

Anomaly Detection for Identifying

Cheating Behaviours and Techniques in

Online Gaming Using AI

MSc Research Project

MSc. In Cyber Security

Sachet Satish Karkera
Student ID: X21224838

School of Computing

National College of Ireland

Supervisor: Khadija Hafeez

`

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Sachet Karkera

Student ID: X21224838

Programme: MSc. In Cyber Security Year: 2023/24

Module: Research Internship

Supervisor: Khadija Hafeez

Submission Due

Date:

31/01/2024

Project Title: Anomaly Detection for Identifying Cheating

Behaviours and Techniques in Online Gaming Using

AI

Word Count: 7148 Page Count: 21

I hereby certify that the information contained in this (my submission) is

information pertaining to research I conducted for this project. All

information other than my own contribution will be fully referenced and

listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section.

Students are required to use the Referencing Standard specified in the

report template. To use other author's written or electronic work is illegal

(plagiarism) and may result in disciplinary action.

Signature: Sachet Karkera

Date: 30/01/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office

must be placedinto the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

`

Anomaly Detection for Identifying Cheating Behaviours
and Techniques in Online Gaming Using AI

Sachet Satish Karkera

21224838

Abstract

Gaming has been gaining popularity since it has become mainstream and has become one of

the largest sectors in terms of money, investment, and involvement. By hacking into the game's

mechanics to alter the results of a particular match to their liking, some players may turn to

illicit and immoral strategies to improve their performance. Cheats such as aimbots, wallhacks,

and bots playing or impersonating as real players have been a threat to the gaming community.

This compromises fair play and discourages people with no experience from attempting to

become competent in a particular game. Employing a visual object detection algorithm, this

research attempts to evaluate current cheat detection strategies while putting new

methodologies for identifying Aim Bot, Wallhack, and Speedhacks in online gaming. Aim Bot

detection includes statistical analysis and dynamic thresholding techniques to identify and flag

instances of aim bot usage. Wallhack and Object detection utilises YOLOv8, an innovative

algorithm, enabling real-time identification of wallhack usage. Speedhack detection

incorporates tick rate analysis and pattern recognition to detect and flag instances of speedhack

usage. This research intends to eliminate cheating methods while protecting the player’s

privacy settings and their system while upholding the integrity of the online gaming community

by using machine learning and artificial intelligence.

Keywords: Game Security, Threat & Cheat Detection, Aimbot Detection

1. Introduction

1.1 Motivation and Goal to be Achieved

Online gaming has been very popular and has been becoming increasingly prevalent for several

years. Players can play online games from virtually any location if they have an internet

connection. This made games more accessible for everyone and increased the number of

participants. First-person shooting (FPS) games are the most played online games for a very

long time. Every year, a new group of players joins the large and devoted player base of a game.

Cheating greatly affects the gaming experience in online first-person shooter games due to their

intensely competitive and hectic character plays. Players can easily obtain open-source

cheating programs such as CoSmos, CheatEngine, and Artmoney. For an excess of $500–1000

US dollars, cheating devices that are more sophisticated and challenging for a game's anti–

cheat system to identify can be purchased. The money made by game developers may be

impacted by cheating, particularly if it causes a decline in the player base or a poor performance

history for the game.

Malware and cheats are fundamentally related and share many features. Because it is essentially

an untrusted code that, like malware, seeks to go undetected and exploit data, since

`

they conceal and disguise undesired code from users, cheat designers must be proficient in

programming.

Most modern anti-cheating programs are mostly ineffective and may compromise gamers'

privacy. Anti-cheat solutions typically function at the kernel level of the player's system to

obtain a more profound understanding of the gaming environment and deter cheating. Although

crucial for detecting cheating effectively, this strategy carries substantial privacy problems.

Players are generally obligated to provide comprehensive permissions to these anti-cheat

technologies, granting them access to key portions of their operating system. With this level of

access, anti-cheat systems can effectively observe and examine several elements of a player's

device, such as system processes, files, and even network activities. Although these precautions

are put in place to detect and prevent cheating, players may inadvertently disclose personal

information throughout this procedure. The usage of anti-cheat technologies operating at the

kernel level has sparked worries over possible data breaches, as the broad permissions granted

could unintentionally jeopardise user privacy. Developers face a dilemma in finding a middle

ground between effective cheat detection and protecting player privacy when working on anti-

cheat technologies (Bakkes, Spronck, and van Lankveld, 2012). Considering this, the goal of

this project is to explore the use of machine learning techniques for non-intrusive information

using sandboxed techniques for detecting cheaters and hackers.

Due to ethical considerations, most published works concentrate on data mining and behavioral

analysis while using an imagined dataset. This paper uses easily accessible game logs and

publicly available video footage as data to build Visual Cheat Detection for AimBot, Wallhacks,

and Speedhack Detection. The Algorithm uses 200 photos from the dataset to train the model

using YOLOV8. It can perform real-time player and enemy detection along with capabilities

to check if a player is performing a wallhack or not. Additionally, Player Aimbot detection can

also be achieved with a technique mentioned in this research. This model's outcomes

would assist in strengthening the standard anti-cheat software strategy by adding an additional

set of security checks.

1.2. Research Question

What would be the impact of cheating behaviors and techniques evolving over time in online

gaming, especially First Person Shooter (FPS) Games, and how can AI models be implemented

and adapted to stay effective in detecting the different forms of cheating?

1.3. Novel Contributions

The study presents a specialised Visual Cheat identification Algorithm that is specifically

developed for the purpose of recognising cheating behaviours, such as Aim Bot, Wallhack, and

Speedhacks. This algorithm employs YOLOv8, a visual object identification technique. This

algorithm improves the effectiveness of cheat detection by promptly identifying both players

and adversaries in real-time, while also respecting the privacy preferences of the participants.

This research distinguishes itself from prior studies by employing authentic data derived from

accessible game logs, developer portal videos, and publicly available footage. This approach

enhances the reliability of the cheat detection model, as it avoids the use of fake datasets for

ethical reasons. The proposed method for detecting Aimbot utilises statistical analysis, namely

z-scores, to identify unusual movements in pitch and yaw angles, hence enhancing precision

and adaptability. To identify Speed Hack, the game server architecture incorporates tick rate

monitoring, which employs pattern recognition and predefined thresholds to precisely ascertain

the update frequency between clients and servers, thus providing a comprehensive method. The

study defines a complete set of evaluation criteria, which encompass accuracy, precision, recall,

and F1-score. These criteria are visually depicted using precision-recall curves and confusion

`

matrices, so facilitating a better comprehension of the model's capabilities.

1.4. Cheating and Its Impact

There are more gamers than ever in the world of online gaming owing to the rise in gaming

influencers. Additionally, since the player count has increased, cheating in these kinds of games

has become more common than it was.

A recent survey by Irdeto Survey1conducted in 2022 finds that 79% of developers worry that

cheating will damage their game's ecosystem, while over 85% of players have encountered

cheating and were forced to stop playing because they were unable to progress through the

game's learning curve and were continually losing, which prevented them from becoming

better.

Cheating in online games seriously compromises fair play, damages community trust, and

tampers with the integrity of virtual worlds. It establishes an unfair playing field, which may

irritate players who are acting legitimately and reduce their pleasure in the game. The negative

effects are made even worse by the economic consequences, which involve the devaluation of

in-game items and the reinvestment of developer resources towards the implementation of anti-

cheat systems (Chambers et al., 2005). Cheating in esports has the potential to undermine the

fairness of tournaments and harm the existence of the esports industry. Cheaters may face legal

repercussions, such as bans and suspensions, and if cheating becomes so prevalent that it drives

players away, the game's long-term survival may be in danger. In the end, cheating not only

ruins the playing experience but also has serious repercussions for the online gaming

community, business, and general well-being.

2. Literature Review and Background

Several researchers have dealt with several issues related to cheating and its negative impact

on online gaming while putting different strategies into practice to stop cheating. However, in

comparison to other areas, the amount of research performed on this topic is less. The main

cause of this is that most gaming firms employ proprietary anti-cheat software. By withholding

most of the information, they make sure the software is tough to hack into and is kept secret to

maintain secrecy. Furthermore, any study done on this kind of software is regarded as

proprietary by private enterprises.

2.1. Data Mining Methods for Cheat Detection

Data mining algorithms are used (Philbert, 2018)to look for specific cheating software in a host

machine's memory. Data mining techniques have demonstrated their accuracy in protecting

systems and providing solutions for experts to appropriately assess when needed. The same

ideas should hold true for cheat-related executables even though this study does not address

harmful executables. But new exploits are continuously being developed, and a game seems to

be protected by little more than an impractical data mining technique. Furthermore, because the

software for anti-cheat has access to the entire memory of the host, utilizing this as a stand- alone

solution would raise confidentiality concerns.

2.2. Cheat Detection Methods based on Vision

Deep neural networks (DNN) had been used for the detection of cheating (Jonnalagadda et al.,

2021).This study offered a fresh method for spotting online game cheating. The technique uses

a vision-based algorithm to examine the visual data generated by the game and identify

instances of cheating. For accuracy and robustness, the system uses DNN to classify the game

1 https://irdeto.com/news/irdeto-survey-reveals-increased-worry-of-cheating-and-tampering-highlighting-the- need-for-adequate-game-

protection

`

as real or forged and uses aggressive defense and confidence estimates. The technology

outperforms current anti-cheat methods in accuracy and hostile attack defense. The paper also

discusses the method's limitations, such as false negatives and positives with high variance,

and the necessity for a lot of information that is labeled for the model to get trained.

(Zhang, 2021) also mentions AI object detection. Gaming cheats like Aimbots and wall hackers

affect gamers, according to a study. It proposes visual anti-cheat detection using recorded

gameplay of a popular online first-person shooter. Unfortunately, time and resource constraints

prevented real-time cheat detection in this research. Visual object recognition was used instead.

2.3. Player Behavioural-Based Cheat Detection

A novel technique for identifying wall-hacking is proposed by(Laurens et al., 2007). The

technique used four characteristics and player behavior analysis to forecast the likelihood of

cheating by a player. The article shows promising results in differentiating between players

who are cheating and those who are not, which sets it apart from other commercialized methods

already in use. However, there isn't a strong mathematical basis for the measurements that are

employed, thus further work will eventually be needed to examine, enhance, and create new,

more complex metrics. Moreover, the method might not work against other forms of cheating,

and the benefits of a standard architecture might be compromised by other player collusion

tools.

Another machine learning technique developed by (Willman, 2020)identified popular first-

person shooting game cheaters. This covered an introduction to online game cheating research,

a machine learning guide, and the building and evaluation of a cheater detection neural

network. The findings suggest the method can detect game cheaters. The next phase of this

research provided a perspective into methodologies for machine learning and how to improve

model performance with more data. This work's disadvantages included using limited data for

testing and the model's accuracy and only evaluating the algorithm on one game.

(Tian, Brooke, and Bosser, 2016) presented their use of the suggested architecture to

differentiate between biased and fair players while also providing an active method as opposed

to a passive one to defend the fairness of the games. Even if they weren't robust, they

demonstrated that behavioral models could be implemented as an anti-cheating strategy that

could help outlaw cheaters.

(Alayed, Frangoudes and Neuman, 2013) offered a behavior-based method for identifying

cheaters in online games using machine learning classifiers. The logs were stored on the server,

where an attribute generator was processed, and an information analyzer examined them. The

authors completed several trials using various kinds of models for detection, and they achieved

good accuracy results. The developers' cheat detection policy sets the threshold's quantity. It

can range from low to high, but it shouldn't be too harsh or else many seasoned, moral gamers

will be called cheaters. The authors also suggest that more research be done, to improve the

algorithms. The limitations include the exclusive implementation to multiplayer games and its

requirement for game log access, which isn't always possible.

2.4. Machine Learning Enabled Detection of Bot amongst Authentic Players

(Mitterhofer et al., 2009) suggested a novel method of bot exposure that circumvents the issues

associated with client-side solutions by relying solely on the server end evaluation of a player's

behavior. In order to achieve this, the study makes use of a feature inherent in bots: an

executable script that controls the bots and executes a precise set of actions automatically that

are repeated frequently. The method determines two crucial factors that aid in the identification

of bots: the frequency with which a character traverses the path and the degree of recurrence

of the route. This approach's drawback is that it was tested on a minor scale, with a bot that

`

simply followed specific paths, and the assessments for both detections considered no

gameplay activity.

(Dunham, 2020) highlighted the use of machine learning for Counter Strike Global Offensive

cheat detection. To counteract them, it also addresses several cheats that can be noticed and

exploited, as well as machine learning solutions. It made use of the Nvidia deep neural network

library, CUDA & cuDNN. It looks for and finds a solution to the Counter-Strike cheat detection

issue using machine learning. The technique is based on two main parts: the creation of metrics

and characteristics that may be used to accurately categorize cheating, and a network structure

that emulates the way people naturally analyse video footage (repeating neural networks). The

restrictions include the need for network architecture to be modified to appropriately take data

format into account and the identification and development of specific cheating metrics.

(Kotkov et al., 2018) conducted a comprehensive study on online gaming bot identification,

focusing on applications that enable resource storage. It highlights knowledge gaps and offers

a classification of bot detection methods. The authors also propose directions for future

research, including utilizing a wider variety of feature spaces and expanding the types of

machine learning algorithms used for detection. Two of the paper's drawbacks include its focus

on an online game and the small number of feature regions used in the research under

examination. Moreover, the study falls short of offering a thorough assessment of the

effectiveness of several bot detection systems. Future work will involve creating more bot

identification tools and supplementing the literature analysis of relevant studies.

2.5. Comparison Table

Title Author Main Focus Cheat Focus Methodology

& Drawbacks

Data Mining

Methods for

Cheat

Detection

Philbert, A.

(2018)

Applying

data mining

tools to

identify

instances of
cheating

Identification of illegitimate

cheat software within the

memory of the host

machine

Utilisation of data

mining techniques that

may raise

confidentiality

concerns.

Cheat

Detection

Methods

Based on

Vision

Jonnalagadda,

A. et al.

(2021)

Utilising

deep neural

networks to

detect

cheating

Identification of fraudulent

events with vision-based

algorithms

A vision-based

approach utilising deep

neural networks (DNN)

is employed for the
classification of actual

objects in a game.

Zhang, Q.

(2021)

Utilising

artificial

intelligence

to prevent

cheating.

Utilising recorded gameplay

of a widely played online

first-person shooter to

discover and identify

instances of cheating

through visual analysis.

Aim was to create a

real-time visual object

recognition system.

Resource limits limited

object detection
accuracy.

Player

Behavioural-

Based Cheat

Detection

Laurens et al.

(2007)

Detection of

cheating by

study of

player

behaviour

Utilising player behaviour

analysis to predict the

probability of cheating from

an aimbot perspective.

Methods including the

analysis of player

behaviour and

attributes, which has

drawbacks

`

 Willman

(2020)

Utilising

machine

learning to

detect and

identify

individuals

who engage
in cheating

behaviour

Constructing and assessing

a neural network designed

for detecting cheating

behaviour that derives from

wallhacking and strafing.

The machine learning

technique has limits in

terms of data testing

and analysing the

algorithm, as it is only

applied to one game.

Tian, Brooke,

and Bosser

(2016)

Applying

behavioural

models to

distinguish

between

players who

exhibit bias
and fair play.

Offering a proactive

approach to safeguard the

integrity of games from

individuals engaging in

cheating behaviour.

Utilising behavioural

models as a

countermeasure against

cheating.

Alayed,

Frangoudes,

and Neuman

(2013)

Utilising

machine

learning

classifiers to

detect and

identify

individuals

who engage

in cheating

behaviour in

online
games.

Algorithmic approach for

identifying individuals who

engage in

cheating behaviours from

illicit powerups by unfair

means.

Experiments have been

conducted using several

models to detect issues,

however these

experiments have been

limited to multiplayer

games and require
access to game logs.

Machine

Learning

Enabled

Detection of

Bot amongst

Players

Mitterhofer et

al. (2009)

Identifying

automated

programmes

by analysing

player

actions on

the server

side

Detecting automated

accounts by the recognition

of predetermined and

repetitive behaviours that

derives from cheating.

The evaluation of

player behaviour in

games such as World of

Warcraft is done on the

server-side, but it has

limits in terms of

scalability and

assessing gameplay

activity.

Dunham

(2020)

Applying

machine

learning

techniques to

detect

cheating in

Counter

Strike

Global

Offensive.

Analysing various cheating

methods and leveraging

machine learning

techniques to counteract

them.

The methodology

involves utilising the

Nvidia deep neural

network library, CUDA,

and cuDNN to change

the network architecture

and create cheating

measures.

Kotkov et al.

(2018)

An extensive

investigation

into the

identification

of bots in

Identifying areas with

insufficient knowledge and

suggesting potential

avenues for future

investigation

The work solves the bot

detection confusion by

focusing primarily on a

game. However,

thorough assessment of

`

 online

gaming.
 other bot detectors was

not provided.

3. Research Methodology

The research methodology functions as a methodical structure that directs the entirety of the

research process, guaranteeing a structured and dependable strategy to tackle the research

objectives.

3.1. Methodology

A Structured, practical, and flexible approach was taken into consideration to perform this

research. Initially, the business understanding and the future impact of the research were

considered along with the existing practices that are already present. During the business

understanding phase, the problem is defined, and goals and objectives are outlined.

Comprehension of items and objects that are detrimental to cheat detection and exploring the

dataset are the main goals of the data understanding phase. The dataset is then pre-processed

in the data preparation stage which involves cleaning, filtering, and labeling the data to make

it appropriate for model training. This includes activities like resizing images, classifying

objects, and dealing with missing data. Next, the dataset is divided into test, validation, and

training sets. Yolo (You Only Look Once) (Ultralytics YOLOv8 Docs, 2023) is the algorithm

of choice for modeling, with versions and customization as required to be considered. The

prepared dataset is used to train the model. Metrics like precision and recall are used to evaluate

the model's performance during evaluation and objects are detected as per the model which was

trained.

3.2. Language and Environment

Python's large libraries for image processing and machine learning, together with its

adaptability, make it an essential component. Python is frequently used for preparing data,

training models, deploying them, and evaluating them. The popular Python distribution

environment Anaconda makes development even easier by offering a complete package and

dependency management environment. Installing libraries like OpenCV, NumPy, Ultralytics

and torchvision 2 are all necessary for creating and executing the YOLO algorithm which is

made easier by the package manager Conda.

3.3 Game Architecture & Components

The architecture of a game is of paramount significance in influencing the overall gaming

experience, namely in areas such as user identification, game tracking, and inculcating anti-

cheat mechanisms.

3.3.1 Game Architecture Flowchart

User identification and account security are the first steps of a first-person shooter game. Users

will be asked to login again or register if their credentials are invalid. The architectural

framework tracks player achievements and statistical data across games, improving

personalised experiences. Matchmaking consent requires players to choose to record their data

2 https://docs.ultralytics.com/

`

for multiplayer activity, distinguishing between human and bot-controlled matches. A user's

client system's kernel-level anti-cheat features are seamlessly integrated, identifying and

flagging suspicious player behaviour for further investigation. Players who cheat are banned

from the game, ensuring fair play.

Figure 1: Game Flow for Anti-Cheats

The architectural design of a system for playing games is dependent upon the utilization of the

client-server model, which collaboratively influences and shapes the complete gaming

experience. The client-server framework functions as an essential structure that enables

efficient data synchronization between the devices of players and the game server. The

synchronization process guarantees a consistent and integrated game environment for all

individuals involved in a multiplayer game. Furthermore, it assumes an important role in the

implementation of anti-cheating protocols, actively identifying and addressing questionable

behaviors to uphold fairness in the gaming environment. The scalability of the model is of equal

importance, as it enables game servers to adapt to fluctuations in player numbers and effectively

handle real-time interactions, assuring a seamless and prompt experience as the player base

grows. The client-server model and tick rate collectively establish the fundamental framework

for a dynamic and pleasurable online gaming environment.

`

The primary function of the server is to consistently update the game state at a high frequency,

which is achieved by maintaining a specific tick rate. The Tick Rate parameter determines the

frequency at which the server changes its game state within a given time frame.

3.3.2 Tick Rate

The tick rate3, commonly known as the server's tick rate, is a crucial characteristic within the

field of first-person online games. It has a considerable impact on the overall gameplay

experience and the competitive dynamics involved. The tick rate is a metric that quantifies the

rate at which the game's server updates and processes information. It is often measured in ticks

per second, denoted as Hz.

A Tick can also be seen as a single capture in the frame of the game where tick(0) is the initial

snapshot of the game and tick(N) gives the final snap of the game. It must be noted that the tick

rate at the client and the server’s end would always differ from each other due to network

latency (Alkhalifa, 2016). On average, there would be around a difference of 5 ticks ideally.

However, the increased latency also causes a lot of discrepancies in the game with significant

lag which causes performance loss and frustration among the players.

3.3.3 Recoil

Pulling the trigger in a game creates recoil4 and is expected to change the course of a player’s

gun from where they are aiming to off-target slightly for first-person shooter games. This can

be measured by the length of time the gun fires and decreases the player's accuracy. This

strategy is thought to filter out cheating players and retain the fair players in the game. Counter-

Strike 2 is the game that this thesis focuses on. Every weapon in this game features a unique

set of random recoil patterns. It's been observed that even extremely good players are unable

to make up for recoil, which is a noticeable distinction between cheaters and gamers as cheaters

can easily make up for recoil.

Figure 2: Recoil (source: Recoil | Counter-Strike Wiki | Fandom (no date) Counter-Strike Wiki)

3 https://dotesports.com/counter-strike/news/how-does-tick-rate-work-in-counter-strike-2
4 https://counterstrike.fandom.com/wiki/Recoil

`

3.3.4 Cheats

A. Aimbots

Aimbots5 are a prevalent form of fraudulent scripts or software utilized in first-person shooter

(FPS) video games. These hacks grant players an unfair advantage through the automated

targeting and aiming of adversaries, frequently achieving remarkable levels of precision.

B. Wallhacks

Wallhack6 is a prevalent form of cheating that is frequently implemented in first-person shooter

(FPS) video games by leveraging this hack, players gain the ability to observe surfaces such as

walls, terrain, and other obstacles present in the game environment.

Figure 3: Wallhack (source: Capper. Tom (2022) - What Are Wallhacks and How Do They Work? - PrivateCheatz.)

C. Speedhacks

Particularly common in online multiplayer games, speed hackers 7constitute a form of cheating

in which players gain an unfair advantage by modifying the character's movement speed.

D. Map Hacks

Map hacks are a form of cheating that occurs in video games, specifically multiplayer online

games, wherein players exploit or manipulate the game's minimap or map to obtain an unfair

advantage.

Figure 4: Maphack (source: CSGO External Maphack V0.2 - Obsta)

5 https://chatbotsjournal.com/what-are-aimbots-and-how-do-they-work-4936794e5453
6 https://www.privatecheatz.com/what-are-wallhacks-and-how-do-they-work/
7 https://combatarms.fandom.com/wiki/Speed_Hack

http://www.privatecheatz.com/what-are-wallhacks-and-how-do-they-work/
http://www.privatecheatz.com/what-are-wallhacks-and-how-do-they-work/

`

3.2. Dataset

The original dataset utilized in the study was taken from the video game Counter Strike 2.

There are 200 images in all that comprise the dataset. Yolov8, which stands for "You Only

Look Once," is used to develop the AI model. YOLO is the product of Ultralytics, which is an

open-source platform on vision AI algorithms, the most well-known vision AI in the world that

is used for object detection and visualization. MakeSense is used to annotate every image

according to our requirements and produce a legitimate data set. The annotation of what AI

should search for was done using the following labels.

Label Description

Gun Detects the player gun for recoil and perspective of the player.

Wall Detect walls in the game to check if a player can see through walls and kill

enemies.
Enemy Detects enemy for speed hacks and wall hacks.

The YOLO Algorithm 8needs data to be structured in a specific way for it to read, train, and

test data(Diwan, Anirudh and Tembhurne, 2023). There are two primary folders namely images

and labels with each folder containing 2 sub-folders namely train and val. They are described

as follows:

Training Subset (train): Most of the dataset, including 200 photos, was contained in the

training subset (also known as "train"). 'Images' and 'labels,' two subfolders, were created from

the 'train' subset to facilitate access and use during training.

Validation Subset (Val): This subset, which consists of 20 photos, was set aside especially for

validation. The 'val' subgroup was similarly divided into 'images' and 'labels' subfolders.

3.3 Yolo and Its Variants

YOLO V8 has 5 variants namely n,s,m,l & x. Each model exhibits a unique level of precision

in detecting and performing tasks. It can be observed how YOLO performs much faster and

more accurately than its predecessors.

Figure 5: YOLO Variants (source: Home - Ultralytics YOLOv8 Docs (2023))

The graph provides the correlation between the quantity of parameters and the delay in several

YOLOv5-YOLOv8 models using an A100 TensorRT FP16 GPU. Latency is quantified as the

8 : https://github.com/ultralytics/ultralytics

`

duration in milliseconds required to process each individual picture (ms/img). A decrease in

latency results in an increase in the speed at which the model can process images.

The graph illustrates a positive correlation between the size of the model and the number of

parameters it possesses, as well as a negative correlation between the size of the model and its

speed. This is because larger models require a greater number of calculations in order to process

an image. Nevertheless, the graph indicates that YOLOv8 models exhibit higher speed

compared to YOLOv7 models, despite having a higher number of parameters. YOLOv8

incorporates some architectural enhancements that enhance its efficiency. Here, The COCO

(Common Objects in Context) dataset is used which is a vast compilation of annotated images

and movies used for tasks such as object detection, segmentation, and instance tracking.

The graph also displays the COCO MAP50-95 Val values, which serve as a metric for

evaluating the object detection precision of the models. A model's accuracy increases as the

COCO MAP50-95 Val score rises. The graph provides a clear trade-off between accuracy and

latency. Greater in size, larger models exhibit enhanced accuracy, but at the cost of reduced

speed. In general, the graph indicates that YOLOv8 outperforms prior iterations of YOLO in

terms of both speed and accuracy in object recognition. Despite having more parameters, it is

more efficient than YOLOv7.

The analysis of YOLO models reveals that the v8 models demonstrate a notable enhancement

in mAP (mean Average Precision) ranging from +4 to +9 in contrast to the v5 models.

Remarkably, this gain is achieved while keeping a comparable runtime. It is worth noting that

v8m and v8l exhibit superior performance in terms of both mean average precision (mAP) and

speed when compared to v5l and v5x (YOLO V5) Furthermore, the v8n model emerges as the

highest-performing lightweight variant, demonstrating exceptional proficiency in terms of both

accuracy and speed when compared to the other YOLO versions under consideration.

Figure 6: YOLOV8 Version Comparison (source: Home - Ultralytics YOLOv8 Docs (2023))

The Yolov8m model was selected for research testing due to its high speed and suitability for

detecting a limited number of objects.

`

4. Design Specifications

Figure 7: Implementation Architecture

The figure above illustrates the system architecture for the research based on anomaly detection

in first-person shooter games. Commencing with the gathering of data from publicly accessible

sources on the internet, the subsequent process of labelling images guarantees the construction

of a thoroughly annotated dataset, which serves as an essential base for training and evaluation.

The feature extraction phase selectively removes extraneous data, refining the dataset to

emphasise essential features for cheat detection. Utilising the YOLO (You Only Look Once)

method in the object detection phase improves effectiveness by allowing immediate detection

of cheating techniques such as wallhacks and aimbots inside individual frames. In addition, the

inclusion of server/client tick rate monitoring introduces a level of complexity, primarily aimed

at detecting speed hacks by examining irregularities in gaming interactions between players

and the game. The evaluation measures, including accuracy, precision, and recall, are crucial

for assessing the effectiveness of the model.

5. Implementation

5.1. Dataset Creation

During the preliminary stage of the implementation, the dataset was carefully selected and

organized to enhance the training process of the YOLO algorithm. The dataset was produced

by selecting 200 photos from publicly accessible gameplay footage of the game. To ensure

enough vital data within the dataset, the unnecessary images from the data were filtered out.

The images were subsequently labeled using the open-source application makesense.ai,

effectively identifying the specific areas of interest such as player, player gun, enemy, and walls

for the purpose of anomaly identification.

`

5.2. Model Training

Figure 8: Image Labelling

The YOLO method for anomaly detection was put into effect in an Anaconda environment.

The purpose of selecting this environment was to speed up training and development and the

ease of an integrated terminal. After training for about 100 epochs, the YOLO model was able

to iteratively improve its comprehension of the distinct qualities and features seen in the game

and the objects that were labelled were being detected effectively.

5.3. Object Detection

Figure 9: YOLO Execution Command

The YOLO model's trained weights were used in conjunction with the Anaconda environment

and Ultralytics, a framework created by YOLO, to achieve the smooth capture of in-game

objects. This assisted in the identification of important in-game elements like the Player, the

Player's gun, Enemies, and Walls. The model successfully identifies enemies, walls, and player

guns as anticipated.

Figure 10: Object Detection (Enemy and Gun) Figure 11: Object Detection (Wall and Gun)

`

Figure 12: Object Detection (Wall)

5.4. Proposed Solution for Aimbot Detection

To determine the accurate pitch and yaw required to target an opponent, the AimBot generates

vectors for both the player and the enemy, thereby establishing a difference vector between

them. Trigonometry is used to compute the pitch angle by taking into account the distance

between players and the disparity in their heights. The yaw angle is determined by calculating

the disparities in x and y displacements. Maintaining these angles within specific limits is

essential to prevent detection by anti-cheat programs.

The aimbot detection system's primary component is the evaluation of in-game parameters.

The technique is concerned with two angles in particular: pitch and yaw. The game mentions9

that yaw (i.e., side-to-side angles) is between −180 ≤ yaw ≤ 180, while pitch is defined as

down-to-up angles limited between -89 and 89 degrees. Any deviation from these bounds

suggests that the targeting behavior may be automated or artificial or in conclusion the player

is using an aimbot.

Players' motions are evaluated by the aimbot detection code, which considers their pitch and

yaw angles as input. When a player crosses the pitch and yaw boundaries, it is suspected that

aimbots are being used. It is possible for the system to precisely identify and detect such

abnormalities by collecting and monitoring player data. The Following Application Takes Pitch

and Yaw data as input and determines whether a player is using an Aimbot or not.

Figure 13: Application for Aimbot Detection

The given solution use z-scores to detect the usage of aimbot by analysing pitch and yaw data.

It identifies frames when the z-scores for these variables exceed a predetermined threshold. Z-

9 https://developer.valvesoftware.com/wiki/WisePYR

`

scores, which represent departures from the average, are employed to identify abnormal

fluctuations.

Figure 14: Aimbot Detected Figure 15: Aimbot Not Detected.

If the z-score of a frame surpasses the zscore_threshold, it indicates an abnormal change in

targeting. The code subsequently detects and displays frames containing identified anomalous

movements in a given frame. If The Z-scores predict that data is normal with no unnatural or

abnormal spikes in each frame data while also considering the set Pitch/Yaw data, the

application would determine that the aimbot is not being used.

The code improves the detection of the aimbot by conducting statistical analysis on the pitch

and yaw data. By utilizing z-scores and implementing a dynamic threshold, it detects frames

exhibiting abnormal movements, offering a precise and transparent approach. This technique

provides flexibility, assisting in the ongoing enhancement of anti-cheat mechanisms by

identifying aimbot behaviour precisely and enabling thorough study. Continuous cooperation

within the anti-cheat community is essential for maintaining an advantage against ever-

changing cheating techniques.

5.5. Proposed Solution for Speed Hack Detection

In online first-person shooter (FPS) games, both the client and the server run on distinct time

intervals because of network latency. Suppose the server is currently at tick 120, while the

client is lagging at tick 116 due to delays in transmitting data. The latency between the server

and client in this example is 4 ticks. To enhance the fluidity of the gaming experience, first-

person shooter (FPS) games employ a method known as client-side prediction. This

functionality enables the user to anticipate and react to actions on their device without having

to wait for validation from the server, hence diminishing the apparent delay for participants.

This proposal presents a comprehensive strategy to strengthen the game's anti-cheat system by

incorporating tick rate analysis to identify and prevent speed hacks. The solution entails

incorporating a tick rate monitoring mechanism into the game server architecture to record the

frequencies at which updates occur between clients and servers. Games frequently need

rendering 60 frames per second, which necessitates using the rendering function every 16.6

milliseconds.

`

Figure 16: Client/Server Tick Rate (source: Ticks and update rates | Unity Multiplayer Networking)

The system's objective is to detect anomalies in player movements by establishing a standard

tick rate and creating algorithms to estimate expected movement speeds. Pattern recognition

techniques in conjunction with object detection and server-side checks will analyse these

patterns in more depth, and predefined thresholds will activate flags to prompt additional

research. Additionally, Speedhacks can be visually distinguished as well without the need for

having external anti-cheat factors, however, sometimes the enhanced speed might also be due

to ping disparity which might wrongly accuse a fair player of using speedhacks. Hence, such

methods with the amalgamation of server-client side checks along with machine learning

techniques are essential for distinguishing between a valid speed hack cheat and a false alert.

6. Evaluation

The model was trained using 220 photos with three labels, which were cleaned for a satisfactory

outcome, with 200 images in the Train folder and 20 in the Val folder. Every output from the

same data set is shown below.

6.1. Model Evaluation

Accuracy is chosen as the performance metric together with precision, recall, and f1-score for

each label class to calculate the performance of this model.

6.1.1. P Curve & R Curve

Figure 17: P Curve Figure 18: R Curve

The accuracy of a model's positive predictions is determined by its precision. It is the proportion

of actual positive results to all positive predictions. On the contrary, recall measures a model's

capacity to catch each relevant occurrence of a positive class. It is the proportion of real

positives to all genuine positives.

`

The Values achieved in the P curve & R curve graphs can be said to be between 0.5- 1.0 which

pertains to the model achieving a reasonable balance between precision and recall considering

the scale of a small dataset.

6.1.2. PR Curve & F1 Curve

The Precision-Recall (PR) curve is a visual depiction that shows the shifting relationship

between precision and recall at various decision thresholds in a classification based on a binary

model. Precision is a measure of the accuracy of positive predictions. It counts the proportion

of projected positive instances that are positive, with a focus on minimizing false positives.

Recall measures the model's capacity to accurately identify true positive instances, emphasising

its sensitivity to false negatives. The numbers displayed on this curve hover around 71%,

signifying a commendable equilibrium between precision and recall. Enemy accuracy is low

due to the small size of its occurrence in each frame, while wall accuracy is low due to the

detection dependence on the player purposefully pointing towards the wall, which was less in

the dataset that was taken to perform this test and training.

Figure 19: PR Curve Figure 20: F1 Curve

The F1 score is a unified measure that combines precision and recall, offering an optimal

balance between the two. The F1 score is a condensed statistic that combines both the precision

and recall metrics, similar to the PR curve. The F1 curve can be observed to have most values

above 50% with the highest value being 68% at a confidence level of 0.159 indicate that the

model is operating well in general.

6.1.3. Confusion Matrix

The confusion matrix below aids in visualizing the algorithm's performance or accuracy. The

confusion matrix provides a concise summary of the algorithm's performance.

`

Figure 21: Confusion Matrix

It displays distinct values for each of the three labels. The matrix validates the recurring trend

that has already been observed - exact values for each category, hence strengthening the idea

that the algorithm consistently performs adequately.

6.2. Discussion

Figure 22:Results of Training

The training results provided below clearly demonstrate the AI's ability to reliably detect

various labels. Although the model is often accurate, it can occasionally produce incorrect

positive results.

`

Figure 23: Post Training Object Detection

6.2.1. Comparison with Existing Models

Unlike traditional anti-cheat solutions that depend on rule-based and signature-based

approaches, our cheat detection system utilises machine learning with YOLOv8, providing

clear technical benefits. This system, which has been trained on a broad dataset from Counter-

Strike 2, has good precision. The model's flexibility in detecting and adapting to changes in

real-time makes it a proactive solution for evolving cheating strategies, surpassing rule-based

systems that struggle to keep up.

6.2.2. Implications for Game Developers

The findings have significant implications for game creators, as they introduce an entirely new

approach to cheat detection using machine learning. The model's effectiveness, combined with

its commitment to protecting user privacy, makes it an excellent resource for developers

seeking to enhance their security procedures. By harnessing the effectiveness of object

detection algorithms, game developers have the potential to transform the gaming experience

through the integration of sophisticated cheat detection technologies. This measure not only

ensures the safety of the player community but also secures the financial interests of developers

by promoting fair play and maintaining long-term player involvement.

6.2.3. User Acceptance and Adoption

When considering user approval, the level of technical clarity in the detection process becomes

an essential factor. Users are more inclined to accept a cheat detection method that is

transparent, simply understandable, and reduces instances of false positives. The complex

details of this technique, specifically the utilization of z-scores to reduce the occurrence of

incorrect positive results, enhance the transparency and sophistication of our system. It is

crucial to find a middle ground between preventing cheating and maximizing user satisfaction

to successfully use these advancements, which aligns with the user-centered approach of

this research.

`

6.2.4. Practical Implication

When considering the practical implementation of this cheat detection system, an important

decision arises regarding its architectural framework: if to implement it within the client-server

architecture or completely transition to a server-based model, utilising cloud gaming to

eliminate any latency. Nevertheless, this change is not devoid of its difficulties. Although

technological developments and improvements in transmission speeds hold promise,

effectively tackling these difficulties still needs further research and effort in the future. The

choice between the client-server model and cloud gaming adds an important aspect to the

implementation approach, requiring a delicate equilibrium between immediate responsiveness

and the effectiveness of cheat detection.

7. Conclusion And Future Scope

The study introduces an effective method to distinguish cheaters from legitimate gamers by

utilizing artificial intelligence. It specifically focuses on identifying common cheating

techniques such as Wallhack, Aimbot, and Speed hacks. The study also proposes the use of

behavioral analysis to detect cheaters or ensure fair competition by maintaining skill parity.

Although there is currently limited information available on open-source anti-cheat engines,

the study asserts that the integration of AI can eradicate cheaters and organizations involved in

the sale of cheats.

The deployment of AI-driven anti-cheat systems encounters challenges such as the necessity

for instant identification demands, the requirement for a cloud-centric framework, and the

complexities of behavioural analysis. Despite these difficulties, AI-powered anti-cheat systems

can be implemented on many gaming platforms and genres, providing a cohesive resolution to

the widespread problem of cheating.

Future goals involve integrating AI data to detect cheating in real-time, migrating to a cloud-

based infrastructure, and applying behavioural analysis to identify gamers exhibiting

suspicious behaviour. Additionally, a dataset consisting of thousands of images can also be

used to train any given object detection model for even sharper and more accurate results. The

existing approach for detecting aimbots is highly proficient in analyzing statistical data related

to pitch and yaw. However, its applications are limited due to proprietary constraints.

Collaborations between anti-cheat developers and game publishers offer prospective

possibilities for improvements in the future.

Furthermore, the paper does not exhibit the ability to identify speed hacks because of the limits

imposed by the client-server architecture. To address this, the future vision entails

incorporating this feature like the suggested aimbot detection system. Resolving unique issues

will allow for immediate tracking of player behaviours, while continuous investigation could

integrate machine learning for flexible identification in conjunction with support from game

developers.

Eventually, this study emphasises the capacity of artificial intelligence (AI) to completely

transform the field of anti-cheating measures. Additional research is required to tackle the

issues and considerations mentioned before, but we hold a positive outlook on the development

of anti-cheat technology.

`

8. References

Alayed, H., Frangoudes, F. and Neuman, C. (2013) ‘Behavioral-based cheating detection in

online first person shooters using machine learning techniques’, IEEE Conference on

Computatonal Intelligence and Games, CIG [Preprint]. Available at:

https://doi.org/10.1109/CIG.2013.6633617 . (Accessed: 10 October 2023).

Alkhalifa, S. (2016) Machine Learning and Anti-Cheating in FPS Games. Available at:

https://www.researchgate.net/publication/308785899_Machine_Learning_and_Anti-

Cheating_in_FPS_Games (Accessed: 12 October 2023).

Bakkes, S.C.J., Spronck, P.H.M. and van Lankveld, G. (2012) ‘Player behavioural modelling

for video games’, Entertainment Computing, 3(3), pp. 71–79. Available at:

https://doi.org/10.1016/J.ENTCOM.2011.12.001 . (Accessed: 13 October 2023).

Chambers, C. et al. (2005) ‘Mitigating Information Exposure to Cheaters in Real-Time Strategy

Games’. (Accessed: 18 October 2023).

Chen, B. Di and Maheswaran, M. (2004) ‘A cheat controlled protocol for centralized online

multiplayer games’, Proceedings of the ACM SIGCOMM Workshop on Network and System

Support for Games, NetGames’04, pp. 139–143. Available at:

https://doi.org/10.1145/1016540.1016554 . (Accessed: 18 October 2023).

Chen, K.T., Pao, H.K.K. and Chang, H.C. (2008) ‘Game bot identification based on manifold

learning’, Proceedings of the 7th ACM SIGCOMM Workshop on Network and System Support

for Games, NetGames’08, pp. 21–26. Available at: https://doi.org/10.1145/1517494.1517498 .

(Accessed: 28 September 2023).

Daniel Webb, S. and Soh, S. (2008) ‘A survey on network game cheats and P2P solutions’,

Australian Journal of Intelligent Information Processing Systems, 9(4), pp. 34–43. Available

at: http://find.curtin.edu.au/staff (Accessed: 17 October 2023).

Diwan, T., Anirudh, G. and Tembhurne, J. V. (2023) ‘Object detection using YOLO: challenges,

architectural successors, datasets and applications’, Multimedia Tools and Applications, 82(6),

pp. 9243–9275. Available at: https://doi.org/10.1007/S11042-022-13644-Y/TABLES/7 .

(Accessed: 15 September 2023).

Dunham, H. (2020) ‘Cheat Detection using Machine Learning within Counter-Strike: Cheat

Detection using Machine Learning within Counter-Strike: Global Offensive Global Offensive’.

Available at: https://openworks.wooster.edu/independentstudy (Accessed: 30 July 2023).

Gorman, B. et al. (2006) ‘Bayesian imitation of human behavior in interactive computer

games’, Proceedings - International Conference on Pattern Recognition, 1, pp. 1244–1247.

Available at: https://doi.org/10.1109/ICPR.2006.317 . (Accessed: 15 September 2023).

Home - Ultralytics YOLOv8 Docs (2023) Ultralytics YOLOv8 Docs. Available at:

https://docs.ultralytics.com/ (Accessed: 15 September 2023).

Jonnalagadda, A. et al. (2021) ‘Robust Vision-Based Cheat Detection in Competitive Gaming’,

Proc. ACM Comput. Graph. Interact. Tech, 4(1), p. 18. Available at:

https://doi.org/10.1145/3451259 . (Accessed: 15 September 2023).

https://doi.org/10.1109/CIG.2013.6633617
https://www.researchgate.net/publication/308785899_Machine_Learning_and_Anti-Cheating_in_FPS_Games
https://www.researchgate.net/publication/308785899_Machine_Learning_and_Anti-Cheating_in_FPS_Games
https://doi.org/10.1016/J.ENTCOM.2011.12.001
https://doi.org/10.1145/1016540.1016554
https://doi.org/10.1145/1517494.1517498
http://find.curtin.edu.au/staff
https://doi.org/10.1007/S11042-022-13644-Y/TABLES/7
https://openworks.wooster.edu/independentstudy
https://doi.org/10.1109/ICPR.2006.317
https://docs.ultralytics.com/
https://doi.org/10.1145/3451259

`

Kang, A.R. et al. (2013) ‘Online game bot detection based on party-play log analysis’,

Computers and Mathematics with Applications, 65(9), pp. 1384–1395. Available at:

https://doi.org/10.1016/J.CAMWA.2012.01.034 . (Accessed: 10 September 2023).

Kotkov, D. et al. (2018) ‘Gaming Bot Detection: A Systematic Literature Review’. Available

at: https://doi.org/10.1007/978-3-030-04648-4 . (Accessed: 16 October 2023).

Laurens, P. et al. (2007) ‘A Novel Approach to the Detection of Cheating in Multiplayer Online

Games’. https://research.tees.ac.uk/ws/files/6438470/111786.pdf (Accessed: 02 September

2023).

McGraw, G. (2009) ‘Cheating massively distributed systems’. Available at:

http://www.cigital.com (Accessed: 12 October 2023).

Mitterhofer, S. et al. (2009) ‘Server-side bot detection in massively multiplayer online games’,

IEEE Security and Privacy, 7(3), pp. 29–36. Available at: https://doi.org/10.1109/MSP.2009.78

(Accessed: 12 September 2023).

Philbert, A. (2018) Detecting Cheating in Computer Games using Data Mining Methods,

iMedPub Journals. Available at: https://www.imedpub.com/articles/detecting-cheating-in-

computer-games-using-data-mining-methods.pdf (Accessed: 30 July 2023).

Tian, H., Brooke, P.J. and Bosser, A.-G. (2016) ‘Behaviour-based Cheat Detection in

Multiplayer Games with Event-B’ : https://core.ac.uk/reader/322332700 (Accessed: 19

September 2023)

Willman, M. (2020) ‘Machine Learning to identify cheaters in online games’. Available at:

https://umu.diva-portal.org/smash/get/diva2:1431282/FULLTEXT01.pdf (Accessed: 03

October 2023).

Zhang, Q. (2021) ‘Improvement of Online Game Anti-Cheat System based on Deep Learning’,

Proceedings - 2021 2nd International Conference on Information Science and Education,

ICISE-IE 2021, pp. 652–655. Available at: https://doi.org/10.1109/ICISE-IE53922.2021.00153

. (Accessed: 12 September 2023).

https://doi.org/10.1016/J.CAMWA.2012.01.034
https://doi.org/10.1007/978-3-030-04648-4
https://research.tees.ac.uk/ws/files/6438470/111786.pdf
http://www.cigital.com/
https://doi.org/10.1109/MSP.2009.78
https://www.imedpub.com/articles/detecting-cheating-in-computer-games-using-data-mining-methods.pdf
https://www.imedpub.com/articles/detecting-cheating-in-computer-games-using-data-mining-methods.pdf
https://core.ac.uk/reader/322332700
https://doi.org/10.1109/ICISE-IE53922.2021.00153

