

Configuration Manual

Academic Internship

MSc Cyber Security

Benhur Kachhap

Student ID: 22168494

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Benhur Kachhap

Student ID:

22168494

Programme:

MSc Cyber Security

Year:

2023

Module:

Academic Internship

Supervisor:

Vikas Sahni

Submission Due

Date:

14/12/2023

Project Title:

Novel Approach in Intrusion Detection Systems Using Mutual

Information-based Gradient Boosting Machine

Word Count:

1570 Page Count 19

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Benhur Kachhap

Date:

14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Benhur Kachhap

Student ID: 22168494

1 Introduction

The purpose of this document is to explain the implementation process undertaken during this

research project. This document also includes the hardware and software requirements used

during implementation. This configuration manual also contains snippets of the Python code

that was used during the development of the project “Novel Approach in Intrusion

Detection Systems Using Mutual Information-based Gradient Boosting Machine.”

1.1 System Hardware

The system hardware which was used during this research project development was as

follows:

• Processor: AMD Ryzen 5 5625U with Radeon Graphics, 2301 Mhz, 6 Core(s), 12

Logical Processor(s)

• Installed Physical Memory (RAM): 16.0 GB

• Operating System: Microsoft Windows 11 Home Single Language

Version: 10.0.22.621 Build 22621

• GPU: AMD Radeon (TM) Graphics

• Storage: 1TB HDD and 512 SSD

1.2 System Software

• Python ver. 3.9.13 [MSC v.1916 64 bit (AMD64)]

• Jupyter Notebook 6.4.12

• Anaconda Navigator 2.3.2

1.3 Software Installation

A detailed description of the steps taken in installing the tools is presented here:

• Python 3.9.13 can be downloaded and installed from

https://www.python.org/ftp/python/3.9.13/python-3.9.13-embed-amd64.zip

https://www.python.org/ftp/python/3.9.13/python-3.9.13-embed-amd64.zip

2

• Visit Anaconda's website to download and install the Anaconda Navigator to have the

Jupyter Notebook application which allows you to create and edit documents that display the

input and output of a Python script.

2 Project Development

The entire project was coded in the Python language with the use of Jupyter Notebook. Some

dataset exploration was performed using Microsoft Excel. The implementation is separated

into Dataset preparation, Feature Selection, Classification models, and Evaluation. This

section of the configuration manual guides you through how to set up the Python

environment for building the ML models and executing them.

2.1 Libraries Utilized

To implement this project, the following Python libraries were used:

• Scikit-Learn: 1.0.2

• Numpy: 1.21.5

• Seaborn: 0.11.2

• Pandas: 1.4.4

• Matplotlib: 3.5.2

• Scipy: 1.9.1

2.2 Dataset Preparation

The project commenced with a large CSV file containing extensive network traffic records.

This dataset, comprising 37412 rows and 34 columns, represented port statistics and their

respective descriptions per port on each switch within the simulated Software-Defined

Network (SDN). These stats help us understand how each part of the network performs

during the simulated data transfer. A crucial aspect of this dataset was the 33rd column,

which labeled each record with a specific type of traffic, such as ‘Normal’, ‘Overflow’,

‘PortScan’, ‘TCP-SYN’, ‘Diversion’, and ‘Blackhole’.

The collected dataset is imported to the Jupyter Notebook and the preliminary preparation of

the dataset is performed which is described below:

3

Figure 1: Code for Importing the Dataset

To load the dataset, the above Python code is created that will ask the user for the path of the

dataset. Once the correct path for the dataset is fed the code will access the dataset.

Figure 2: Imported Dataset Characteristics

4

The names of the attributes and the type of the attribute in the dataset are shown in the above

image which is obtained by using the data.info() function.

The missing values and the duplicates available in the dataset can be determined by using the

below snippet of the code:

Figure 3: Pre-processing/Cleaning of Dataset

The further cleaning of the dataset is done by dropping the duplicates in the dataset using the

code snippet below:

Figure 4: Removing the Duplicates

2.3 Exploratory Data Analysis (EDA)

• Histograms: Histograms are produced by the script to visually represent the

distribution of individual numerical features across columns.

Figure 5: Code for histogram plotting.

5

Figure 6: Histogram plots

• Box Plots: To identify any outliers and provide a more comprehensive view of the

distribution, box graphs are generated for the initial five numerical columns.

Figure 7: Code for histogram plotting

6

Figure 8: Box plots

• Pair Plot: The initial four numerical columns are utilized to generate a pair plot,

which offers valuable insights into the distributions and pairwise relationships.

Figure 9: Code for Pair plotting

7

Figure 10: Pair plots

• Scatter Plots: The relationship between each of the chosen numerical features and

the categorical 'Label' column is visually represented with scatter plots.

Figure 11: Code for Scatter plotting.

8

Figure 12: Scatter plots

• Count Plot: The 'Label' column is accompanied by a count plot that illustrates the

distribution of distinct classes within the dataset presenting the number of instances

for each class in a lucid visual manner.

Figure 13: Code for Count plot

Figure 13: Count plot

9

2.4 Converting String Values to Numerical

For compatibility with machine learning algorithms, all dataset values needed to be

numerical. However, variables like Switch ID, Port Number, and is_valid were in string

format. A Python script was developed to convert these strings into numerical values. Each

subset underwent this conversion process.

2.5 Splitting and Categorization of the Dataset

The first significant task was to segment the dataset based on the target and independent

variables in the dataset. Data is split into 80% training and 20% testing.

Figure 14: Data Preparation

10

2.6 Feature Selection

Mutual Information, a statistical measure, is used to gauge the dependency of one variable on

another. This approach helps in pinpointing the features that have the most significant impact

on the target variable.

Implementation: The Python code uses the mutual_info_classif function from sklearn to

calculate mutual information scores for features in the training set. These scores are then

sorted to highlight the top features.

Figure 5: Feature Selection using Mutual Information

Figure 7: Code to showcase top MI features in a box plot.

2.7 Classification Models

An assortment of classification models, including Gradient Boosting Classifier, Random

Forest Classifier, KNN Neighbours, and Gaussian Naive Bayes is investigated. Adopting a

diversified approach enables a thorough comprehension of which models exhibit optimal

performance for the given dataset.

11

Implementation: The provided code illustrates the sequential steps involved in setting up a

Gradient Boosting Classifier, training it using the given dataset, and preparing it to generate

predictions.

Figure 6: Classification Models

2.8 Evaluation

The models are assessed in terms of their predictive accuracy and their ability to accurately

classify the various classifications present in the dataset.

Implementation: Using the accuracy_score and classification_report provided by

sklearn.metrics, the evaluation is carried out. These functions furnish comprehensive

performance metrics and insights regarding the accuracy of the model across multiple classes.

12

Figure 7: Code for evaluation of Models

Figure 8: Code for evaluation of all the Models without MI feature selection

Figure 8: Confusion matrices of Default & Tuned GBM (without MI)

13

Figure 9: Code for evaluation of all the Models with MI feature selection

Figure 10: Confusion matrices of Default & Tuned GBM (with MI)

2.9 Perform paired t-tests on the obtained performance metrics.

The code performs paired t-tests to assess the significance of the observed improvements

with and without MI feature selection.

14

Figure 11: Code for paired t-test

2.10 Comparison

The code compares four different ML classification methods to the MIGBM model and

shows the evaluation metrics along with the comparison.

Implementation 1: This code iterates through different models and prints their

corresponding accuracy scores. It compares the default accuracy scores with the tuned

(possibly optimized or adjusted) accuracy scores for each model, providing a side-by-side

comparison for evaluation purposes including other performance metrics also.

15

Figure 9: Code for displaying all model's performance metrics.

Figure 10: Performance evaluation results (without MI)

16

Figure 10: Performance evaluation results (with MI)

Implementation 2: This code generates a comparative bar plot displaying the accuracy

scores of different machine-learning models.

Figure 10: Comparison using bar plot.

17

2.11 Additional Functionality

This code provides additional functionality to evaluate any model and feature selection

combination of your choice for faster results and evaluation.

Figure 11: Additional code to run the model combination of your choice.

References

Python release python 3.9.13 (2023) Python.org. Available at:

https://www.python.org/downloads/release/python-3913/ (Accessed: 01 December 2023).

Installing on windows# (2023) Installing on Windows - Anaconda documentation. Available

at: https://docs.anaconda.com/free/anaconda/install/windows/ (Accessed: 01 December

2023).

Python - P-value (no date) Online Tutorials, Courses, and eBooks Library. Available at:

https://www.tutorialspoint.com/python_data_science/python_p_value.htm (Accessed: 06

December 2023).

