

HexaCha: A Lightweight Hybrid

Encryption Model for Password and

Message Protection

MSc Research Project

MSc Cybersecurity

Aryan Ingale

Student ID: x22178511

School of Computing

National College of Ireland

Supervisor: Rohit Verma

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Aryan Sahebrao Ingale

Student ID:

x22178511

Programme:

MSc in Cybersecurity

Year:

2023-24

Module:

MSc Research Project

Supervisor:

Rohit Verma

Submission Due

Date:

15th December 2023

Project Title:

HexaCha: A Lightweight Hybrid Encryption Model for Password and

Message Protection

Word Count: 6907

Page Count: 22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Aryan Sahebrao Ingale

Date:

14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

HexaCha: A Lightweight Hybrid Encryption Model

for Password and Message Protection

Aryan Ingale

x22178511

Abstract

The purpose of this study is to investigate the integration and performance

assessment of the Hybrid combination of Honey Encryption and ChaCha20 naming

“HexaCha” encryption within a Flask-based web application framework. The study’s

goal is to determine how effective these algorithms are in strengthening data security and

discouraging illegal access. It studies the throughput and execution times of HexaCha

Encryption across various data sizes via systematic testing, considering encryption and

decryption speeds in proportion to data size and then comparing it to prior studies of

AES Encryption which is today’s Industry Standard for data encryption. The paper dives

into the avalanche effect in cryptography and the system’s potential to deceive unwanted

access attempts, delivering convincing outputs for wrong password inputs, and

highlighting the importance of Honey Encryption in enhancing security by creating both

true and decoy passwords. This finding highlights HexaCha’s ability to achieve quicker

execution rates and effectively process a wide range of data volumes. This study shows

that the HexaCha which is a Hybrid encryption algorithm, is superior in terms of security

comparatively with industry leading algorithm.

Keywords: Hybrid Encryption, ChaCha20, HexaCha

1 Introduction

1.1 Background

With the growth of encryption methods targeted at protecting sensitive information, the

landscape of data security within information related services has seen major advances. The

honey encryption innovation (Win et al., 2018) is the design of the distribution-transforming

encoder (DTE). Encryption systems such as the Advanced Encryption Standard (AES) and

the ChaCha algorithm have emerged as major challengers in data transport and storage

security in prior studies. AES, a symmetric encryption standard, has gained popularity due to

its strong security features, but ChaCha, a stream cypher, has gained popularity due to its

lightweight design and efficient performance. The dynamic nature of cyber threats, on the

other hand, needs ongoing study and evaluation of encryption solutions to maintain adequate

security against unauthorised access and data breaches. Furthermore, the use of Honey

Encryption, which creates dummy passwords in addition to genuine ones, is a viable option

for enhancing security measures (Jaeger et al., 2016). The essence of this research is

combining the lightweight nature of ChaCha algorithm and securing properties of Honey

encryption to create an efficient Hybrid encryption for devices with low computational power

such as IOT devices, smart homes etc. to secure any stored or transmitted data from un-

2

authorized access while understanding the complexities, performance, and comparative

capabilities of leading encryption method with developed Hybrid algorithm. This research

will investigate the performance, efficiency, and applicability of HexaCha algorithm, to

provide significant insights into improving data security in resource limited environments.

1.2 Aim of the study

The goal of this research is to develop and thoroughly evaluate by comparing the

performance of the developed hybrid encryption of ChaCha20 and Honey which is

“HexaCha” Encryption with the industry leading encryption algorithm “AES”, with a focus

on assessing throughput, execution times, and efficiency across a wide range of data sizes.

The study’s objectives are to investigate the impact of varying data sizes on the encryption

and decryption processes of both algorithms, and to examine the security of the hybrid model

by calculating the avalanche effect on decryption outputs, finally we will use comparative

analysis on both the algorithms to understand their respective pros and cons and to conclude

which algorithm would be best suited for low resource environments and will follow the

following question for the complete research.

How does HexaCha compare with AES in low resource environments?

Furthermore, the study aims to evaluate the system’s capacity to deceive unauthorized

access attempts by producing false outputs for wrong password inputs and generate alerts for

such attempts. This research intends to give useful insights into the efficiency and

dependability of HexaCha in securing sensitive data in current security contexts by

understanding their comparative strengths, shortcomings, and practical applications within

data security.

1.3 Research Objectives

The research objectives of this report are:

1. Develop Algorithm: To develop HexaCha and AES-Honey Encryption models using

Python and deploy them on a flask-based web-application.

2. Analyse Throughput and Execution Times: To compare and assess the throughput

and execution times of HexaCha encryption algorithms across different data sizes.

3. Investigate Avalanche Effect: Examine the effect of minor changes in input data on

the HexaCha encryption decryption output.

4. Comparative Analysis: To contrast the advantages and disadvantages of HexaCha

over AES, with a focus on their provided data security and execution efficiency.

1.4 Research Gaps

The restricted breadth of comparative studies comparing the performance details of

Honey and ChaCha encryption algorithms working in a hybrid environment within practical

application frameworks is one significant gap. There may be a collection of substantial

comparison assessments that completely evaluate these algorithms in terms of throughput,

execution durations, and efficiency over a wide range of data sizes and real-world scenarios

in the existing literature. This gap prevents a comprehensive knowledge of their applicability

3

and limits in various settings such as online applications, IOT devices, smart vehicles and

many more. Furthermore, while the use of Honey Encryption improves security by

generating decoy passwords, the literature may under investigate its effectiveness in deterring

unauthorised access attempts or its adaptability to emerging cyber threats while also

analysing its performance usage while generating random seeds and messages from a huge

dictionary of words. In-depth examinations of Honey Encryption’s optimization or

refinement procedures may be lacking in the research, limiting its full potential for improving

security measures in low computational devices. Furthermore, while the current study focuses

largely on encryption technique in a web application and sets a foot in a direction of

additional study of these hybrid models, the broader usefulness of these algorithms in diverse

digital domains such as IoT ecosystems, cloud computing, or network security may go

unexplored.

2 Literature Review

2.1 Honey Encryption

Honey encryption is a cryptographic method for securing data in which false also

known as “honey” information is generated in the event of an invalid decryption attempt. The

word honey is often used in computer security to refer to decoys. This approach attempts to

make it difficult for attackers to distinguish between correct and incorrect decryption results

while performing a brute force attack (Juels and Ristenpart, 2014). Honeywords have been

proposed as a method of protecting passwords (Burgess, 2017). In computer security, the

term honey refers to a fake resource designed to deceive or lure an attacker (Noorunnisa and

Afreen, 2016). Using a wrong key in classical encryption usually results in complete

gibberish or random output. Honey encryption, on the other hand, uses a different technique.

When an incorrect key is used to decrypt data, plausible looking but inaccurate information is

output that appears to be genuine rather than pure gibberish. This deceptive output,

sometimes referred to as “honey” data, can fool attackers into thinking they have successfully

decrypted the information when they have received fake data or decoys.

2.2 Hybrid Models

In a rapidly evolving communication technology landscape, (Raj et al., 2020) pioneered

a Hybrid cryptographic method to improve data exchange security. Their method combined

Rivest Cipher 5 (RC5) for encryption and decryption with Honey Encryption (HE),

addressing the problem of secret key exchange in symmetric cryptography. (Bangera et al.,

2020) offered a unique solution to fundamental data security problems in digital

communication by combining Homomorphic Encryption (HE) and Honey Encryption (HE) to

protect data confidentiality and user authentication from brute force attacks on decryption

keys. (Prabhu et al., 2021) focused on the vital requirement for comprehensive security inside

Medical Imaging Systems, emphasising the protection of sensitive patient information. On

the cloud computing front, (Dutta et al., 2023) recognised the vulnerabilities of data

transmitted over the internet and consolidated various encryption techniques to fortify data

privacy and authentication, leveraging Advanced Encryption Standard (AES), proxy re-

encryption, Honey encryption, and N-th degree Truncated Polynomial Ring Unit (NTRU).

(Jain et al., 2022) aimed to enhance password protection systems against rising cyber threats,

4

proposing a combination of Honey encryption (HE) and Twofish encryption to decrease

eavesdropping risks provided by compromised cryptographic keys. The use of Honey

Encryption, which injects bogus but believable data into encrypted messages to obscure

illegal access attempts, is a common thread across this research.

Study

(Year)

Focus Area Encryption

Techniques Used

Key Objectives Main Challenges

Addressed

Raj et al.

(2020)

Data Exchange

Security

RC5, Honey

Encryption (HE)

Bolster data exchange

security

Secret key exchange in

symmetric

cryptography

Bangera et

al. (2020)

Digital

Communication

Security

Homomorphic

Encryption (HE),

HE

Fortify data

confidentiality, user

authentication

Brute force attacks on

decryption keys

Prabhu et

al. (2021)

Medical Imaging

System Security

- Robust security for

medical data

Protection of sensitive

patient details

Dutta et al.

(2023)

Cloud Computing

Data Security

AES, proxy re-

encryption, HE,

NTRU

Enhance data privacy,

authentication

Vulnerabilities of data

transmitted over the

internet

Jain et al.

(2022)

Password Protection

System Security

Twofish, Honey

Encryption (HE)

Strengthen password

security, mitigate

interception risks

Risks associated with

compromised

cryptographic keys

Table 2.1: Literature Review on Hybrid Models

2.3 ChaCha algorithm

In recent years, the explosion in data quantities across computer networks has prompted

creative techniques to protect and manage this increasing amount of data, driven by internet

use, smart gadgets, and broad online applications. Several researchers have proposed novel

cryptographic algorithms to solve the issues given by growing data quantities and

complexities. (Mahdi et al., 2021) proposed the Super ChaCha stream cypher to improve IoT

data security by increasing resistance to cryptanalysis without sacrificing performance.

(Rajaprakash et al., 2020) employed the RBJ25 method to handle big data volumes in web

applications, leveraging matrix operations to address efficiency difficulties inherent in large

datasets. Similarly, (Raichandran et al., 2020) attempted to improve the security of the

ChaCha stream cypher family by utilising prime number analysis and quadratic equations to

increase security without losing encryption performance. (Jain et al., 2022) took a different

approach to securing Cyber-Physical Systems (CPS), proposing an access control mechanism

combining authentication, encryption, and access control for robust data protection within

CPS environments, and (Jaishanker et al., (2021) introduced the RBJ20 algorithm, employing

layered matrix operations to address the difficulties and challenges of data transferred over

networks, focusing on encryption and protection in large-scale data storage.

Author

(Year)

Purpose Key Features Strengths Weaknesses Proposed

Algo/Approach

Mahdi et al.

(2021)

Enhance

IoT data

security

Improved

ChaCha variant

Increased

resistance to

cryptanalysis

Potential

trade-off

between

security and

speed

ChaCha

Rajaprakash Address RBJ25 Managing Efficiency ChaCha

5

et al. (2020) data

volume in

web apps

algorithm with

matrix

operations

massive data

volumes,

security

challenges in

large datasets

Raichandran

et al. (2020)

Enhance

ChaCha

stream

cipher

family

Prime number

analysis,

quadratic

equations

Improved

security

without

compromising

speed

Trade-offs

between

encryption

speed and

security

ChaCha

Jain et al.

(2022)

Secure CPS

data and

access

control

Authentication,

encryption,

access control

Robust

security for

CPS data

Balancing

efficiency

and security

ChaCha

Jaishanker

et al. (2021)

Address

data

complexity

in networks

RBJ20

algorithm with

layered matrix

operations

Innovative

approach for

complex data

protection

Lack of

specific

result

assessment

ChaCha

Table 2.2: Comparative analysis of ChaCha

Along with these, there are several other authors who have worked on ChaCha, such as

(Shobana et al., 2020) who investigated the ChaCha family design, stressing the encryption

speed of ChaCha20 variations and noting ChaCha20’s problem in choosing speed above data

security. To counteract this, they developed the RB22 algorithm, which focuses on column

operations, secret key multiplication, and perfect number swapping. (Aggarwal et al., 2023)

focused on improving encryption efficiency for Twitter data, offering the S-RSB-23

encryption scheme, which required converting ASCII to hexadecimal numbers via cell

pairing and swapping. (Jaichandaran et al., 2023) attempted to improve security in healthcare

data analysis by proposing the ES-BR22-001 approach, which prioritised data security and

performance via key determination, sparse matrix use, and paired values manipulation.

(Zahoor and Kaur, 2021) addressed IoT security problems by employing the current network

security approaches of ChaCha, with the goal of fulfilling important security aspects while

navigating obstacles linked to the limits of IoT. (Basha et al., 2022) concentrated on securing

health-related data for predictive analysis, proposing the BR22-01 method, which included

secret key determination, matrix manipulations, and enhanced security measures to support

predictive analysis while dealing with adoption complexities and potential computational

demands.

Author &

Year

Purpose Key

Features

Strengths Weaknesses Proposed

Algorithm/Approach

Shobana et

al., 2020

Evaluate

ChaCha

family

design and

propose

improvement

ChaCha20

variants

comparison,

Encryption

speed focus

High

encryption

speed,

Variants

comparison

Limited focus

on data

security,

Algorithm bias

towards speed

RB22 Algorithm:

Column operations,

Secret key

multiplication, Swap

perfect numbers

Aggarwal et

al., 2023

Enhance

encryption

efficiency

for Twitter

data

S-RSB-23

encryption

technique,

ASCII to

hexadecimal

conversion

Improved

encryption

throughput

Lack of

dependable

cryptographic

techniques,

Limited context

applicability

S-RSB-23 Encryption

Technique: Cell

pairing, Hexadecimal

transformation

6

Jaichandaran

et al., 2023

Strengthen

security in

healthcare

data analysis

ES-BR22-

001 method,

Data

security and

performance

focus

Improved

security,

Comparative

performance

Complexity of

method

implementation,

Integration

challenges

ES-BR22-001

Method: Key

determination, Sparse

matrix utilization,

Paired values

manipulation

Zahoor and

Kaur, 2021

Address

security

concerns in

IoT

technology

Leveraging

existing

network

security

techniques

for IoT

Essential

security

facets

addressed

Adaptation

challenges,

Unique IoT

constraints

Utilizing Network

Security Techniques

for IoT

Basha et al.,

2022

Secure

health-

related data

for

predictive

analysis

BR22-01

method,

Security

enhancement

in healthcare

data

Augmented

security

measures,

Predictive

analysis

support

Complexity in

adoption,

Potential

computational

demands

BR22-01 Method:

Secret key

determination, Matrix

manipulations,

Enhanced security

measures

Table 2.3: Comparative analysis of ChaCha and other Encryption Approaches

The studies highlighted in the literature review mostly focus on the performance of

ChaCha20 in lightweight environments and the use of honey encryption can be helpful in

mitigation of any MITM attacks or brute force attacks, since smaller devices tend to have a

limited storage capacity and computing power, combining Honey Encryption along with

already efficient ChaCha20 could be extremely beneficial in terms of efficiency as well as

securing the stored and transmitted data from unauthorized access.

3 Research Methodology

The study builds upon existing literature, using it as a basis for evaluating the HexaCha

encryption model as its primary objective. The methodology involves employing the Plan,

Design, Code, Test, and approach procedures at each stage to construct a secure model. This

research delves into the workings of Honey encryption with ChaCha20 and finally a

comparative analysis is conducted between HexaCha and a hybrid encryption of AES and

Honey algorithm to assess computational time, security, and effectiveness between the

algorithms.

3.1 Technique for Generating Random Honeywords

Honey Encryption is an excellent protection method against password assaults,

particularly brute force efforts, with the goal of protecting systems from unwanted access. Its

major goal is to generate honeywords, which are fake credentials used to detect and thwart

brute-force attacks. These honeywords help to strengthen the security architecture by

misleading potential attackers who are seeking to understand legitimate passwords.

Honeywords work by inserting bogus credentials alongside legitimate passwords into the

system. These misleading passwords are generated using specific honeyword creation

algorithms. The goal is to obscure the attacker’s assurance about the validity of passwords,

reducing the value of stolen credentials and confusing hackers trying illegal access.

7

The honeyword production procedure begins with the input of a password and a

message, followed by the selection of a random seed. This seed acts as a link between two

dictionaries: passwords and seeds, and seeds and messages. Honeywords are created via

mathematical manipulations and adjustments, sometimes known as password tweaking or

tailing, which results in the formation of honeywords alongside genuine passwords. These

honeywords, when integrated into the system, function as bogus passwords, strategically

boosting the system’s resistance against unwanted access attempts and therefore augmenting

the overall security posture.

3.2 ChaCha20 Encryption

ChaCha20 encryption is a well-known cryptographic technique known for its durability

and effectiveness in data security. This symmetric encryption technique uses stream cypher

principles to secure the confidentiality and integrity of information during transmission or

storage. One of ChaCha20’s primary features is its ability to produce a keystream of pseudo-

random integers using an encryption key and a unique nonce (number used once) (De Santis,

Schauer and Sigl, 2017). This keystream is then merged with plaintext via a simple XOR

operation to encrypt the data. Notably, the ChaCha20 design provides a high level of security

against a variety of attacks, including differential and linear cryptanalysis. Because of the

algorithm’s versatility, it can handle a variety of key lengths and nonces, ensuring

compatibility across a wide range of security protocols and applications. Furthermore, its

computational efficiency across a broad range of platforms, including both hardware and

software implementations, leads to its extensive use in protecting communications, data

transfers, and storage systems.

ChaCha20 is frequently combined with the Poly1305 authenticator to produce the

ChaCha20-Poly1305 architecture, which offers encryption as well as message authentication

by generating a 16-bit hash for message block verification prior to the decryption function.

This combination provides a strong deterrent to illegal access and data alteration, protecting

not just secrecy but also integrity and authenticity. In practice, ChaCha20 encryption

improves data security across a wide range of sectors, from securing communication channels

in networking protocols like TLS 1.2 (Transport Layer Security) to safeguarding sensitive

data in storage devices and assuring privacy in various software applications.

Figure 3.1. ChaCha Encryption/Decryption Flow by (McLaren et al., 2019)

8

4 Design

This section will discuss the design specifications of HexaCha, and the algorithms

developed around those designs. This development phase employs a design technique

centered on developing a user-friendly strategy for producing honey words, with an emphasis

on simplicity and usability. The addition of Deterministic Threshold Encoding (DTE) is

crucial to this approach (Juels and Ristenpart, 2014). The suggested method accomplishes

two goals: it secures passwords with ChaCha20 encryption, and it provides security against

illegal access by the generation of honey words. Furthermore, honey encryption is used to

harden communications, especially protecting them against brute force assaults. This study

also aims for a comparison analysis, examining the effectiveness of honey encryption when

combined with AES, which is an industry leader in encryption standards, and comparing it

with HexaCha. The research aims to discern the strengths and weaknesses of each approach

in safeguarding sensitive information against potential threats by contrasting the use of honey

encryption and by calculation of avalanche effect alongside performance matrices such as

execution time and throughput, with these distinct cryptographic algorithms, thereby

contributing to an understanding of their respective security and performance capabilities.

4.1 Algorithms

• Proposed Algorithm: AES and Honey Encryption

1. Start

2. The user inputs an encryption password.

3. The user inputs a secret message.

4. User input password and messages are mapped together.

5. A dictionary containing manipulated passwords (Honey Words) is generated which

are similar to user input password.

6. The honey words are mapped with messages from a hardcoded dictionary of secret

messages (in this program, these messages are U.S. states).

7. AES Encryption with padding is done on the user input password-message pair as

well as on the honeywords-message pairs.

8. Encrypted Data is stored together with the “honey data”.

9. User enters a decryption password to view the message.

10. A try/catch block is used to search for passwords in honey words, if the decrypted

password exists in the dictionary of honey words it will raise an alarm and show a

fake message and if the decrypted password is not found in the dictionary of honey

words and does not match the correct user password an “Password not found” error is

showed.

11. If the condition matches with the input password, then it will show the real message.

12. Evaluation of Algorithm using Avalanche Effect via entered Avalanche Password.

13. Stop

9

• Proposed Algorithm: HexaCha Encryption

1. Start

2. The user inputs an encryption password.

3. The user inputs a secret message.

4. User input password and messages are mapped together.

5. A dictionary containing manipulated passwords (Honey Words) is generated which

are similar to user input password.

6. The honey words are mapped with messages from a hardcoded dictionary of secret

messages (in this program, these messages are U.S. states).

7. Poly1305-ChaCha10 Encryption is done on the user input password-message pair as

well as on the honeywords-message pairs.

8. Encrypted Data is stored together with the “honey data”.

9. User enters a decryption password to view the message.

10. A try/catch block is used to search for passwords in honey words, if the decrypted

password exists in the dictionary of honey words it will raise an alarm and show a

fake message and if the decrypted password is not found in the dictionary of honey

words and does not match the correct user password an “Password not found” error is

showed.

11. If the condition matches with the input password, then it will show the real message.

12. Evaluation of Algorithm using Avalanche Effect via Avalanche Password.

13. Stop

5 Implementation
The implementation phase is discussed in this section, following were the system

configuration on which HexaCha was developed and deployed on:

Specification Description

Processor Intel ® Core ™ i5-CPU@ 1.60GHz

 Operating System Windows 11

RAM 8.00 GB

System Type 64-bit operating system, x64-based processor

The programming language utilized in this project is Python 3.0, while Visual Studio

Code served as the primary code editor. The primary python script has multiple classes

defined for each hybrid encryption and respective Flask routes to move user input data to and

from the backend script and acting as the entry point, coordinating the execution by invoking

functionalities from these segregated classes.

10

5.1 HexaCha Encryption

Figure 5.1.1: HexaCha Algorithm flow

The diagram (Figure 5.1.1) shows the general flow of HexaCha’s implementation

where the user passed message and password is used to generate honeywords and encryption.

The password the user gives in the first step is mapped with the original message and then

honey words are generated which are like the original password entered by the user and these

honey words are mapped with fake messages and are linked to an alert system. So, if an

adversary tries brute forcing the password to gain the original message and enters one of the

honeywords while doing so the algorithm sends back the mapped fake message which in our

case is the seed also while sending back an attack alert to the user or the system admin. We

have used a similar mechanism for AES and Honey Hybrid for comparative analysis.

Figure 5.1.2: Program Output (HexaCha)

Initially the user will enter an encryption password and message to safeguard it (Figure

5.1.2), and then honey words are generated using honey encryption, e.g. HELLO, hello263,

HELLO0275 are some of the honeywords of the original passwords “hello”. Once the honey

words are generated, they are mapped to their respective seed i.e. message and are stored in

11

the backend after performing ChaCha20 encryption, as the user enters a correct password for

decryption the original message is displayed by the algorithm. Similar implementation was

done for AES and Honey encryption.

As the secret message (Figure 5.1.2) displays the wrong message as the output, when an

erroneous password is supplied for decryption and it matches with any of the honey words,

this notice appears, indicating a discrepancy between the input and the system’s stored

passwords. If this is a brute force attack by any attacker, then they will receive a wrong

message as the output in this case “California” which is displayed instead of the original

message which was “this is a message in AES” also, an incident will be reported to the admin

or the user regarding the password use. On the other hand, if the decryption password doesn’t

match any of the honey words or the original password then an error message “Password not

found” is shown as output.

Figure 5.1.2: Fake Message as output

5.2 Honey Encryption

The primary factor of honey encryption is the generation of honey words and mapping

them to seeds which are fake messages.

Figure 5.2.1 Working of Honey Encryption

The “honeyencryption” function defined in the python script, implements this honey

encryption scheme, creating a secure mapping of passwords to ciphertexts (Figure 5.2.1), It

initializes two dictionaries for mapping passwords to seeds and seeds to messages,

respectively. The true seed is a randomly selected integer, and a list of U.S. state

abbreviations is used as potential messages. The function then generates multiple honey

words by manipulating the input password and mapping them to incrementally derived seeds,

each linked to a different state name which would be the fake messages. The function

culminates by shuffling the honey words, obfuscating the true password among decoys. This

approach enhances security by complicating the differentiation between the actual password

and honey words for an attacker.

12

6 Evaluation

6.1 Analysis of HexaCha

In this section we will investigate the performance and security analysis of the

developed HexaCha algorithm.

6.1.1 Performance Analysis

Figure 6.1: Graph of the decryption and encryption time of Chacha

This data in Figure 6.1 demonstrates the link between password size (measured in

bytes) and the required time for HexaCha algorithm encryption and decryption operations.

The graph shows that while decryption time remains relatively stable and low across all

password sizes, the encryption time remains stable until the password size reaches 256 bytes,

after which then increases sharply. This suggests that the HexaCha Encryption algorithm may

become significantly slower to encrypt as the password size increases beyond a certain point,

while decryption time is less affected by password size, furthermore the following formulae

will be used for additional calculations:

 Total execution time = Encryption Time + Decryption Time

 Throughput = Password Size in MB / Total time for execution in seconds

The following results were obtained from the calculations, which will be essential for

comparative analysis.

Size

(bytes) Size (MB)

Encryption

Time (ms)

Decryption

Time(ms)

Total time for

Execution (ms)

Total Time for

Execution (s) Throughput

16 0.000016 0.000998974 0.001028538 0.002027512 2.027511597 0.078914468

32 0.000032 0.001010656 0.001013994 0.002024651 2.024650574 0.158051964

48 0.000048 0.001000643 0.000998974 0.001999617 1.999616623 0.240046014

64 0.000064 0.00100255 0.000999451 0.002002001 2.002000809 0.319680191

96 0.000096 0.001001358 0.00104475 0.002046108 2.046108246 0.469183388

128 0.000128 0.000998259 0.000999689 0.001997948 1.997947693 0.640657413

256 0.000256 0.001006603 0.000999212 0.002005816 2.005815506 1.276288867

548 0.000548 0.002002954 0.001038074 0.003041029 3.041028976 1.802021632

1080 0.00108 0.002997637 0.001000881 0.003998518 3.99851799 2.701000727
Table 6.1: Shows the throughput values of HexaCha.

13

6.1.2 Security Analysis

Plain Text (Password)

Size

(bytes) Changed Plaintext

Avalanche

Effect

1234Abcd!@#$5678 16 1234Abcd!@#$5679 51.50%

1234Abcd!@#$Efgh5678!@#$ 25 1234Abcd!@#$Efgh5678!@#! 45.60%

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)12342 38

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()12341 52.57%

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#22 46

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#23 50.74%

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#$Efgh5678213 56

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#$Efgh5678214 45.08%

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#$Efgh5678Ijkl!@#$%&*

()123432eawd 76

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#$Efgh5678Ijkl!@#$

%&*()123432eawe 45.77%

Table 6.2: Avalanche Effect of HexaCha

The Avalanche Effect is illustrated in Table 6.2 in the context of encryption, showing

how little changes in the plaintext input result in huge changes in the cipher text output. The

‘Plain Text (Password)’ column displays the original passwords, whereas the ‘Size (bytes)’

column displays the data sizes in bytes. The ‘Plaintext Changed’ column displays revisions

made to the original password, highlighting minor changes (alphabets in bold font) where we

have made sure to change only one byte of the original password. The ‘Avalanche Effect’

column calculates the proportion of change caused by the alterations based on the differences

in the resultant cipher texts. HexaCha has a strong Avalanche Effect, hovering around 50%,

which indicates even a single byte change in the password results in a major change in

ciphertexts.

6.2 Analysis of AES and Honey Encryption

6.2.1 Performance Analysis

mailto:1234Abcd!@#$5678
mailto:1234Abcd!@#$5679
mailto:1234Abcd!@#$Efgh5678!@#$
mailto:1234Abcd!@#$Efgh5678!@#!
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()12342
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()12342
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()12341
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()12341
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#22
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#22
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#23
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#23
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678213
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678213
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678214
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678214
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawd
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawd
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawd
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawe
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawe
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawe

14

Figure 6.2: Graph of the decryption and encryption time of AES

This graph in Figure 6.2 depicts the link between different data byte sizes and the

required time for encryption and decryption using the AES method. Overall, both lines

exhibit fluctuations across the password sizes, with no clear trend of increase or decrease as

password size changes. The encryption and decryption times for both algorithms appear

relatively close, with occasional crosses, suggesting that for AES and Honey Encryption, the

time it takes to encrypt, or decrypt does not significantly differ as the password size changes

within the observed range. The graph indicates that both encryption and decryption processes

for these algorithms are relatively stable and efficient across the given password sizes, and

similarly did for HexaCha we have calculated Total Execution times and Throughput for

AES.

Size

(bytes) Size (MB)

Encryption

Time (ms)

Decryption

Time(ms)

Total time for

Execution (ms)

Total Time for

Execution (s) Throughput

16 0.000016 0.001027346 0.001163721 0.002191067 2.191066742 0.073023791

32 0.000032 0.00100565 0.001002312 0.002007961 2.007961273 0.159365623

48 0.000048 0.000999212 0.001001835 0.002001047 2.001047134 0.23987441

64 0.000064 0.000953436 0.001041651 0.001995087 1.99508667 0.320788069

96 0.000096 0.001012802 0.001000643 0.002013445 2.013444901 0.476794771

128 0.000128 0.000998497 0.000999451 0.001997948 1.997947693 0.640657413

256 0.000256 0.00100255 0.001008272 0.002010822 1.008272171 2.538996983

548 0.000548 0.001174688 0.001000881 0.00217557 2.175569534 2.518880649

1080 0.00108 0.000999928 0.00103116 0.002031088 2.031087875 5.317347482

Table 6.3: Shows the throughput values of AES.

6.2.2 Security Analysis

Plain Text (Password)

Size

(bytes) Changed Plaintext

Avalanche

Effect

1234Abcd!@#$5678 16 1234Abcd!@#$5679 23.89%

1234Abcd!@#$Efgh5678!@#$ 25 1234Abcd!@#$Efgh5678!@#! 44.37%

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)12342 38

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()12341 48.45%

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#22 46

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#23 52.29%

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#$Efgh5678213 56

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#$Efgh5678214 11.78%

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#$Efgh5678Ijkl!@#$%&*

()123432eawd 76

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#$Efgh5678Ijkl!@#$

%&*()123432eawe 55.36%

Table 6.4: Avalanche Effect of AES.

Similarly, as illustrated in Table 6.2, The above table (Table 6.4) depicts the Avalanche

Effect in AES encryption, demonstrating how little changes in plaintext inputs result in

significant changes in the encrypted output. Similarly, changes to different passwords

resulted in varied degrees of variation in the encrypted output. However, the observations

mailto:1234Abcd!@#$5678
mailto:1234Abcd!@#$5679
mailto:1234Abcd!@#$Efgh5678!@#$
mailto:1234Abcd!@#$Efgh5678!@#!
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()12342
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()12342
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()12341
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()12341
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#22
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#22
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#23
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#23
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678213
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678213
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678214
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678214
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawd
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawd
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawd
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawe
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawe
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawe

15

depict a comparatively lower avalanche effect for smaller sized passwords and a gradual

increase as the byte size increases, this shows AES gives similar looking cipher text, almost

80% similarity between them, when the sizes are smaller, but the effect becomes noticeable

once the byte size starts increasing.

6.3 Comparative Analysis of HexaCha and AES

The graph in figure 6.3 depicts a comparison between HexaCha and AES encryption

times.

Figure 6.3: Graph of the encryption time of HexaCha and AES

The graph in Figure 6.4 depicts a comparison between HexaCha and AES decryption.

Variation in execution time when password length changed. By combining Honey Encryption

with ChaCha20, this study developed HexaCha, a hybrid encryption technique. We observed

that the combination of Honey Encryption with ChaCha20 exceeds the rest in terms of

security and performance after comparing it to other hybrid encryption schemes such as “AES

plus Honey”.

The graph (Figure 6.5) illustrates the throughput performance of AES and HexaCha

encryption algorithms across various password sizes, which are depicted on the x-axis

ranging from 16 to 1080 bytes. For both algorithms, the throughput appears to increase as the

password size increases. The AES algorithm shows a more gradual and consistent increase

throughout the range of password sizes. In contrast, the HexaCha throughput remains

relatively stable up to 256 bytes, after which it exhibits a substantial increase, particularly

from 548 to 1080 bytes.

16

Figure 6.4: Graph of the Decryption time of HexaCha and AES

Figure 6.5: Graph of the Throughput of HexaCha and AES

In general, a higher throughput means the algorithm is consuming lower power. The

overall trend suggests that larger password sizes may lead to higher throughput for these

encryption algorithms, with AES showing a more pronounced growth at higher password

sizes compared to HexaCha, meaning AES consumes lesser power as compared to HexaCha

when processing larger sized bytes meaning both the algorithms can be preferable when

processing lower sizes data but AES seems beneficial when working on larger data sizes.

17

Figure 6.6: Graph of the Avalanche Effect of HexaCha and AES

The above graph (Figure 6.6), illustrates and compares the Avalanche Effect of

HexaCha and AES, can be approached by considering the underlying principles of the

Avalanche Effect and how they apply to both encryption algorithms, using the data from

Tables 6.2 and 6.4 as additional aids.

Avalanche Effect in Cryptography: The Avalanche Effect is a desirable property in

cryptography, where a small change in the input (e.g., a single bit) should cause a significant

and unpredictable change in the output. This makes the encryption algorithm more secure

against differential cryptanalysis, as it obscures the relationship between the plaintext and the

ciphertext (Burgess, 2017).

In this analysis, It is observed that HexaCha has a steady observation at around 45-50%

meaning that a single bit change between passwords results in approximately 50% difference

in ciphertexts which is a cascading difference and the same cannot be said for AES and

Honey encryption as the curve behaves erratically and showing extremely low readings of

11%, HexaCha outperforms AES and Honey hybrid for some degree in terms of constant

avalanche effects and is secure for practical uses while being efficient.

6.4 Discussion

In this chapter, we compared HexaCha and AES encryption algorithms across various

performance metrics. While HexaCha maintains stable encryption and decryption times up to

a 256-byte password size, it experiences a significant slowdown in encryption beyond this

point. AES, on the other hand, shows minor fluctuations without a clear trend relating to

password size. Throughput analysis indicates AES's gradual performance increase across

password sizes, whereas HexaCha’s throughput surges dramatically after the 548-byte mark.

Additionally, HexaCha consistently demonstrates a stronger Avalanche Effect, suggesting

enhanced security through better sensitivity to password changes. Overall, HexaCha shows

potential advantages in security features, while AES displays steady performance, presenting

a trade-off between security and efficiency. HexaCha would be a valid choice if the

application is on a lightweight system or device, as the throughput data shows AES and

HexaCha performs similarly at smaller data ranges while HexaCha provided better security

overall. The use of HexaCha in IOT or similar devices will be a preferable choice as it

provides better security and is lightweight and efficient at processing smaller data sizes and

securing it from brute-force attacks.

18

7 Conclusion and Future Work

7.1 Conclusions

This study helps to understand the performance and security differences between the

two algorithms, HexaCha and AES as they performed similarly in terms of performance

while processing smaller data sizes but an increase in password size resulted in a substantial

rise in execution time and resource utilization of both the algorithms where HexaCha ended

up being less efficient. On the other hand, HexaCha outperformed AES in terms of stable and

predictable security with higher and constant Avalanche Scores while processing smaller

password sizes and AES barely catching up with the avalanche score at the higher password

sizes. This gives the understanding that HexaCha performs like AES in terms of performance

while processing smaller size data but offers way better security by a better avalanche score,

making it a suitable option for devices or systems which process sensitive data and have a

smaller computational power such as POS machines, IOT authenticator devices etc. which

usually process smaller but sensitive data sizes.

7.2 Limitations

The study recognises many limitations that may have an impact on the breadth and

generalizability of the findings. One significant limitation is the range of data sizes

investigated. The study concentrated on a specific range of data sizes for analysing the

performance of the Honey and ChaCha20 encryption algorithms within the web application

framework. This narrow focus may limit the study’s results’ application to a larger range of

data changes found in real-world circumstances. As a result, while the findings provide

insights into algorithmic effectiveness across certain data sizes, extrapolation to various

datasets may need more analysis and confirmation also in the complete evaluation process the

complete memory used by the algorithm was not calculated which is one of the vital

resources for any application and any low resource environment. Furthermore, development

and evaluation of encryption algorithms in a web-based platform cannot completely prove its

efficiency in IOT or other hardware-based devices so additional research and evaluation on

different hardware can be beneficial.

7.3 Future Works

To confirm and extend the current findings, future research efforts should include a more

extensive examination of data volumes and real-world scenarios. Investigating the practical

implementations of these encryption algorithms in various applications, as well as their

adaptability technologies such as IoT and cloud computing, will improve our knowledge of

their applicability. Furthermore, future studies should focus on improving Honey Encryption

approaches and determining their effectiveness against emerging cyber-attacks. Exploring

hybrid encryption methods that incorporate Honey, ChaCha, and other developing algorithms

may provide a more complete approach to data protection in changing digital landscapes.

19

References

McLaren, P., Buchanan, W.J., Russell, G. and Tan, Z., 2019. Deriving ChaCha20 key streams from targeted

memory analysis. Journal of Information Security and Applications, 48, p.102-372.

Jaeger, J., Ristenpart, T. and Tang, Q., 2016. Honey encryption beyond message recovery security.

In Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I 35 (pp.

758-788). Springer Berlin Heidelberg.

Win, T., and Moe, K.S.M., 2018. Protecting private data using improved honey encryption and honeywords

generation algorithm (Doctoral dissertation, MERAL Portal).

Burgess, J., 2017. Honey encryption review. Queen’s University Belfast.

Noorunnisa, N.S. and Afreen, D.K.R., 2016. Review of honey encryption technique. International Journal

of Science and Research (IJSR), 5(2), pp.1683-1686.

Raj, K.V., Ankitha, H., Ankitha, N.G. and Hegde, L.K., 2020, June. Honey encryption based

hybrid cryptographic algorithm: a fusion ensuring enhanced security. In 2020 5th international

conference on communication and electronics systems (ICCES) (pp. 490-494). IEEE.

Bangera, S., Billava, P. and Naik, S., 2020, March. A hybrid encryption approach for secured

authentication and enhancement in confidentiality of data. In 2020 Fourth International

Conference on Computing Methodologies and Communication (ICCMC) (pp. 781-784). IEEE.

Jayahari Prabhu, G., 2021. Multimodal medical imaging security using hybridization of honey

encryption algorithm with binary particle swarm optimization. Turkish Journal of Computer and

Mathematics Education (TURCOMAT), 12(10), pp.3905-3912.

Dutta, A., Bose, R., Roy, S. and Sutradhar, S., 2023. Hybrid Encryption Technique to Enhance

Security of Health Data in Cloud Environment. Archives of Pharmacy Practice, 14(3).

Jain, S., 2022. Honey2Fish-An enhanced hybrid encryption method for password and

messages (Doctoral dissertation, Dublin, National College of Ireland).

Mahdi, M.S., Hassan, N.F. and Abdul-Majeed, G.H., 2021. An improved chacha algorithm for

securing data on IoT devices. SN Applied Sciences, 3(4), p.429.

Rajaprakash, S., Basha, C.B., Muthuselvan, S., Jaisankar, N. and Singh, R.P., 2020, December.

RBJ25 cryptography algorithm for securing big data. In Journal of Physics: Conference

Series (Vol. 1706, No. 1, p. 012146). IOP Publishing.

Jaichandran, R., Shalini, K.S., Leelavathy, S., Rajaguru, J.J. and PRADEEP, K., 2020. Securing

generalized data using RB23 algorithm. Advances in Mathematics: Scientific Journal.

20

Jain, D.K., Mohan, P., Lakshmanna, K. and Nanda, A.K., 2022. Enhanced data privacy in cyber-

physical system using improved Chacha20 algorithm.

Rajaprakash, S., Jaishanker, N., Basha, C.B., Muhuselvan, S., Aswathi, A.B., Jayan, A. and

Sebastian, G., 2021. RBJ20 cryptography algorithm for securing big data communication using

wireless networks. In Intelligent Sustainable Systems: Selected Papers of WorldS4 2021, Volume

2 (pp. 499-507). Singapore: Springer Nature Singapore.

Bagath Basha, C., Rajaprakash, S., Nithya, M., Sunitha, C. and Karthik, K., 2022, March. The

Security Algorithm BR22-01 Used to Secure the COVID’19 Health Data. In International

Conference on Deep Sciences for Computing and Communications (pp. 345-354). Cham:

Springer Nature Switzerland.

Zahoor, A. and Kaur, S., 2021. A review of algorithms for secure data transmission in iot

devices. Data Driven Approach Towards Disruptive Technologies: Proceedings of MIDAS 2020,

pp.83-95.

Rajaprakash, S., Muthuselvan, S., Jaichandaran, R., Sai Nithankumar, M., Sai Rathankumar, M.,

and Gupta, V.K., 2023. The Security Algorithm ES-BR22-001 Used to Secure the Health Data.

In Intelligent Sustainable Systems: Selected Papers of WorldS4 2022, Volume 2 (pp. 549-557).

Singapore: Springer Nature Singapore.

Basha, C.B., Rajaprakash, S., Aggarwal, N., Riyazuddin, M.D., Sirajuddin, M. and Gole, S.B.,

2024. An Innovative Cryptography Safety Algorithm Called S-RSB-23 for Protecting Data Using

Machine Learning Algorithm. International Journal of Intelligent Systems and Applications in

Engineering, 12(2s), pp.503-510.

SHOBANA, R., JAICHANDRAN, R., SRISATHVIK, M., PRAKASH, M.B. and

BHUVANESH, P., RB22 ALGORITHM FOR NEW SECURITY SYSTEM.

De Santis, F., Schauer, A. and Sigl, G. (2017). ChaCha20-Poly1305 Authenticated Encryption for

high-speed Embedded IoT Applications. [online] IEEE Xplore.

doi:https://doi.org/10.23919/DATE.2017.7927078.

Juels, A. and Ristenpart, T. (2014). Honey Encryption: Encryption beyond the Brute-Force

Barrier. IEEE Security & Privacy, 12(4), pp.59–62. doi:https://doi.org/10.1109/msp.2014.67.

