdscan_num Total count of threads scanned within the system 

 
Justification of Feature Selection: During our research for datasets 2 and 3, a correlation 
analysis of their memory dumps unveiled above six common features (Table 8). Leveraging 
these identified features for machine learning applications led to notable improvements in 
predictive outcomes across both datasets. This empirical observation underscores the 
significance of these features in contributing to enhanced model performance. Thus, the 
selection of these six features was rooted in empirical evidence, consolidating their relevance 
and utility in improving the accuracy and efficiency of our machine learning approach. 
 
Dataset 3: This dataset contains 55 memory-based features, as listed below. 
 

Table 9 lists all features from dataset 3. 

No. Feature name No. Feature name No# Feature name 

1 pslist.nproc 20 handles.nmutant 39 psxview.not_in_eprocess_pool_false_avg 
2 pslist.nppid 21 ldrmodules.not_in_load 40 psxview.not_in_ethread_pool_false_avg 
3 pslist.avg_threads 22 ldrmodules.not_in_init 41 psxview.not_in_pspcid_list_false_avg 
4 pslist.nprocs64bit 23 ldrmodules.not_in_mem 42 psxview.not_in_csrss_handles_false_avg 
5 pslist.avg_handlers 24 ldrmodules.not_in_load_avg 43 psxview.not_in_session_false_avg 
6 dlllist.ndlls 25 ldrmodules.not_in_init_avg 44 psxview.not_in_deskthrd_false_avg 
7 dlllist.avg_dlls_per_proc 26 ldrmodules.not_in_mem_avg 45 modules.nmodules 
8 handles.nhandles 27 malfind.ninjections 46 svcscan.nservices 

9 handles.avg_handles_per_proc 28 malfind.commitCharge 47 svcscan.kernel_drivers 

10 handles.nport 29 malfind.protection 48 svcscan.fs_drivers 
11 handles.nfile 30 malfind.uniqueInjections 49 svcscan.process_services 
12 handles.nevent 31 psxview.not_in_pslist 50 svcscan.shared_process_services 
13 handles.ndesktop 32 psxview.not_in_eprocess_pool 51 svcscan.interactive_process_services 
14 handles.nkey 33 psxview.not_in_ethread_pool 52 svcscan.nactive 
15 handles.nthread 34 psxview.not_in_pspcid_list 53 callbacks.ncallbacks 
16 handles.ndirectory 35 psxview.not_in_csrss_handles 54 callbacks.nanonymous 
17 handles.nsemaphore 36 psxview.not_in_session 55 callbacks.ngeneric 
18 handles.ntimer 37 psxview.not_in_deskthrd   
19 handles.nsection 38 psxview.not_in_pslist_false_avg   
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3.4 Data Mining 
Our study seeks to detect several types of malwares using following two techniques: 

 AV Detection Rates 
 ML classifications 

 
Machine Learning Algorithms for Malware Detection: A Comparative Analysis 

 Random Forest (RF): Random Forest is an excellent method for malware detection. By 
merging multiple decision trees, it produces more accurate results and reduces the risk 
of overfitting. It's applicable to both binary (malicious vs. benign) and multi-class 
classification tasks, making it a versatile tool for malware analysts. Random Forest 
effectively handles noisy and outlier data, high-dimensional data with numerous 
features, and its non-parametric nature makes it adaptable to diverse malware types. It's 
also highly accurate, efficient, and scalable, making it an asset for security analysts. 

 J48: This is a well-structured decision tree algorithm that efficiently separates data 
points based on their attributes. It's widely used in classification tasks, including 
malware detection. J48's decision tree structure is easy to comprehend, making it 
simpler for security analysts to interpret the classifier's predictions and gain insights 
into the malware's behavior. Its ability to handle correlated features, making it suitable 
for analyzing malware datasets, and its efficiency in learning from small datasets make 
it a valuable tool for security analysts. 

 Naive Bayes (NB): Naive Bayes is a probabilistic classifier that utilizes Bayes' theorem 
to assign class probabilities. It's flexible for both binary and multi-class classification 
tasks, making it a versatile tool for malware analysts. Naive Bayes is computationally 
efficient, making it ideal for large-scale malware detection. It effectively handles 
imbalanced data, where benign samples significantly outnumber malicious ones, and 
its probabilistic nature provides insights into the relative importance of features in 
determining the class label. These features make it a valuable tool for security analysts. 

 Sequential Minimal Optimization (SMO): SMO is an algorithm for training support 
vector machines (SVMs), which are supervised learning models that distinguish 
between data points based on their attributes. SMO is used for classification tasks, 
including malware detection. Its ability to handle high-dimensional data, which is 
common in malware analysis, its relative robustness to noise and outliers, and its ability 
to provide insights into the decision boundaries and feature importance makes it an 
effective tool for security analysts. 

 Instance-Based Learning (IBk): IBk is a lazy learning algorithm that classifies new data 
points by comparing them to previously stored instances. It's used for classification 
tasks, such as malware detection. IBk is highly scalable, making it efficient for 
processing large-scale malware datasets. It's also versatile for both binary and multi-
class classification tasks, making it capable of handling both benign and malicious 
samples without requiring explicit labels. IBk effectively handles imbalanced data, 
making it suitable for malware detection where benign samples outnumber malicious 
ones, and its nearest neighbor approach provides insights into the similarity between 
malware samples. These features make it a valuable tool for security analysts. 

3.5 Evaluation 
 AV Detection: The effectiveness of an anti-virus (AV) program in detecting and 

blocking malware is crucial for cybersecurity. By effectively detecting and blocking 
malware at the initial point of entry, AV programs act as a frontline defense against 
malware attacks, protecting devices from potential damage and data breaches. It 
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measures how well an AV program can identify and prevent malware from infecting a 
device. A high AV detection rate is essential for effective cybersecurity, as it ensures 
that malicious software is detected and blocked before it can cause harm. By serving as 
a first line of defense against malware attacks, AV programs play a critical role in 
protecting sensitive data and maintaining system integrity. 

 Precision: Precision assesses a classifier's accuracy in predicting positive samples. It 
indicates the proportion of correctly identified malware samples among all samples 
predicted to be malware. A high precision score implies that the classifier is less likely 
to mistakenly label benign samples as malware, minimizing false positives. 

 Recall: Recall evaluates a classifier's completeness in identifying positive samples. It 
measures the fraction of actual malware samples accurately identified as malware. A 
high recall score indicates the classifier's ability to effectively detect most malware 
samples, minimizing false negatives. 

 F1-score: The F1-score balances precision and recall, providing a single metric to 
evaluate a classifier's overall performance. It is calculated by averaging precision and 
recall, considering their reciprocals. A high F1-score suggests the classifier strikes a 
good balance between not falsely labeling benign samples and identifying malware. 

 Accuracy: Accuracy measures the overall correctness of a classifier, indicating the 
proportion of correctly predicted samples among all samples. It provides a 
straightforward assessment of the classifier's ability to correctly classify samples. 
However, accuracy can be misleading when dealing with imbalanced datasets, where 
one class significantly outnumbers the other. 

 ROC-AUC: The ROC-AUC curve visualizes a classifier's performance over a range of 
sensitivity (recall) and specificity (1 - false positive rate) trade-offs. It provides a 
comprehensive view of a classifier's performance, considering both precision and recall 
simultaneously. A high ROC-AUC score indicates a classifier's ability to effectively 
identify both true positives and true negatives across different operating points. 

 

4 Design Specification 
This section describes and lists the technologies and designs used in our research. 
 
Technologies and Tools Utilized: 
We researched and utilized 2 different types of VirusTotal APIs by creating a free account and 
acquiring an API key necessary for accessing the public API endpoints. 

 Programming Languages and Environments: 
 Python: Used for data retrieval, utilizing libraries such as os, json, time, 

requests, and hashlib for data manipulation and API interaction. 
 C# in Visual Studio 2022: Utilized for further processing and extraction of 

specific features from the retrieved data. Utilizing libraries such as 
Newtonsoft.Json, GemBox.Spreadsheet and OfficeOpenXml; 

Dataset Composition: 
 Features Obtained: Detailed the specific features extracted from the VirusTotal 

API data (e.g., file hashes, scan results, timestamps). 
Privacy and Ethical Considerations: 

 API Key Usage: Stressed the responsible and ethical use of the API key in compliance 
with VirusTotal's terms of service and privacy policies. 

Limitations and Challenges: 
 Rate Limit Constraints: Highlighted challenges faced due to rate limitations on public 

APIs and strategies employed (like delay implementation) to manage these constraints. 
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For which we implemented a 20-second delay between requests due to limitations on 
the public API (4 requests per minute) to avoid exceeding the rate limit. 

 
Class Diagram: The following class diagram shows a map of different classes and how they 
are associated to one another. This diagram helps to understand the basic and logical structure 
of code, which was created for Dataset 1. 
 

 
Figure 2 shows the class diagram of C# program. 

5 Implementation 
This section foces on breif description of implementation of our 3 datasets and technolgoies 
used along with their justifications. 
 
Dataset 1: 
Following figure 3 gives breif overview of all steps taken in creating dataset 1. 

 
Figure 3 shows he process flow of creating our own Dataset 1. 

Step 1: VirusTotal API Identification & Parameters Setup 
Our initial step involved pinpointing the relevant VirusTotal API. This API required specific 
parameters file identification (SHA-256, SHA-1, or MD5), relationship type ('behavior'), a 
limit on related objects and an API key for authentication. 
 

Table 10 Lists parameters used in API. 

Parameter Description 
Id A string type value representing the file's identification (SHA-256, SHA-1, or MD5). 

 
relationship A string denoting the relationship type, such as 'behavior' in this case. 

Limit An int32 type representing the maximum number of related objects to retrieve, set at 40 for this extraction. 
 

x-apikey A string type representing the user's API key necessary for API access and authentication. 

Justification: We connected an API to a Python program to automatically fetch large number 
Json files containing malware data. Specifically, we focused on the behavior section of the 
malware because the important information we needed was only found there. This helped us 
gather the necessary data efficiently. 
 



15 
 

 

Step 2: Python Code Integration (API Access) 
To interact with the identified API, a Python script was developed. This script successfully 
accessed the VirusTotal API, retrieving behavioral details for the 215 fileless malware samples 
in the form of json extension, on a VM environment.  
 

 Json files sizes: 1 kb to 663 kb 
 Python version: 3.11.2 
 Kali Lunix version: 2023.1 

 
Justification: The reason for running python script on VM was simple. Our VM was set up on 
Kali Linux, which has pre-installed python libraries which were up to date. 
 
Step 3: C# Code Development (Behavioral Data Processing) 
Transitioning to our primary environment, we thoroughly constructed a C# codebase within 
Visual Studio 2022. This program was developed to validate, process, and extract the identified 
15 crucial behavioral features from the obtained 215 JSON files. 
 

 Visual Studio version: 2022 
 C# version: 12 

 
Justification: We used C# programming as it provides a wide variety of libraries to manage 
files easily. The debugging was much better and easy to work with. 
 
Step 4: CSV Compilation (Data Integration) 
The final phase involved compiling the extracted behavioral features into a comprehensive 
CSV file. This file condensed crucial data points for each malware sample, offering a 
consolidated overview of their behavioral characteristics. Additionally, to maintain the 
validation and integrity of malware detection, we removed the malware which had no data.  
 

 15 malware samples did not have behavioral information. 
 Final CSV file compiled with 200 malwares with size of 20 kb. 

 
Justification: We compiled final data into a CSV file because we will use this file into Weka 
tool, for ML classification as Weka accepts this file extension and Weka is easy to use too. 
 
Dataset 2: 
We refined Dataset 2 by transforming labels into clearer descriptions, removing irregular data, 
and focusing on significant features found in memory dumps. This helped enhance the dataset 
for better analysis. 
 
Technologies Used: 

 We developed C# programing within Visual Studio 2022 for automating the refinement 
process due to the dataset's size.  

Justification: Visual Studio 2022: Its automation capabilities expedited the process, crucial 
when dealing with a large dataset. Its user-friendly interface also facilitated manual 
interventions where needed. 
 
Dataset 3: 
For Dataset 3, we refined the data by normalization, renaming columns for clarity, and 
selecting critical memory dump-related features. This ensured a more organized and useful 
dataset for analysis. 
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Technologies: Like Dataset 2, we developed C# code through Visual Studio 2022 for 
refinement. This choice was due to the consistency needed between the datasets and the 
efficiency required for handling memory dump-related information. 
 
Justification: Visual Studio 2022: Its automation support was pivotal. The need for manual 
intervention was efficiently managed within this environment, streamlining the overall process. 
 

6 Evaluation 
During the evaluation, we aimed to do AV detections on 3 datasets and thoroughly check how 
well different models can spot malware in all datasets. We did many tests, trying out different 
features and classification setups to really understand how good our models are at this task.  

6.1 Dataset 1 
In this section we performed statistical analyses using AV detection methods. 

6.1.1 AV Detection Rate 
We looked at Dataset 1 and checked 215 fileless malware samples. We found some important 
trends in how these malware things get noticed, which helped us understand them better. 
 

Table 11 shows the detection rate information for Dataset 1. 

Statistic Number Detections Total Number of AVs Detection Rate 
Mean 51.2 67.2 0.759 
Min. 21 55 0.370 
Max. 64 73 0.900 
Std. 6.2 2.7 0.078 

 
Overall, these malwares identify such instances 76% of the time, meaning roughly three 
quarters of the cases. We also found differences from a 37% detection rate to a high of 90%. 
The standard deviation, a measure of how much detection rates deviate from the average, was 
around 0.078, showing a moderate level of fluctuation around the mean detection rate. 

6.2 Dataset 2 
In our second dataset, we conducted AV detection Rates and binary classification tests with a 
67% split, dividing the dataset into training and testing sets. Binary classification experiments 
aimed to distinguish between legitimate applications and fileless malware. 

6.2.1 AV Detection Rates 
The following table shows the AV detection rates on malware samples of dataset 2. 
 

Table 12 shows the detection rate information for Dataset 2. 

Statistic Number Detections Total Number of AVs Detection Rate 
Mean 45.6 63.8 0.706 
Min. 0 51 0 
Max. 65 72 0.9 
Std. 14.2 6.1 0.185 

Overall, the systems spotted around seven out of ten malware instances, with an average 
detection rate of 70.6%. Some were completely missed (0% detection), while the best detection 
rate hit 90%. The slight difference of around 0.19 shows that the systems varied in how well 
they spotted these malwares. This suggests big differences in their identification abilities. 
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6.2.2 ML Results on Original 33 Features 
This experiment involved utilizing the complete set of 33 original features dataset 2. 

Table 13 shows Binary classification results on 33 features. 

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC 

RF 0.893 0.867 0.863 86.66 1.000 
J48 0.867 0.867 0.867 86.66 0.884 

Naive Bayes 0.941 0.933 0.933 93.33 1.000 
SMO 0.893 0.867 0.863 86.66 0.857 
IBk 0.893 0.867 0.863 86.66 0.857 

6.2.3 ML Results on Selected 6 Features  
This test is focused on a dataset comprising only 6 critical features identified as significant in 
memory dump analysis, see Table 8.  

Table 14 shows Binary classification results on 6 specific features. 

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC 
RF 0.941 0.933 0.933 93.33 1.000 
J48 0.941 0.933 0.933 93.33 0.929 

Naive Bayes 0.795 0.667 0.614 66.66 0.821 
SMO 0.795 0.667 0.614 66.66 0.643 
IBk 0.804 0.800 0.798 80 0.795 

6.3 Dataset 3 
For our third dataset, experiments encompassed binary and multi-classification tasks using a 
70% split. We started our analysis on Dataset 3, from AV Detection and then to ML training. 

6.3.1 Detection rates and Statistical Analysis 
Table 15 shows the detection rate information for Dataset 3. 

Statistic Number Detections Total Number of AVs Detection Rate 
Mean 55.4 68.3 0.811 
Min. 10 40 0.14 
Max. 70 74 0.97 
Std. 8.8 4.6 0.113 

 
The Following Table compares AV detection of malware families from 1945 malwares. 

Table 16 Lists the AV Detection by 3 Malware families. 

Statistic  Number Detections Total Number of AVs Detection Rate 
Ransomware Mean  55.5 69 0.804 

Std 8.5 2.3 0.120 
Min 10 55 0.14 
Max 69 72 0.97 

Spyware Mean  57.8 68.9 0.838 
Std 7.1 2.3 0.099 

Min 17 54 0.24 
Max 70 73 0.97 

Trojan Horse Mean  53.8 68.4 0.785 
Std 10.2 2.8 0.139 

Min 15 49 0.22 
Max 69 73 0.96 
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Figure 4 shows visual comparison of 3 Malwares by AV Detection Rates 

6.3.2 ML Results on Binary classification with original 55 feature  
The following table shows the results of a binary classification intended to discern between 
benign and malicious software instances within Dataset 3. 

Table 17 shows Binary classification results on 55 features of CICMalMem2022. 

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC 
RF 1.000 1.000 1.000 100 1.000 
J48 0.999 0.999 0.999 99.92 1.000 

Naive Bayes 0.991 0.991 0.991 99.14 0.995 
SMO 0.998 0.998 0.998 99.83 0.998 
IBk 1.000 1.000 1.000 99.98 1.000 

6.3.3 ML Results on Binary classification with Refined 6 feature 
The following ML test focused on 6 specific features.  

Table 18 shows Binary classification results on 6 specific features of Dataset 3. 

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC 
RF 1.000 1.000 1.000 99.97 1.000 
J48 0.999 0.999 0.999 99.92 1.000 

Naive Bayes 0.984 0.984 0.984 98.40 0.994 
SMO 0.991 0.991 0.991 99.13 0.991 
IBk 1.000 1.000 1.000 99.95 1.000 

6.3.4 ML Results on Multi-classification with original 55 feature 
The following table shows the results of a multi-classification test designed to categorize 
diverse types of malwares within Dataset 3. 

Table 19 shows multi-classification results on 55 features of CICMalMem2022. 

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC 
RF 0.738 0.737 0.737 73.72 0.892 
J48 0.724 0.724 0.724 72.38 0.827 

Naive Bayes 0.486 0.390 0.308 39.03 0.601 
SMO 0.475 0.398 0.324 39.77 0.605 
IBk 0.625 0.624 0.624 62.41 0.719 

6.3.5 ML Results on Multi-classification with Refined 6 feature  
The following table shows the results of a multi-classification using a reduced set of 6 specific 
features. The result has some missing data as shown below Table 20. 
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Table 20 shows Binary classification results on 6 specific features of CICMalMem2022. 

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC 
RF 0.527 0.526 0.527 52.63 0.717 
J48 0.516 0.511 0.512 51.10 0.689 

Naive Bayes 0.437 0.353 0.250 35.30 0.545 
SMO N/A 0.354 N/A 35.36 0.505 
IBk 0.475 0.474 0.474 47.43 0.617 

6.3.6 ML Results on Multi-classification [Memory dumps 55 + Behavior] 
In this test combined the 14 behavioral features with 55 memory dumps features (our original 
research question as mentioned in Section 1.1), which gave us 69 features in total. As we have 
3 malware families, we did the multi-classification on this dataset. 
 
By adding 14 f the accuracy has increased from 73.72% to 81.02%. 
 

Table 21 shows the ML results of 69 features. 

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC 
RF 0.812 0.810 0.810 81.02 0.924 
J48 0.797 0.792 0.792 79.19 0.862 

Naive Bayes 0.537 0.468 0.430 46.83 0.735 
SMO 0.716 0.696 0.691 69.58 0.802 
IBk 0.741 0.741 0.741 74.08 0.804 

6.3.7 ML Results on Multi-classification [Memory dumps 6 + Behavior] 
In this test, we used 6 memory features and 14 behavioral features, the results decreased 
significantly, from 73.72% to 73.47%. 
 

Table 22 shows the ML result of 20 features. 

Classifier Precision Recall F1-Score Accuracy (%) ROC-AUC 
RF 0.738 0.735 0.736 73.47 0.879 
J48 0.734 0.727 0.730 72.74 0.834 

Naive Bayes 0.563 0.487 0.448 48.66 0.738 
SMO 0.582 0.572 0.516 57.17 0.721 
IBk 0.702 0.698 0.700 69.82 0.768 

6.3.8 Comparing AV Detection Rates 
This section compares the AV detection of 3 datasets by their detection rates. 
 

Table 23 Compares three datasets by their AV detection rates. 

 Mean Min Max Std. 
Dataset 1 0.759 0.370 0.900 0.078 
Dataset 2 0.706 0 0.9 0.185 
Dataset 3 0.811 0.14 0.97 0.113 
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Figure 5 shows a Confusion matrix for experiment of selecting 30 features from Dataset 2, resulting RF 100% accuracy. 

 
Figure 6 shows a Confusion matrix for experiment of selecting 55 features from Dataset 3, resulting RF 100% accuracy. 

6.4 Discussion 
Findings and Results: 

 AV Detection Rates in Different Datasets: Across Dataset 1, 2, and 3, we observed 
varying AV detection rates for malware samples. Dataset 3 demonstrated the highest 
average detection rate (81.1%), followed by Dataset 1 (75.9%) and Dataset 2 (70.6%). 

 ML Model Performance: In Dataset 2, machine learning models showed promising 
results with features. Notably, utilizing the original 55 features with behaviors features 
(section 6.3.6) in Dataset 3, where achieved remarkable accuracy score from 73.72% 
to 81.02%. 

Implications and Significance: 
 Effectiveness of AV Detection: The analysis showcased the capabilities and limitations 

of AV detection across different malware families. It highlights the necessity of robust 
and adaptive detection systems to handle diverse threats effectively. 

 ML Model Potentials: The ML models, especially when equipped with a 
comprehensive set of features, exhibited high accuracy in distinguishing between 
benign and malicious software. This suggests the potential for leveraging ML 
techniques in strong malware detection systems. 

Limitations and Challenges: 
 Dataset Variability: While Dataset 3 demonstrated higher average detection rates, the 

variability in AV detection across different malware families suggests the need for more 
diverse and representative datasets to enhance model generalization. 
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 Feature Selection Impact: The experiments on reduced sets of features (6 critical 
features) in Dataset 2 and 3 showcased varying performance, indicating the significance 
of feature selection and its impact on model outcomes. 
 

Moreover, the research question addressed how the combination and separate use of 
memory and behavior features enhance malware detection accuracy. Our study found that 
combining memory and behavior features resulted in improved detection accuracy compared 
to using either feature set alone. This suggests that hybrid detection models that leverage both 
types of features offer a promising approach to improving malware detection effectiveness. 
 

7 Conclusion  
This study investigated the efficacy of machine learning models for detecting malicious 
software using both memory and behavior features of malware. Across all three datasets, we 
observed varying detection rates and performance. Dataset 3, with the most comprehensive 
feature set, demonstrated the highest detection accuracy, ranging from 73.72% to 81.02%. 
These results highlight the potential of ML models to enhance malware detection effectiveness. 
 
The combination of memory and behavior features proved to be more effective than using 
either feature set alone. This suggests that hybrid detection models offer a promising approach 
to countering the evolving landscape of malware. 
 
Moreover, to address the limitations of existing datasets and optimize feature selection 
techniques, future research should focus on developing data augmentation techniques to 
expand the size and diversity of malware samples. Research should also explore methods for 
selecting relevant features that are indicative of malicious behavior, ensuring that the ML 
models are not biased towards specific patterns or artifacts. 
 
In conclusion, this study provides valuable insights into the effectiveness of ML models for 
detecting malware using memory and behavior features. The findings suggest that hybrid 
detection models hold promise for improving malware detection accuracy and adaptability. 
Future work should focus on addressing data variability, optimizing feature selection, and 
integrating ML models into practical malware detection systems. 
 

8 Future Study 
Our next step is to investigate the stability of these methods when incorporating specific data 
features or employing optimization techniques. This will involve evaluating the performance 
of ML models across a broader range of datasets and using different feature selection and 
optimization techniques. Additionally, we will examine the trade-offs among detection 
accuracy, computational efficiency, and the inclusion of comprehensive memory features like 
network, file, registry, and process relationships. These features are currently absent in dataset 
2 and dataset 3. 
 
By addressing the limitations of existing datasets, optimizing feature selection techniques, and 
integrating ML models into practical systems, we can significantly enhance the ability of 
cybersecurity systems to detect and combat malicious software, safeguarding users against the 
evolving threat landscape. 
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