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Anomaly Detection for Identifying Cheating Behaviours 
and Techniques in Online Gaming Using AI 

Sachet Satish Karkera 

21224838 

Abstract 

Gaming has been gaining popularity since it has become mainstream and has become one of 

the largest sectors in terms of money, investment, and involvement. By hacking into the game's 

mechanics to alter the results of a particular match to their liking, some players may turn to 

illicit and immoral strategies to improve their performance. Cheats such as aimbots, wallhacks, 

and bots playing or impersonating as real players have been a threat to the gaming community. 

This compromises fair play and discourages people with no experience from attempting to 

become competent in a particular game. Employing a visual object detection algorithm, this 

research attempts to evaluate current cheat detection strategies while putting new 

methodologies for identifying Aim Bot, Wallhack, and Speedhacks in online gaming. Aim Bot 

detection includes statistical analysis and dynamic thresholding techniques to identify and flag 

instances of aim bot usage. Wallhack and Object detection utilises YOLOv8, an innovative 

algorithm, enabling real-time identification of wallhack usage. Speedhack detection 

incorporates tick rate analysis and pattern recognition to detect and flag instances of speedhack 

usage. This research intends to eliminate cheating methods while protecting the player’s 

privacy settings and their system while upholding the integrity of the online gaming community 

by using machine learning and artificial intelligence. 

Keywords: Game Security, Threat & Cheat Detection, Aimbot Detection 

1. Introduction 

1.1 Motivation and Goal to be Achieved 

Online gaming has been very popular and has been becoming increasingly prevalent for several 

years. Players can play online games from virtually any location if they have an internet 

connection. This made games more accessible for everyone and increased the number of 

participants. First-person shooting (FPS) games are the most played online games for a very 

long time. Every year, a new group of players joins the large and devoted player base of a game. 

Cheating greatly affects the gaming experience in online first-person shooter games due to their 

intensely competitive and hectic character plays. Players can easily obtain open-source 

cheating programs such as CoSmos, CheatEngine, and Artmoney. For an excess of $500–1000 

US dollars, cheating devices that are more sophisticated and challenging for a game's anti– 

cheat system to identify can be purchased. The money made by game developers may be 

impacted by cheating, particularly if it causes a decline in the player base or a poor performance 

history for the game. 

Malware and cheats are fundamentally related and share many features. Because it is essentially 

an untrusted code that, like malware, seeks to go undetected and exploit data, since 
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they conceal and disguise undesired code from users, cheat designers must be proficient in 

programming. 

Most modern anti-cheating programs are mostly ineffective and may compromise gamers' 

privacy. Anti-cheat solutions typically function at the kernel level of the player's system to 

obtain a more profound understanding of the gaming environment and deter cheating. Although 

crucial for detecting cheating effectively, this strategy carries substantial privacy problems. 

Players are generally obligated to provide comprehensive permissions to these anti-cheat 

technologies, granting them access to key portions of their operating system. With this level of 

access, anti-cheat systems can effectively observe and examine several elements of a player's 

device, such as system processes, files, and even network activities. Although these precautions 

are put in place to detect and prevent cheating, players may inadvertently disclose personal 

information throughout this procedure. The usage of anti-cheat technologies operating at the 

kernel level has sparked worries over possible data breaches, as the broad permissions granted 

could unintentionally jeopardise user privacy. Developers face a dilemma in finding a middle 

ground between effective cheat detection and protecting player privacy when working on anti- 

cheat technologies (Bakkes, Spronck, and van Lankveld, 2012). Considering this, the goal of 

this project is to explore the use of machine learning techniques for non-intrusive information 

using sandboxed techniques for detecting cheaters and hackers. 

Due to ethical considerations, most published works concentrate on data mining and behavioral 

analysis while using an imagined dataset. This paper uses easily accessible game logs and 

publicly available video footage as data to build Visual Cheat Detection for AimBot, Wallhacks, 

and Speedhack Detection. The Algorithm uses 200 photos from the dataset to train the model 

using YOLOV8. It can perform real-time player and enemy detection along with capabilities 

to check if a player is performing a wallhack or not. Additionally, Player Aimbot detection can 

also be achieved with a technique mentioned in this research. This model's outcomes 

would assist in strengthening the standard anti-cheat software strategy by adding an additional 

set of security checks. 

1.2. Research Question 

What would be the impact of cheating behaviors and techniques evolving over time in online 

gaming, especially First Person Shooter (FPS) Games, and how can AI models be implemented 

and adapted to stay effective in detecting the different forms of cheating? 

1.3. Novel Contributions 

The study presents a specialised Visual Cheat identification Algorithm that is specifically 

developed for the purpose of recognising cheating behaviours, such as Aim Bot, Wallhack, and 

Speedhacks. This algorithm employs YOLOv8, a visual object identification technique. This 

algorithm improves the effectiveness of cheat detection by promptly identifying both players 

and adversaries in real-time, while also respecting the privacy preferences of the participants. 

This research distinguishes itself from prior studies by employing authentic data derived from 

accessible game logs, developer portal videos, and publicly available footage. This approach 

enhances the reliability of the cheat detection model, as it avoids the use of fake datasets for 

ethical reasons. The proposed method for detecting Aimbot utilises statistical analysis, namely 

z-scores, to identify unusual movements in pitch and yaw angles, hence enhancing precision 

and adaptability. To identify Speed Hack, the game server architecture incorporates tick rate 

monitoring, which employs pattern recognition and predefined thresholds to precisely ascertain 

the update frequency between clients and servers, thus providing a comprehensive method. The 

study defines a complete set of evaluation criteria, which encompass accuracy, precision, recall, 

and F1-score. These criteria are visually depicted using precision-recall curves and confusion 
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matrices, so facilitating a better comprehension of the model's capabilities. 

1.4. Cheating and Its Impact 

There are more gamers than ever in the world of online gaming owing to the rise in gaming 

influencers. Additionally, since the player count has increased, cheating in these kinds of games 

has become more common than it was. 

A recent survey by Irdeto Survey1conducted in 2022 finds that 79% of developers worry that 

cheating will damage their game's ecosystem, while over 85% of players have encountered 

cheating and were forced to stop playing because they were unable to progress through the 

game's learning curve and were continually losing, which prevented them from becoming 

better. 

Cheating in online games seriously compromises fair play, damages community trust, and 

tampers with the integrity of virtual worlds. It establishes an unfair playing field, which may 

irritate players who are acting legitimately and reduce their pleasure in the game. The negative 

effects are made even worse by the economic consequences, which involve the devaluation of 

in-game items and the reinvestment of developer resources towards the implementation of anti- 

cheat systems (Chambers et al., 2005). Cheating in esports has the potential to undermine the 

fairness of tournaments and harm the existence of the esports industry. Cheaters may face legal 

repercussions, such as bans and suspensions, and if cheating becomes so prevalent that it drives 

players away, the game's long-term survival may be in danger. In the end, cheating not only 

ruins the playing experience but also has serious repercussions for the online gaming 

community, business, and general well-being. 

2. Literature Review and Background 

Several researchers have dealt with several issues related to cheating and its negative impact 

on online gaming while putting different strategies into practice to stop cheating. However, in 

comparison to other areas, the amount of research performed on this topic is less. The main 

cause of this is that most gaming firms employ proprietary anti-cheat software. By withholding 

most of the information, they make sure the software is tough to hack into and is kept secret to 

maintain secrecy. Furthermore, any study done on this kind of software is regarded as 

proprietary by private enterprises. 

2.1. Data Mining Methods for Cheat Detection 

Data mining algorithms are used (Philbert, 2018)to look for specific cheating software in a host 

machine's memory. Data mining techniques have demonstrated their accuracy in protecting 

systems and providing solutions for experts to appropriately assess when needed. The same 

ideas should hold true for cheat-related executables even though this study does not address 

harmful executables. But new exploits are continuously being developed, and a game seems to 

be protected by little more than an impractical data mining technique. Furthermore, because the 

software for anti-cheat has access to the entire memory of the host, utilizing this as a stand- alone 

solution would raise confidentiality concerns. 

2.2. Cheat Detection Methods based on Vision 

Deep neural networks (DNN) had been used for the detection of cheating (Jonnalagadda et al., 

2021).This study offered a fresh method for spotting online game cheating. The technique uses 

a vision-based algorithm to examine the visual data generated by the game and identify 

instances of cheating. For accuracy and robustness, the system uses DNN to classify the game 

 
1 https://irdeto.com/news/irdeto-survey-reveals-increased-worry-of-cheating-and-tampering-highlighting-the- need-for-adequate-game-

protection 
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as real or forged and uses aggressive defense and confidence estimates. The technology 

outperforms current anti-cheat methods in accuracy and hostile attack defense. The paper also 

discusses the method's limitations, such as false negatives and positives with high variance, 

and the necessity for a lot of information that is labeled for the model to get trained. 

(Zhang, 2021) also mentions AI object detection. Gaming cheats like Aimbots and wall hackers 

affect gamers, according to a study. It proposes visual anti-cheat detection using recorded   

gameplay of a popular online first-person shooter. Unfortunately, time and resource constraints 

prevented real-time cheat detection in this research. Visual object recognition was used instead. 

2.3. Player Behavioural-Based Cheat Detection 

A novel technique for identifying wall-hacking is proposed by(Laurens et al., 2007). The 

technique used four characteristics and player behavior analysis to forecast the likelihood of 

cheating by a player. The article shows promising results in differentiating between players 

who are cheating and those who are not, which sets it apart from other commercialized methods 

already in use. However, there isn't a strong mathematical basis for the measurements that are 

employed, thus further work will eventually be needed to examine, enhance, and create new, 

more complex metrics. Moreover, the method might not work against other forms of cheating, 

and the benefits of a standard architecture might be compromised by other player collusion 

tools. 

Another machine learning technique developed by (Willman, 2020)identified popular first- 

person shooting game cheaters. This covered an introduction to online game cheating research, 

a machine learning guide, and the building and evaluation of a cheater detection neural 

network. The findings suggest the method can detect game cheaters. The next phase of this 

research provided a perspective into methodologies for machine learning and how to improve 

model performance with more data. This work's disadvantages included using limited data for 

testing and the model's accuracy and only evaluating the algorithm on one game. 

(Tian, Brooke, and Bosser, 2016) presented their use of the suggested architecture to 

differentiate between biased and fair players while also providing an active method as opposed 

to a passive one to defend the fairness of the games. Even if they weren't robust, they 

demonstrated that behavioral models could be implemented as an anti-cheating strategy that 

could help outlaw cheaters. 

(Alayed, Frangoudes and Neuman, 2013) offered a behavior-based method for identifying 

cheaters in online games using machine learning classifiers. The logs were stored on the server, 

where an attribute generator was processed, and an information analyzer examined them. The 

authors completed several trials using various kinds of models for detection, and they achieved 

good accuracy results. The developers' cheat detection policy sets the threshold's quantity. It 

can range from low to high, but it shouldn't be too harsh or else many seasoned, moral gamers 

will be called cheaters. The authors also suggest that more research be done, to improve the 

algorithms. The limitations include the exclusive implementation to multiplayer games and its 

requirement for game log access, which isn't always possible. 

2.4. Machine Learning Enabled Detection of Bot amongst Authentic Players 

(Mitterhofer et al., 2009) suggested a novel method of bot exposure that circumvents the issues 

associated with client-side solutions by relying solely on the server end evaluation of a player's 

behavior. In order to achieve this, the study makes use of a feature inherent in bots: an 

executable script that controls the bots and executes a precise set of actions automatically that 

are repeated frequently. The method determines two crucial factors that aid in the identification 

of bots: the frequency with which a character traverses the path and the degree of recurrence 

of the route. This approach's drawback is that it was tested on a minor scale, with a bot that 
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simply followed specific paths, and the assessments for both detections considered no 

gameplay activity. 

(Dunham, 2020) highlighted the use of machine learning for Counter Strike Global Offensive 

cheat detection. To counteract them, it also addresses several cheats that can be noticed and 

exploited, as well as machine learning solutions. It made use of the Nvidia deep neural network 

library, CUDA & cuDNN. It looks for and finds a solution to the Counter-Strike cheat detection 

issue using machine learning. The technique is based on two main parts: the creation of metrics 

and characteristics that may be used to accurately categorize cheating, and a network structure 

that emulates the way people naturally analyse video footage (repeating neural networks). The 

restrictions include the need for network architecture to be modified to appropriately take data 

format into account and the identification and development of specific cheating metrics. 

(Kotkov et al., 2018) conducted a comprehensive study on online gaming bot identification, 

focusing on applications that enable resource storage. It highlights knowledge gaps and offers 

a classification of bot detection methods. The authors also propose directions for future 

research, including utilizing a wider variety of feature spaces and expanding the types of 

machine learning algorithms used for detection. Two of the paper's drawbacks include its focus 

on an online game and the small number of feature regions used in the research under 

examination. Moreover, the study falls short of offering a thorough assessment of the 

effectiveness of several bot detection systems. Future work will involve creating more bot 

identification tools and supplementing the literature analysis of relevant studies. 

2.5. Comparison Table 
 

Title Author Main Focus Cheat Focus Methodology 

& Drawbacks 

Data Mining 

Methods for 

Cheat 

Detection 

Philbert, A. 

(2018) 

Applying 

data mining 

tools to 

identify 

instances of 
cheating 

Identification of illegitimate 

cheat software within the 

memory of the host 

machine 

Utilisation of data 

mining techniques that 

may raise 

confidentiality 

concerns. 

Cheat 

Detection 

Methods 

Based on 

Vision 

Jonnalagadda, 

A. et al. 

(2021) 

Utilising 

deep neural 

networks to 

detect 

cheating 

Identification of fraudulent 

events with vision-based 

algorithms 

A vision-based 

approach utilising deep 

neural networks (DNN) 

is employed for the 
classification of actual 

objects in a game. 

Zhang, Q. 

(2021) 

Utilising 

artificial 

intelligence 

to prevent 

cheating. 

Utilising recorded gameplay 

of a widely played online 

first-person shooter to 

discover and identify 

instances of cheating 

through visual analysis. 

Aim was to create a 

real-time visual object 

recognition system. 

Resource limits limited 

object detection 
accuracy. 

Player 

Behavioural- 

Based Cheat 

Detection 

Laurens et al. 

(2007) 

Detection of 

cheating by 

study of 

player 

behaviour 

Utilising player behaviour 

analysis to predict the 

probability of cheating from 

an aimbot perspective. 

Methods including the 

analysis of player 

behaviour and 

attributes, which has 

drawbacks 
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 Willman 

(2020) 

Utilising 

machine 

learning to 

detect and 

identify 

individuals 

who engage 
in cheating 

behaviour 

Constructing and assessing 

a neural network designed 

for detecting cheating 

behaviour that derives from 

wallhacking and strafing. 

The machine learning 

technique has limits in 

terms of data testing 

and analysing the 

algorithm, as it is only 

applied to one game. 

Tian, Brooke, 

and Bosser 

(2016) 

Applying 

behavioural 

models to 

distinguish 

between 

players who 

exhibit bias 
and fair play. 

Offering a proactive 

approach to safeguard the 

integrity of games from 

individuals engaging in 

cheating behaviour. 

Utilising behavioural 

models as a 

countermeasure against 

cheating. 

Alayed, 

Frangoudes, 

and Neuman 

(2013) 

Utilising 

machine 

learning 

classifiers to 

detect and 

identify 

individuals 

who engage 

in cheating 

behaviour in 

online 
games. 

Algorithmic approach for 

identifying individuals who 

engage in 

cheating behaviours from 

illicit powerups by unfair 

means. 

Experiments have been 

conducted using several 

models to detect issues, 

however these 

experiments have been 

limited to multiplayer 

games and require 
access to game logs. 

Machine 

Learning 

Enabled 

Detection of 

Bot amongst 

Players 

Mitterhofer et 

al. (2009) 

Identifying 

automated 

programmes 

by analysing 

player 

actions on 

the server 

side 

Detecting automated 

accounts by the recognition 

of predetermined and 

repetitive behaviours that 

derives from cheating. 

The evaluation of 

player behaviour in 

games such as World of 

Warcraft is done on the 

server-side, but it has 

limits in terms of 

scalability and 

assessing gameplay 

activity. 

Dunham 

(2020) 

Applying 

machine 

learning 

techniques to 

detect 

cheating in 

Counter 

Strike 

Global 

Offensive. 

Analysing various cheating 

methods and leveraging 

machine learning 

techniques to counteract 

them. 

The methodology 

involves utilising the 

Nvidia deep neural 

network library, CUDA, 

and cuDNN to change 

the network architecture 

and create cheating 

measures. 

Kotkov et al. 

(2018) 

An extensive 

investigation 

into the 

identification 

of bots in 

Identifying areas with 

insufficient knowledge and 

suggesting potential 

avenues for future 

investigation 

The work solves the bot 

detection confusion by 

focusing primarily on a 

game. However, 

thorough assessment of 
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  online 

gaming. 
 other bot detectors was 

not provided. 
 

3. Research Methodology 

The research methodology functions as a methodical structure that directs the entirety of the 

research process, guaranteeing a structured and dependable strategy to tackle the research 

objectives. 

3.1. Methodology 

A Structured, practical, and flexible approach was taken into consideration to perform this 

research. Initially, the business understanding and the future impact of the research were 

considered along with the existing practices that are already present. During the business 

understanding phase, the problem is defined, and goals and objectives are outlined. 

Comprehension of items and objects that are detrimental to cheat detection and exploring the 

dataset are the main goals of the data understanding phase. The dataset is then pre-processed 

in the data preparation stage which involves cleaning, filtering, and labeling the data to make 

it appropriate for model training. This includes activities like resizing images, classifying 

objects, and dealing with missing data. Next, the dataset is divided into test, validation, and 

training sets. Yolo (You Only Look Once) (Ultralytics YOLOv8 Docs, 2023) is the algorithm 

of choice for modeling, with versions and customization as required to be considered. The 

prepared dataset is used to train the model. Metrics like precision and recall are used to evaluate 

the model's performance during evaluation and objects are detected as per the model which was 

trained. 

3.2. Language and Environment 

Python's large libraries for image processing and machine learning, together with its 

adaptability, make it an essential component. Python is frequently used for preparing data, 

training models, deploying them, and evaluating them. The popular Python distribution 

environment Anaconda makes development even easier by offering a complete package and 

dependency management environment. Installing libraries like OpenCV, NumPy, Ultralytics 

and torchvision 2 are all necessary for creating and executing the YOLO algorithm which is 

made easier by the package manager Conda. 

3.3 Game Architecture & Components 

The architecture of a game is of paramount significance in influencing the overall gaming 

experience, namely in areas such as user identification, game tracking, and inculcating anti- 

cheat mechanisms. 

3.3.1 Game Architecture Flowchart 

User identification and account security are the first steps of a first-person shooter game. Users 

will be asked to login again or register if their credentials are invalid. The architectural 

framework tracks player achievements and statistical data across games, improving 

personalised experiences. Matchmaking consent requires players to choose to record their data 
 

2 https://docs.ultralytics.com/ 
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for multiplayer activity, distinguishing between human and bot-controlled matches. A user's 

client system's kernel-level anti-cheat features are seamlessly integrated, identifying and 

flagging suspicious player behaviour for further investigation. Players who cheat are banned 

from the game, ensuring fair play. 

 

 
Figure 1: Game Flow for Anti-Cheats 

 

The architectural design of a system for playing games is dependent upon the utilization of the 

client-server model, which collaboratively influences and shapes the complete gaming 

experience. The client-server framework functions as an essential structure that enables 

efficient data synchronization between the devices of players and the game server. The 

synchronization process guarantees a consistent and integrated game environment for all 

individuals involved in a multiplayer game. Furthermore, it assumes an important role in the 

implementation of anti-cheating protocols, actively identifying and addressing questionable 

behaviors to uphold fairness in the gaming environment. The scalability of the model is of equal 

importance, as it enables game servers to adapt to fluctuations in player numbers and effectively 

handle real-time interactions, assuring a seamless and prompt experience as the player base 

grows. The client-server model and tick rate collectively establish the fundamental framework 

for a dynamic and pleasurable online gaming environment. 
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The primary function of the server is to consistently update the game state at a high frequency, 

which is achieved by maintaining a specific tick rate. The Tick Rate parameter determines the 

frequency at which the server changes its game state within a given time frame. 

3.3.2 Tick Rate 

The tick rate3, commonly known as the server's tick rate, is a crucial characteristic within the 

field of first-person online games. It has a considerable impact on the overall gameplay 

experience and the competitive dynamics involved. The tick rate is a metric that quantifies the 

rate at which the game's server updates and processes information. It is often measured in ticks 

per second, denoted as Hz. 

A Tick can also be seen as a single capture in the frame of the game where tick(0) is the initial 

snapshot of the game and tick(N) gives the final snap of the game. It must be noted that the tick 

rate at the client and the server’s end would always differ from each other due to network 

latency (Alkhalifa, 2016). On average, there would be around a difference of 5 ticks ideally. 

However, the increased latency also causes a lot of discrepancies in the game with significant 

lag which causes performance loss and frustration among the players. 

3.3.3 Recoil 

Pulling the trigger in a game creates recoil4 and is expected to change the course of a player’s 

gun from where they are aiming to off-target slightly for first-person shooter games. This can 

be measured by the length of time the gun fires and decreases the player's accuracy. This 

strategy is thought to filter out cheating players and retain the fair players in the game. Counter- 

Strike 2 is the game that this thesis focuses on. Every weapon in this game features a unique 

set of random recoil patterns. It's been observed that even extremely good players are unable 

to make up for recoil, which is a noticeable distinction between cheaters and gamers as cheaters 

can easily make up for recoil. 
 

Figure 2: Recoil (source: Recoil | Counter-Strike Wiki | Fandom (no date) Counter-Strike Wiki) 

 

 

 

 

 

3 https://dotesports.com/counter-strike/news/how-does-tick-rate-work-in-counter-strike-2 
4 https://counterstrike.fandom.com/wiki/Recoil 
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3.3.4 Cheats 

A. Aimbots 

Aimbots5 are a prevalent form of fraudulent scripts or software utilized in first-person shooter 

(FPS) video games. These hacks grant players an unfair advantage through the automated 

targeting and aiming of adversaries, frequently achieving remarkable levels of precision. 

B. Wallhacks 

Wallhack6 is a prevalent form of cheating that is frequently implemented in first-person shooter 

(FPS) video games by leveraging this hack, players gain the ability to observe surfaces such as 

walls, terrain, and other obstacles present in the game environment. 
 

Figure 3: Wallhack (source: Capper. Tom (2022) - What Are Wallhacks and How Do They Work? - PrivateCheatz.) 
 

C. Speedhacks 

Particularly common in online multiplayer games, speed hackers 7constitute a form of cheating 

in which players gain an unfair advantage by modifying the character's movement speed. 

D. Map Hacks 

Map hacks are a form of cheating that occurs in video games, specifically multiplayer online 

games, wherein players exploit or manipulate the game's minimap or map to obtain an unfair 

advantage. 
 

Figure 4: Maphack (source: CSGO External Maphack V0.2 - Obsta) 

 

 
 

5 https://chatbotsjournal.com/what-are-aimbots-and-how-do-they-work-4936794e5453 
6 https://www.privatecheatz.com/what-are-wallhacks-and-how-do-they-work/ 
7 https://combatarms.fandom.com/wiki/Speed_Hack 

http://www.privatecheatz.com/what-are-wallhacks-and-how-do-they-work/
http://www.privatecheatz.com/what-are-wallhacks-and-how-do-they-work/
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3.2. Dataset 

The original dataset utilized in the study was taken from the video game Counter Strike 2. 

There are 200 images in all that comprise the dataset. Yolov8, which stands for "You Only 

Look Once," is used to develop the AI model. YOLO is the product of Ultralytics, which is an 

open-source platform on vision AI algorithms, the most well-known vision AI in the world that 

is used for object detection and visualization. MakeSense is used to annotate every image 

according to our requirements and produce a legitimate data set. The annotation of what AI 

should search for was done using the following labels. 
 

Label Description 

Gun Detects the player gun for recoil and perspective of the player. 

Wall Detect walls in the game to check if a player can see through walls and kill 

enemies. 
Enemy Detects enemy for speed hacks and wall hacks. 

 

The YOLO Algorithm 8needs data to be structured in a specific way for it to read, train, and 

test data(Diwan, Anirudh and Tembhurne, 2023). There are two primary folders namely images 

and labels with each folder containing 2 sub-folders namely train and val. They are described 

as follows: 

Training Subset (train): Most of the dataset, including 200 photos, was contained in the 

training subset (also known as "train"). 'Images' and 'labels,' two subfolders, were created from 

the 'train' subset to facilitate access and use during training. 

Validation Subset (Val): This subset, which consists of 20 photos, was set aside especially for 

validation. The 'val' subgroup was similarly divided into 'images' and 'labels' subfolders. 

3.3 Yolo and Its Variants 

YOLO V8 has 5 variants namely n,s,m,l & x. Each model exhibits a unique level of precision 

in detecting and performing tasks. It can be observed how YOLO performs much faster and 

more accurately than its predecessors. 

 

 
Figure 5: YOLO Variants (source: Home - Ultralytics YOLOv8 Docs (2023)) 

 

The graph provides the correlation between the quantity of parameters and the delay in several 

YOLOv5-YOLOv8 models using an A100 TensorRT FP16 GPU. Latency is quantified as the 
 
 

8 : https://github.com/ultralytics/ultralytics 
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duration in milliseconds required to process each individual picture (ms/img). A decrease in 

latency results in an increase in the speed at which the model can process images. 

The graph illustrates a positive correlation between the size of the model and the number of 

parameters it possesses, as well as a negative correlation between the size of the model and its 

speed. This is because larger models require a greater number of calculations in order to process 

an image. Nevertheless, the graph indicates that YOLOv8 models exhibit higher speed 

compared to YOLOv7 models, despite having a higher number of parameters. YOLOv8 

incorporates some architectural enhancements that enhance its efficiency. Here, The COCO 

(Common Objects in Context) dataset is used which is a vast compilation of annotated images 

and movies used for tasks such as object detection, segmentation, and instance tracking. 

The graph also displays the COCO MAP50-95 Val values, which serve as a metric for 

evaluating the object detection precision of the models. A model's accuracy increases as the 

COCO MAP50-95 Val score rises. The graph provides a clear trade-off between accuracy and 

latency. Greater in size, larger models exhibit enhanced accuracy, but at the cost of reduced 

speed. In general, the graph indicates that YOLOv8 outperforms prior iterations of YOLO in 

terms of both speed and accuracy in object recognition. Despite having more parameters, it is 

more efficient than YOLOv7. 

The analysis of YOLO models reveals that the v8 models demonstrate a notable enhancement 

in mAP (mean Average Precision) ranging from +4 to +9 in contrast to the v5 models. 

Remarkably, this gain is achieved while keeping a comparable runtime. It is worth noting that 

v8m and v8l exhibit superior performance in terms of both mean average precision (mAP) and 

speed when compared to v5l and v5x (YOLO V5) Furthermore, the v8n model emerges as the 

highest-performing lightweight variant, demonstrating exceptional proficiency in terms of both 

accuracy and speed when compared to the other YOLO versions under consideration. 
 

Figure 6: YOLOV8 Version Comparison (source: Home - Ultralytics YOLOv8 Docs (2023)) 
 

The Yolov8m model was selected for research testing due to its high speed and suitability for 

detecting a limited number of objects. 
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4. Design Specifications 
 

Figure 7: Implementation Architecture 
 

The figure above illustrates the system architecture for the research based on anomaly detection 

in first-person shooter games. Commencing with the gathering of data from publicly accessible 

sources on the internet, the subsequent process of labelling images guarantees the construction 

of a thoroughly annotated dataset, which serves as an essential base for training and evaluation. 

The feature extraction phase selectively removes extraneous data, refining the dataset to 

emphasise essential features for cheat detection. Utilising the YOLO (You Only Look Once) 

method in the object detection phase improves effectiveness by allowing immediate detection 

of cheating techniques such as wallhacks and aimbots inside individual frames. In addition, the 

inclusion of server/client tick rate monitoring introduces a level of complexity, primarily aimed 

at detecting speed hacks by examining irregularities in gaming interactions between players 

and the game. The evaluation measures, including accuracy, precision, and recall, are crucial 

for assessing the effectiveness of the model. 

5. Implementation 

5.1. Dataset Creation 

During the preliminary stage of the implementation, the dataset was carefully selected and 

organized to enhance the training process of the YOLO algorithm. The dataset was produced 

by selecting 200 photos from publicly accessible gameplay footage of the game. To ensure 

enough vital data within the dataset, the unnecessary images from the data were filtered out. 

The images were subsequently labeled using the open-source application makesense.ai, 

effectively identifying the specific areas of interest such as player, player gun, enemy, and walls 

for the purpose of anomaly identification. 
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5.2. Model Training 

Figure 8: Image Labelling 

The YOLO method for anomaly detection was put into effect in an Anaconda environment. 

The purpose of selecting this environment was to speed up training and development and the 

ease of an integrated terminal. After training for about 100 epochs, the YOLO model was able 

to iteratively improve its comprehension of the distinct qualities and features seen in the game 

and the objects that were labelled were being detected effectively. 
 

 

 
5.3. Object Detection 

Figure 9: YOLO Execution Command 

The YOLO model's trained weights were used in conjunction with the Anaconda environment 

and Ultralytics, a framework created by YOLO, to achieve the smooth capture of in-game 

objects. This assisted in the identification of important in-game elements like the Player, the 

Player's gun, Enemies, and Walls. The model successfully identifies enemies, walls, and player 

guns as anticipated. 
 

Figure 10: Object Detection (Enemy and Gun) Figure 11: Object Detection (Wall and Gun) 
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Figure 12: Object Detection (Wall) 

 

5.4. Proposed Solution for Aimbot Detection 

To determine the accurate pitch and yaw required to target an opponent, the AimBot generates 

vectors for both the player and the enemy, thereby establishing a difference vector between 

them. Trigonometry is used to compute the pitch angle by taking into account the distance 

between players and the disparity in their heights. The yaw angle is determined by calculating 

the disparities in x and y displacements. Maintaining these angles within specific limits is 

essential to prevent detection by anti-cheat programs. 

The aimbot detection system's primary component is the evaluation of in-game parameters. 

The technique is concerned with two angles in particular: pitch and yaw. The game mentions9 

that yaw (i.e., side-to-side angles) is between −180 ≤ yaw ≤ 180, while pitch is defined as 

down-to-up angles limited between -89 and 89 degrees. Any deviation from these bounds 

suggests that the targeting behavior may be automated or artificial or in conclusion the player 

is using an aimbot. 

Players' motions are evaluated by the aimbot detection code, which considers their pitch and 

yaw angles as input. When a player crosses the pitch and yaw boundaries, it is suspected that 

aimbots are being used. It is possible for the system to precisely identify and detect such 

abnormalities by collecting and monitoring player data. The Following Application Takes Pitch 

and Yaw data as input and determines whether a player is using an Aimbot or not. 
 

Figure 13: Application for Aimbot Detection 
 

The given solution use z-scores to detect the usage of aimbot by analysing pitch and yaw data. 

It identifies frames when the z-scores for these variables exceed a predetermined threshold. Z- 

 

9 https://developer.valvesoftware.com/wiki/WisePYR 
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scores, which represent departures from the average, are employed to identify abnormal 

fluctuations. 
 

Figure 14: Aimbot Detected Figure 15: Aimbot Not Detected. 
 

If the z-score of a frame surpasses the zscore_threshold, it indicates an abnormal change in 

targeting. The code subsequently detects and displays frames containing identified anomalous 

movements in a given frame. If The Z-scores predict that data is normal with no unnatural or 

abnormal spikes in each frame data while also considering the set Pitch/Yaw data, the 

application would determine that the aimbot is not being used. 

The code improves the detection of the aimbot by conducting statistical analysis on the pitch 

and yaw data. By utilizing z-scores and implementing a dynamic threshold, it detects frames 

exhibiting abnormal movements, offering a precise and transparent approach. This technique 

provides flexibility, assisting in the ongoing enhancement of anti-cheat mechanisms by 

identifying aimbot behaviour precisely and enabling thorough study. Continuous cooperation 

within the anti-cheat community is essential for maintaining an advantage against ever- 

changing cheating techniques. 

5.5. Proposed Solution for Speed Hack Detection 

In online first-person shooter (FPS) games, both the client and the server run on distinct time 

intervals because of network latency. Suppose the server is currently at tick 120, while the 

client is lagging at tick 116 due to delays in transmitting data. The latency between the server 

and client in this example is 4 ticks. To enhance the fluidity of the gaming experience, first- 

person shooter (FPS) games employ a method known as client-side prediction. This 

functionality enables the user to anticipate and react to actions on their device without having 

to wait for validation from the server, hence diminishing the apparent delay for participants. 

This proposal presents a comprehensive strategy to strengthen the game's anti-cheat system by 

incorporating tick rate analysis to identify and prevent speed hacks. The solution entails 

incorporating a tick rate monitoring mechanism into the game server architecture to record the 

frequencies at which updates occur between clients and servers. Games frequently need 

rendering 60 frames per second, which necessitates using the rendering function every 16.6 

milliseconds. 
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Figure 16: Client/Server Tick Rate (source: Ticks and update rates | Unity Multiplayer Networking) 
 

The system's objective is to detect anomalies in player movements by establishing a standard 

tick rate and creating algorithms to estimate expected movement speeds. Pattern recognition 

techniques in conjunction with object detection and server-side checks will analyse these 

patterns in more depth, and predefined thresholds will activate flags to prompt additional 

research. Additionally, Speedhacks can be visually distinguished as well without the need for 

having external anti-cheat factors, however, sometimes the enhanced speed might also be due 

to ping disparity which might wrongly accuse a fair player of using speedhacks. Hence, such 

methods with the amalgamation of server-client side checks along with machine learning 

techniques are essential for distinguishing between a valid speed hack cheat and a false alert. 

6. Evaluation 

The model was trained using 220 photos with three labels, which were cleaned for a satisfactory 

outcome, with 200 images in the Train folder and 20 in the Val folder. Every output from the 

same data set is shown below. 

6.1. Model Evaluation 

Accuracy is chosen as the performance metric together with precision, recall, and f1-score for 

each label class to calculate the performance of this model. 

6.1.1. P Curve & R Curve 

 

 
Figure 17: P Curve Figure 18: R Curve 

 

The accuracy of a model's positive predictions is determined by its precision. It is the proportion 

of actual positive results to all positive predictions. On the contrary, recall measures a model's 

capacity to catch each relevant occurrence of a positive class. It is the proportion of real 

positives to all genuine positives. 



` 
 

 

The Values achieved in the P curve & R curve graphs can be said to be between 0.5- 1.0 which 

pertains to the model achieving a reasonable balance between precision and recall considering 

the scale of a small dataset. 

6.1.2. PR Curve & F1 Curve 

The Precision-Recall (PR) curve is a visual depiction that shows the shifting relationship 

between precision and recall at various decision thresholds in a classification based on a binary 

model. Precision is a measure of the accuracy of positive predictions. It counts the proportion 

of projected positive instances that are positive, with a focus on minimizing false positives. 

Recall measures the model's capacity to accurately identify true positive instances, emphasising 

its sensitivity to false negatives. The numbers displayed on this curve hover around 71%, 

signifying a commendable equilibrium between precision and recall. Enemy accuracy is low 

due to the small size of its occurrence in each frame, while wall accuracy is low due to the 

detection dependence on the player purposefully pointing towards the wall, which was less in 

the dataset that was taken to perform this test and training. 

 

 
Figure 19: PR Curve Figure 20: F1 Curve 

 

The F1 score is a unified measure that combines precision and recall, offering an optimal 

balance between the two. The F1 score is a condensed statistic that combines both the precision 

and recall metrics, similar to the PR curve. The F1 curve can be observed to have most values 

above 50% with the highest value being 68% at a confidence level of 0.159 indicate that the 

model is operating well in general. 

 

6.1.3. Confusion Matrix 

The confusion matrix below aids in visualizing the algorithm's performance or accuracy. The 

confusion matrix provides a concise summary of the algorithm's performance. 
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Figure 21: Confusion Matrix 

 

It displays distinct values for each of the three labels. The matrix validates the recurring trend 

that has already been observed - exact values for each category, hence strengthening the idea 

that the algorithm consistently performs adequately. 

 

 

 

6.2. Discussion 

Figure 22:Results of Training 

 

The training results provided below clearly demonstrate the AI's ability to reliably detect 

various labels. Although the model is often accurate, it can occasionally produce incorrect 

positive results. 
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Figure 23: Post Training Object Detection 

 

6.2.1. Comparison with Existing Models 

 

Unlike traditional anti-cheat solutions that depend on rule-based and signature-based 

approaches, our cheat detection system utilises machine learning with YOLOv8, providing 

clear technical benefits. This system, which has been trained on a broad dataset from Counter- 

Strike 2, has good precision. The model's flexibility in detecting and adapting to changes in 

real-time makes it a proactive solution for evolving cheating strategies, surpassing rule-based 

systems that struggle to keep up. 

 

6.2.2. Implications for Game Developers 

 

The findings have significant implications for game creators, as they introduce an entirely new 

approach to cheat detection using machine learning. The model's effectiveness, combined with 

its commitment to protecting user privacy, makes it an excellent resource for developers 

seeking to enhance their security procedures. By harnessing the effectiveness of object 

detection algorithms, game developers have the potential to transform the gaming experience 

through the integration of sophisticated cheat detection technologies. This measure not only 

ensures the safety of the player community but also secures the financial interests of developers 

by promoting fair play and maintaining long-term player involvement. 

 

6.2.3. User Acceptance and Adoption 

 

When considering user approval, the level of technical clarity in the detection process becomes 

an essential factor. Users are more inclined to accept a cheat detection method that is 

transparent, simply understandable, and reduces instances of false positives. The complex 

details of this technique, specifically the utilization of z-scores to reduce the occurrence of 

incorrect positive results, enhance the transparency and sophistication of our system. It is 

crucial to find a middle ground between preventing cheating and maximizing user satisfaction 

to successfully use these advancements, which aligns with the user-centered approach of 

this research. 
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6.2.4. Practical Implication 

 

When considering the practical implementation of this cheat detection system, an important 

decision arises regarding its architectural framework: if to implement it within the client-server 

architecture or completely transition to a server-based model, utilising cloud gaming to 

eliminate any latency. Nevertheless, this change is not devoid of its difficulties. Although 

technological developments and improvements in transmission speeds hold promise, 

effectively tackling these difficulties still needs further research and effort in the future. The 

choice between the client-server model and cloud gaming adds an important aspect to the 

implementation approach, requiring a delicate equilibrium between immediate responsiveness 

and the effectiveness of cheat detection. 

 

7. Conclusion And Future Scope 

The study introduces an effective method to distinguish cheaters from legitimate gamers by 

utilizing artificial intelligence. It specifically focuses on identifying common cheating 

techniques such as Wallhack, Aimbot, and Speed hacks. The study also proposes the use of 

behavioral analysis to detect cheaters or ensure fair competition by maintaining skill parity. 

Although there is currently limited information available on open-source anti-cheat engines, 

the study asserts that the integration of AI can eradicate cheaters and organizations involved in 

the sale of cheats. 

 

The deployment of AI-driven anti-cheat systems encounters challenges such as the necessity 

for instant identification demands, the requirement for a cloud-centric framework, and the 

complexities of behavioural analysis. Despite these difficulties, AI-powered anti-cheat systems 

can be implemented on many gaming platforms and genres, providing a cohesive resolution to 

the widespread problem of cheating. 

 

Future goals involve integrating AI data to detect cheating in real-time, migrating to a cloud- 

based infrastructure, and applying behavioural analysis to identify gamers exhibiting 

suspicious behaviour. Additionally, a dataset consisting of thousands of images can also be 

used to train any given object detection model for even sharper and more accurate results. The 

existing approach for detecting aimbots is highly proficient in analyzing statistical data related 

to pitch and yaw. However, its applications are limited due to proprietary constraints. 

Collaborations between anti-cheat developers and game publishers offer prospective 

possibilities for improvements in the future. 

 

Furthermore, the paper does not exhibit the ability to identify speed hacks because of the limits 

imposed by the client-server architecture. To address this, the future vision entails 

incorporating this feature like the suggested aimbot detection system. Resolving unique issues 

will allow for immediate tracking of player behaviours, while continuous investigation could 

integrate machine learning for flexible identification in conjunction with support from game 

developers. 

 

Eventually, this study emphasises the capacity of artificial intelligence (AI) to completely 

transform the field of anti-cheating measures. Additional research is required to tackle the 

issues and considerations mentioned before, but we hold a positive outlook on the development 

of anti-cheat technology. 
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