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Abstract 

The purpose of this study is to investigate the integration and performance 

assessment of the Hybrid combination of Honey Encryption and ChaCha20 naming 

“HexaCha” encryption within a Flask-based web application framework. The study’s 

goal is to determine how effective these algorithms are in strengthening data security and 

discouraging illegal access. It studies the throughput and execution times of HexaCha 

Encryption across various data sizes via systematic testing, considering encryption and 

decryption speeds in proportion to data size and then comparing it to prior studies of 

AES Encryption which is today’s Industry Standard for data encryption. The paper dives 

into the avalanche effect in cryptography and the system’s potential to deceive unwanted 

access attempts, delivering convincing outputs for wrong password inputs, and 

highlighting the importance of Honey Encryption in enhancing security by creating both 

true and decoy passwords. This finding highlights HexaCha’s ability to achieve quicker 

execution rates and effectively process a wide range of data volumes. This study shows 

that the HexaCha which is a Hybrid encryption algorithm, is superior in terms of security 

comparatively with industry leading algorithm. 

Keywords: Hybrid Encryption, ChaCha20, HexaCha 

 

1 Introduction 

1.1 Background 

With the growth of encryption methods targeted at protecting sensitive information, the 

landscape of data security within information related services has seen major advances. The 

honey encryption innovation (Win et al., 2018) is the design of the distribution-transforming 

encoder (DTE). Encryption systems such as the Advanced Encryption Standard (AES) and 

the ChaCha algorithm have emerged as major challengers in data transport and storage 

security in prior studies. AES, a symmetric encryption standard, has gained popularity due to 

its strong security features, but ChaCha, a stream cypher, has gained popularity due to its 

lightweight design and efficient performance. The dynamic nature of cyber threats, on the 

other hand, needs ongoing study and evaluation of encryption solutions to maintain adequate 

security against unauthorised access and data breaches. Furthermore, the use of Honey 

Encryption, which creates dummy passwords in addition to genuine ones, is a viable option 

for enhancing security measures (Jaeger et al., 2016). The essence of this research is 

combining the lightweight nature of ChaCha algorithm and securing properties of Honey 

encryption to create an efficient Hybrid encryption for devices with low computational power 

such as IOT devices, smart homes etc. to secure any stored or transmitted data from un-
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authorized access while understanding the complexities, performance, and comparative 

capabilities of leading encryption method with developed Hybrid algorithm. This research 

will investigate the performance, efficiency, and applicability of HexaCha algorithm, to 

provide significant insights into improving data security in resource limited environments. 

 

1.2 Aim of the study  

The goal of this research is to develop and thoroughly evaluate by comparing the 

performance of the developed hybrid encryption of ChaCha20 and Honey which is 

“HexaCha” Encryption with the industry leading encryption algorithm “AES”, with a focus 

on assessing throughput, execution times, and efficiency across a wide range of data sizes. 

The study’s objectives are to investigate the impact of varying data sizes on the encryption 

and decryption processes of both algorithms, and to examine the security of the hybrid model 

by calculating the avalanche effect on decryption outputs, finally we will use comparative 

analysis on both the algorithms to understand their respective pros and cons and to conclude 

which algorithm would be best suited for low resource environments and will follow the 

following question for the complete research. 

How does HexaCha compare with AES in low resource environments? 

Furthermore, the study aims to evaluate the system’s capacity to deceive unauthorized 

access attempts by producing false outputs for wrong password inputs and generate alerts for 

such attempts. This research intends to give useful insights into the efficiency and 

dependability of HexaCha in securing sensitive data in current security contexts by 

understanding their comparative strengths, shortcomings, and practical applications within 

data security. 

1.3 Research Objectives 

The research objectives of this report are: 

1. Develop Algorithm: To develop HexaCha and AES-Honey Encryption models using 

Python and deploy them on a flask-based web-application. 

2. Analyse Throughput and Execution Times: To compare and assess the throughput 

and execution times of HexaCha encryption algorithms across different data sizes. 

3. Investigate Avalanche Effect: Examine the effect of minor changes in input data on 

the HexaCha encryption decryption output. 

4. Comparative Analysis: To contrast the advantages and disadvantages of HexaCha 

over AES, with a focus on their provided data security and execution efficiency. 

 

1.4 Research Gaps 

The restricted breadth of comparative studies comparing the performance details of 

Honey and ChaCha encryption algorithms working in a hybrid environment within practical 

application frameworks is one significant gap. There may be a collection of substantial 

comparison assessments that completely evaluate these algorithms in terms of throughput, 

execution durations, and efficiency over a wide range of data sizes and real-world scenarios 

in the existing literature. This gap prevents a comprehensive knowledge of their applicability 
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and limits in various settings such as online applications, IOT devices, smart vehicles and 

many more. Furthermore, while the use of Honey Encryption improves security by 

generating decoy passwords, the literature may under investigate its effectiveness in deterring 

unauthorised access attempts or its adaptability to emerging cyber threats while also 

analysing its performance usage while generating random seeds and messages from a huge 

dictionary of words. In-depth examinations of Honey Encryption’s optimization or 

refinement procedures may be lacking in the research, limiting its full potential for improving 

security measures in low computational devices. Furthermore, while the current study focuses 

largely on encryption technique in a web application and sets a foot in a direction of 

additional study of these hybrid models, the broader usefulness of these algorithms in diverse 

digital domains such as IoT ecosystems, cloud computing, or network security may go 

unexplored. 

2 Literature Review 

2.1 Honey Encryption 

Honey encryption is a cryptographic method for securing data in which false also 

known as “honey” information is generated in the event of an invalid decryption attempt. The 

word honey is often used in computer security to refer to decoys. This approach attempts to 

make it difficult for attackers to distinguish between correct and incorrect decryption results 

while performing a brute force attack (Juels and Ristenpart, 2014). Honeywords have been 

proposed as a method of protecting passwords (Burgess, 2017). In computer security, the 

term honey refers to a fake resource designed to deceive or lure an attacker (Noorunnisa and 

Afreen, 2016). Using a wrong key in classical encryption usually results in complete 

gibberish or random output. Honey encryption, on the other hand, uses a different technique. 

When an incorrect key is used to decrypt data, plausible looking but inaccurate information is 

output that appears to be genuine rather than pure gibberish. This deceptive output, 

sometimes referred to as “honey” data, can fool attackers into thinking they have successfully 

decrypted the information when they have received fake data or decoys. 

2.2 Hybrid Models 

In a rapidly evolving communication technology landscape, (Raj et al., 2020) pioneered 

a Hybrid cryptographic method to improve data exchange security. Their method combined 

Rivest Cipher 5 (RC5) for encryption and decryption with Honey Encryption (HE), 

addressing the problem of secret key exchange in symmetric cryptography. (Bangera et al., 

2020) offered a unique solution to fundamental data security problems in digital 

communication by combining Homomorphic Encryption (HE) and Honey Encryption (HE) to 

protect data confidentiality and user authentication from brute force attacks on decryption 

keys. (Prabhu et al., 2021) focused on the vital requirement for comprehensive security inside 

Medical Imaging Systems, emphasising the protection of sensitive patient information. On 

the cloud computing front, (Dutta et al., 2023) recognised the vulnerabilities of data 

transmitted over the internet and consolidated various encryption techniques to fortify data 

privacy and authentication, leveraging Advanced Encryption Standard (AES), proxy re-

encryption, Honey encryption, and N-th degree Truncated Polynomial Ring Unit (NTRU). 

(Jain et al., 2022) aimed to enhance password protection systems against rising cyber threats, 
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proposing a combination of Honey encryption (HE) and Twofish encryption to decrease 

eavesdropping risks provided by compromised cryptographic keys. The use of Honey 

Encryption, which injects bogus but believable data into encrypted messages to obscure 

illegal access attempts, is a common thread across this research. 

Study 

(Year) 

Focus Area Encryption 

Techniques Used 

Key Objectives Main Challenges 

Addressed 

Raj et al. 

(2020) 

Data Exchange 

Security 

RC5, Honey 

Encryption (HE) 

Bolster data exchange 

security 

Secret key exchange in 

symmetric 

cryptography 

Bangera et 

al. (2020) 

Digital 

Communication 

Security 

Homomorphic 

Encryption (HE), 

HE 

Fortify data 

confidentiality, user 

authentication 

Brute force attacks on 

decryption keys 

Prabhu et 

al. (2021) 

Medical Imaging 

System Security 

- Robust security for 

medical data 

Protection of sensitive 

patient details 

Dutta et al. 

(2023) 

Cloud Computing 

Data Security 

AES, proxy re-

encryption, HE, 

NTRU 

Enhance data privacy, 

authentication 

Vulnerabilities of data 

transmitted over the 

internet 

Jain et al. 

(2022) 

Password Protection 

System Security 

Twofish, Honey 

Encryption (HE) 

Strengthen password 

security, mitigate 

interception risks 

Risks associated with 

compromised 

cryptographic keys 

Table 2.1: Literature Review on Hybrid Models 

2.3 ChaCha algorithm 

In recent years, the explosion in data quantities across computer networks has prompted 

creative techniques to protect and manage this increasing amount of data, driven by internet 

use, smart gadgets, and broad online applications. Several researchers have proposed novel 

cryptographic algorithms to solve the issues given by growing data quantities and 

complexities. (Mahdi et al., 2021) proposed the Super ChaCha stream cypher to improve IoT 

data security by increasing resistance to cryptanalysis without sacrificing performance. 

(Rajaprakash et al., 2020) employed the RBJ25 method to handle big data volumes in web 

applications, leveraging matrix operations to address efficiency difficulties inherent in large 

datasets. Similarly, (Raichandran et al., 2020) attempted to improve the security of the 

ChaCha stream cypher family by utilising prime number analysis and quadratic equations to 

increase security without losing encryption performance. (Jain et al., 2022) took a different 

approach to securing Cyber-Physical Systems (CPS), proposing an access control mechanism 

combining authentication, encryption, and access control for robust data protection within 

CPS environments, and (Jaishanker et al., (2021) introduced the RBJ20 algorithm, employing 

layered matrix operations to address the difficulties and challenges of data transferred over 

networks, focusing on encryption and protection in large-scale data storage.  

 

Author 

(Year) 

Purpose Key Features Strengths Weaknesses Proposed 

Algo/Approach 

Mahdi et al. 

(2021) 

Enhance 

IoT data 

security 

Improved 

ChaCha variant 

Increased 

resistance to 

cryptanalysis 

Potential 

trade-off 

between 

security and 

speed 

ChaCha  

Rajaprakash Address RBJ25 Managing Efficiency ChaCha  
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et al. (2020) data 

volume in 

web apps 

algorithm with 

matrix 

operations 

massive data 

volumes, 

security 

challenges in 

large datasets 

Raichandran 

et al. (2020) 

Enhance 

ChaCha 

stream 

cipher 

family 

Prime number 

analysis, 

quadratic 

equations 

Improved 

security 

without 

compromising 

speed 

Trade-offs 

between 

encryption 

speed and 

security 

ChaCha  

Jain et al. 

(2022) 

Secure CPS 

data and 

access 

control 

Authentication, 

encryption, 

access control 

Robust 

security for 

CPS data 

Balancing 

efficiency 

and security 

ChaCha  

Jaishanker 

et al. (2021) 

Address 

data 

complexity 

in networks 

RBJ20 

algorithm with 

layered matrix 

operations 

Innovative 

approach for 

complex data 

protection 

Lack of 

specific 

result 

assessment 

ChaCha  

Table 2.2: Comparative analysis of ChaCha  

Along with these, there are several other authors who have worked on ChaCha, such as 

(Shobana et al., 2020) who investigated the ChaCha family design, stressing the encryption 

speed of ChaCha20 variations and noting ChaCha20’s problem in choosing speed above data 

security. To counteract this, they developed the RB22 algorithm, which focuses on column 

operations, secret key multiplication, and perfect number swapping. (Aggarwal et al., 2023) 

focused on improving encryption efficiency for Twitter data, offering the S-RSB-23 

encryption scheme, which required converting ASCII to hexadecimal numbers via cell 

pairing and swapping. (Jaichandaran et al., 2023) attempted to improve security in healthcare 

data analysis by proposing the ES-BR22-001 approach, which prioritised data security and 

performance via key determination, sparse matrix use, and paired values manipulation. 

(Zahoor and Kaur, 2021) addressed IoT security problems by employing the current network 

security approaches of ChaCha, with the goal of fulfilling important security aspects while 

navigating obstacles linked to the limits of IoT. (Basha et al., 2022) concentrated on securing 

health-related data for predictive analysis, proposing the BR22-01 method, which included 

secret key determination, matrix manipulations, and enhanced security measures to support 

predictive analysis while dealing with adoption complexities and potential computational 

demands.  

 

Author & 

Year 

Purpose Key 

Features 

Strengths Weaknesses Proposed 

Algorithm/Approach 

Shobana et 

al., 2020 

Evaluate 

ChaCha 

family 

design and 

propose 

improvement 

ChaCha20 

variants 

comparison, 

Encryption 

speed focus 

High 

encryption 

speed, 

Variants 

comparison 

Limited focus 

on data 

security, 

Algorithm bias 

towards speed 

RB22 Algorithm: 

Column operations, 

Secret key 

multiplication, Swap 

perfect numbers 

Aggarwal et 

al., 2023 

Enhance 

encryption 

efficiency 

for Twitter 

data 

S-RSB-23 

encryption 

technique, 

ASCII to 

hexadecimal 

conversion 

Improved 

encryption 

throughput 

Lack of 

dependable 

cryptographic 

techniques, 

Limited context 

applicability 

S-RSB-23 Encryption 

Technique: Cell 

pairing, Hexadecimal 

transformation 
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Jaichandaran 

et al., 2023 

Strengthen 

security in 

healthcare 

data analysis 

ES-BR22-

001 method, 

Data 

security and 

performance 

focus 

Improved 

security, 

Comparative 

performance 

Complexity of 

method 

implementation, 

Integration 

challenges 

ES-BR22-001 

Method: Key 

determination, Sparse 

matrix utilization, 

Paired values 

manipulation 

Zahoor and 

Kaur, 2021 

Address 

security 

concerns in 

IoT 

technology 

Leveraging 

existing 

network 

security 

techniques 

for IoT 

Essential 

security 

facets 

addressed 

Adaptation 

challenges, 

Unique IoT 

constraints 

Utilizing Network 

Security Techniques 

for IoT 

Basha et al., 

2022 

Secure 

health-

related data 

for 

predictive 

analysis 

BR22-01 

method, 

Security 

enhancement 

in healthcare 

data 

Augmented 

security 

measures, 

Predictive 

analysis 

support 

Complexity in 

adoption, 

Potential 

computational 

demands 

BR22-01 Method: 

Secret key 

determination, Matrix 

manipulations, 

Enhanced security 

measures 

Table 2.3: Comparative analysis of ChaCha and other Encryption Approaches 

 

The studies highlighted in the literature review mostly focus on the performance of 

ChaCha20 in lightweight environments and the use of honey encryption can be helpful in 

mitigation of any MITM attacks or brute force attacks, since smaller devices tend to have a 

limited storage capacity and computing power, combining Honey Encryption along with 

already efficient ChaCha20 could be extremely beneficial in terms of efficiency as well as 

securing the stored and transmitted data from unauthorized access.  

3 Research Methodology 
 

The study builds upon existing literature, using it as a basis for evaluating the HexaCha 

encryption model as its primary objective. The methodology involves employing the Plan, 

Design, Code, Test, and approach procedures at each stage to construct a secure model. This 

research delves into the workings of Honey encryption with ChaCha20 and finally a 

comparative analysis is conducted between HexaCha and a hybrid encryption of AES and 

Honey algorithm to assess computational time, security, and effectiveness between the 

algorithms. 

3.1 Technique for Generating Random Honeywords 

Honey Encryption is an excellent protection method against password assaults, 

particularly brute force efforts, with the goal of protecting systems from unwanted access. Its 

major goal is to generate honeywords, which are fake credentials used to detect and thwart 

brute-force attacks. These honeywords help to strengthen the security architecture by 

misleading potential attackers who are seeking to understand legitimate passwords. 

Honeywords work by inserting bogus credentials alongside legitimate passwords into the 

system. These misleading passwords are generated using specific honeyword creation 

algorithms. The goal is to obscure the attacker’s assurance about the validity of passwords, 

reducing the value of stolen credentials and confusing hackers trying illegal access.  
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The honeyword production procedure begins with the input of a password and a 

message, followed by the selection of a random seed. This seed acts as a link between two 

dictionaries: passwords and seeds, and seeds and messages. Honeywords are created via 

mathematical manipulations and adjustments, sometimes known as password tweaking or 

tailing, which results in the formation of honeywords alongside genuine passwords. These 

honeywords, when integrated into the system, function as bogus passwords, strategically 

boosting the system’s resistance against unwanted access attempts and therefore augmenting 

the overall security posture. 

3.2 ChaCha20 Encryption 

ChaCha20 encryption is a well-known cryptographic technique known for its durability 

and effectiveness in data security. This symmetric encryption technique uses stream cypher 

principles to secure the confidentiality and integrity of information during transmission or 

storage. One of ChaCha20’s primary features is its ability to produce a keystream of pseudo-

random integers using an encryption key and a unique nonce (number used once) (De Santis, 

Schauer and Sigl, 2017). This keystream is then merged with plaintext via a simple XOR 

operation to encrypt the data. Notably, the ChaCha20 design provides a high level of security 

against a variety of attacks, including differential and linear cryptanalysis. Because of the 

algorithm’s versatility, it can handle a variety of key lengths and nonces, ensuring 

compatibility across a wide range of security protocols and applications. Furthermore, its 

computational efficiency across a broad range of platforms, including both hardware and 

software implementations, leads to its extensive use in protecting communications, data 

transfers, and storage systems. 

ChaCha20 is frequently combined with the Poly1305 authenticator to produce the 

ChaCha20-Poly1305 architecture, which offers encryption as well as message authentication 

by generating a 16-bit hash for message block verification prior to the decryption function. 

This combination provides a strong deterrent to illegal access and data alteration, protecting 

not just secrecy but also integrity and authenticity. In practice, ChaCha20 encryption 

improves data security across a wide range of sectors, from securing communication channels 

in networking protocols like TLS 1.2 (Transport Layer Security) to safeguarding sensitive 

data in storage devices and assuring privacy in various software applications. 

 

 

Figure 3.1. ChaCha Encryption/Decryption Flow by (McLaren et al., 2019) 

 



8 

 
 

4 Design  
 

This section will discuss the design specifications of HexaCha, and the algorithms 

developed around those designs. This development phase employs a design technique 

centered on developing a user-friendly strategy for producing honey words, with an emphasis 

on simplicity and usability. The addition of Deterministic Threshold Encoding (DTE) is 

crucial to this approach (Juels and Ristenpart, 2014). The suggested method accomplishes 

two goals: it secures passwords with ChaCha20 encryption, and it provides security against 

illegal access by the generation of honey words. Furthermore, honey encryption is used to 

harden communications, especially protecting them against brute force assaults. This study 

also aims for a comparison analysis, examining the effectiveness of honey encryption when 

combined with AES, which is an industry leader in encryption standards, and comparing it 

with HexaCha. The research aims to discern the strengths and weaknesses of each approach 

in safeguarding sensitive information against potential threats by contrasting the use of honey 

encryption and by calculation of avalanche effect alongside performance matrices such as 

execution time and throughput, with these distinct cryptographic algorithms, thereby 

contributing to an understanding of their respective security and performance capabilities. 

4.1 Algorithms 

• Proposed Algorithm: AES and Honey Encryption 

1. Start 

2. The user inputs an encryption password. 

3. The user inputs a secret message. 

4. User input password and messages are mapped together. 

5. A dictionary containing manipulated passwords (Honey Words) is generated which 

are similar to user input password. 

6. The honey words are mapped with messages from a hardcoded dictionary of secret 

messages (in this program, these messages are U.S. states). 

7. AES Encryption with padding is done on the user input password-message pair as 

well as on the honeywords-message pairs. 

8. Encrypted Data is stored together with the “honey data”. 

9. User enters a decryption password to view the message. 

10. A try/catch block is used to search for passwords in honey words, if the decrypted 

password exists in the dictionary of honey words it will raise an alarm and show a 

fake message and if the decrypted password is not found in the dictionary of honey 

words and does not match the correct user password an “Password not found” error is 

showed. 

11. If the condition matches with the input password, then it will show the real message.  

12. Evaluation of Algorithm using Avalanche Effect via entered Avalanche Password. 

13. Stop 
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• Proposed Algorithm: HexaCha Encryption 

1. Start 

2. The user inputs an encryption password. 

3. The user inputs a secret message. 

4. User input password and messages are mapped together. 

5. A dictionary containing manipulated passwords (Honey Words) is generated which 

are similar to user input password. 

6. The honey words are mapped with messages from a hardcoded dictionary of secret 

messages (in this program, these messages are U.S. states). 

7. Poly1305-ChaCha10 Encryption is done on the user input password-message pair as 

well as on the honeywords-message pairs. 

8. Encrypted Data is stored together with the “honey data”. 

9. User enters a decryption password to view the message. 

10. A try/catch block is used to search for passwords in honey words, if the decrypted 

password exists in the dictionary of honey words it will raise an alarm and show a 

fake message and if the decrypted password is not found in the dictionary of honey 

words and does not match the correct user password an “Password not found” error is 

showed. 

11. If the condition matches with the input password, then it will show the real message.  

12. Evaluation of Algorithm using Avalanche Effect via Avalanche Password. 

13. Stop 

 

5 Implementation  
The implementation phase is discussed in this section, following were the system 

configuration on which HexaCha was developed and deployed on: 

Specification Description 

Processor Intel ® Core ™ i5-CPU@ 1.60GHz  

 Operating System Windows 11 

RAM 8.00 GB 

System Type 64-bit operating system, x64-based processor 

The programming language utilized in this project is Python 3.0, while Visual Studio 

Code served as the primary code editor. The primary python script has multiple classes 

defined for each hybrid encryption and respective Flask routes to move user input data to and 

from the backend script and acting as the entry point, coordinating the execution by invoking 

functionalities from these segregated classes. 
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5.1 HexaCha Encryption 

 
Figure 5.1.1: HexaCha Algorithm flow 

The diagram (Figure 5.1.1) shows the general flow of HexaCha’s implementation 

where the user passed message and password is used to generate honeywords and encryption. 

The password the user gives in the first step is mapped with the original message and then 

honey words are generated which are like the original password entered by the user and these 

honey words are mapped with fake messages and are linked to an alert system. So, if an 

adversary tries brute forcing the password to gain the original message and enters one of the 

honeywords while doing so the algorithm sends back the mapped fake message which in our 

case is the seed also while sending back an attack alert to the user or the system admin. We 

have used a similar mechanism for AES and Honey Hybrid for comparative analysis. 

 

 

Figure 5.1.2: Program Output (HexaCha) 

 

Initially the user will enter an encryption password and message to safeguard it (Figure 

5.1.2), and then honey words are generated using honey encryption, e.g. HELLO, hello263, 

HELLO0275 are some of the honeywords of the original passwords “hello”. Once the honey 

words are generated, they are mapped to their respective seed i.e. message and are stored in 
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the backend after performing ChaCha20 encryption, as the user enters a correct password for 

decryption the original message is displayed by the algorithm. Similar implementation was 

done for AES and Honey encryption. 

As the secret message (Figure 5.1.2) displays the wrong message as the output, when an 

erroneous password is supplied for decryption and it matches with any of the honey words, 

this notice appears, indicating a discrepancy between the input and the system’s stored 

passwords. If this is a brute force attack by any attacker, then they will receive a wrong 

message as the output in this case “California” which is displayed instead of the original 

message which was “this is a message in AES” also, an incident will be reported to the admin 

or the user regarding the password use. On the other hand, if the decryption password doesn’t 

match any of the honey words or the original password then an error message “Password not 

found” is shown as output. 

 

Figure 5.1.2: Fake Message as output 

5.2 Honey Encryption 

The primary factor of honey encryption is the generation of honey words and mapping 

them to seeds which are fake messages. 

 
Figure 5.2.1 Working of Honey Encryption 

 

The “honeyencryption” function defined in the python script, implements this honey 

encryption scheme, creating a secure mapping of passwords to ciphertexts (Figure 5.2.1), It 

initializes two dictionaries for mapping passwords to seeds and seeds to messages, 

respectively. The true seed is a randomly selected integer, and a list of U.S. state 

abbreviations is used as potential messages. The function then generates multiple honey 

words by manipulating the input password and mapping them to incrementally derived seeds, 

each linked to a different state name which would be the fake messages. The function 

culminates by shuffling the honey words, obfuscating the true password among decoys. This 

approach enhances security by complicating the differentiation between the actual password 

and honey words for an attacker. 
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6 Evaluation 

6.1 Analysis of HexaCha 

In this section we will investigate the performance and security analysis of the 

developed HexaCha algorithm. 

6.1.1 Performance Analysis 

 

Figure 6.1: Graph of the decryption and encryption time of Chacha 

This data in Figure 6.1 demonstrates the link between password size (measured in 

bytes) and the required time for HexaCha algorithm encryption and decryption operations. 

The graph shows that while decryption time remains relatively stable and low across all 

password sizes, the encryption time remains stable until the password size reaches 256 bytes, 

after which then increases sharply. This suggests that the HexaCha Encryption algorithm may 

become significantly slower to encrypt as the password size increases beyond a certain point, 

while decryption time is less affected by password size, furthermore the following formulae 

will be used for additional calculations: 

 Total execution time = Encryption Time + Decryption Time 

 Throughput = Password Size in MB / Total time for execution in seconds 

The following results were obtained from the calculations, which will be essential for 

comparative analysis. 

Size 

(bytes) Size (MB) 

Encryption 

Time (ms) 

Decryption 

Time(ms) 

Total time for 

Execution (ms) 

Total Time for 

Execution (s) Throughput 

16 0.000016 0.000998974 0.001028538 0.002027512 2.027511597 0.078914468 

32 0.000032 0.001010656 0.001013994 0.002024651 2.024650574 0.158051964 

48 0.000048 0.001000643 0.000998974 0.001999617 1.999616623 0.240046014 

64 0.000064 0.00100255 0.000999451 0.002002001 2.002000809 0.319680191 

96 0.000096 0.001001358 0.00104475 0.002046108 2.046108246 0.469183388 

128 0.000128 0.000998259 0.000999689 0.001997948 1.997947693 0.640657413 

256 0.000256 0.001006603 0.000999212 0.002005816 2.005815506 1.276288867 

548 0.000548 0.002002954 0.001038074 0.003041029 3.041028976 1.802021632 

1080 0.00108 0.002997637 0.001000881 0.003998518 3.99851799 2.701000727 
Table 6.1: Shows the throughput values of HexaCha. 
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6.1.2 Security Analysis 

Plain Text (Password) 

Size 

(bytes) Changed Plaintext 

Avalanche 

Effect 

1234Abcd!@#$5678  16 1234Abcd!@#$5679 51.50% 

1234Abcd!@#$Efgh5678!@#$  25 1234Abcd!@#$Efgh5678!@#!  45.60% 

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)12342 38 

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()12341 52.57% 

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#22 46 

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#23 50.74% 

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#$Efgh5678213  56 

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#$Efgh5678214 45.08% 

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#$Efgh5678Ijkl!@#$%&*

()123432eawd 76 

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#$Efgh5678Ijkl!@#$

%&*()123432eawe 45.77% 

Table 6.2: Avalanche Effect of HexaCha 

 

The Avalanche Effect is illustrated in Table 6.2 in the context of encryption, showing 

how little changes in the plaintext input result in huge changes in the cipher text output. The 

‘Plain Text (Password)’ column displays the original passwords, whereas the ‘Size (bytes)’ 

column displays the data sizes in bytes. The ‘Plaintext Changed’ column displays revisions 

made to the original password, highlighting minor changes (alphabets in bold font) where we 

have made sure to change only one byte of the original password. The ‘Avalanche Effect’ 

column calculates the proportion of change caused by the alterations based on the differences 

in the resultant cipher texts. HexaCha has a strong Avalanche Effect, hovering around 50%, 

which indicates even a single byte change in the password results in a major change in 

ciphertexts.  

6.2 Analysis of AES and Honey Encryption 

6.2.1 Performance Analysis 
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mailto:1234Abcd!@#$5679
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Figure 6.2: Graph of the decryption and encryption time of AES 

This graph in Figure 6.2 depicts the link between different data byte sizes and the 

required time for encryption and decryption using the AES method. Overall, both lines 

exhibit fluctuations across the password sizes, with no clear trend of increase or decrease as 

password size changes. The encryption and decryption times for both algorithms appear 

relatively close, with occasional crosses, suggesting that for AES and Honey Encryption, the 

time it takes to encrypt, or decrypt does not significantly differ as the password size changes 

within the observed range. The graph indicates that both encryption and decryption processes 

for these algorithms are relatively stable and efficient across the given password sizes, and 

similarly did for HexaCha we have calculated Total Execution times and Throughput for 

AES. 

Size 

(bytes) Size (MB) 

Encryption 

Time (ms) 

Decryption 

Time(ms) 

Total time for 

Execution (ms) 

Total Time for 

Execution (s) Throughput 

16 0.000016 0.001027346 0.001163721 0.002191067 2.191066742 0.073023791 

32 0.000032 0.00100565 0.001002312 0.002007961 2.007961273 0.159365623 

48 0.000048 0.000999212 0.001001835 0.002001047 2.001047134 0.23987441 

64 0.000064 0.000953436 0.001041651 0.001995087 1.99508667 0.320788069 

96 0.000096 0.001012802 0.001000643 0.002013445 2.013444901 0.476794771 

128 0.000128 0.000998497 0.000999451 0.001997948 1.997947693 0.640657413 

256 0.000256 0.00100255 0.001008272 0.002010822 1.008272171 2.538996983 

548 0.000548 0.001174688 0.001000881 0.00217557 2.175569534 2.518880649 

1080 0.00108 0.000999928 0.00103116 0.002031088 2.031087875 5.317347482 

Table 6.3: Shows the throughput values of AES. 

6.2.2 Security Analysis 

 

Plain Text (Password) 

Size 

(bytes) Changed Plaintext 

Avalanche 

Effect 

1234Abcd!@#$5678  16 1234Abcd!@#$5679 23.89% 

1234Abcd!@#$Efgh5678!@#$  25 1234Abcd!@#$Efgh5678!@#!  44.37% 

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)12342 38 

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()12341 48.45% 

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#22 46 

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#23 52.29% 

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#$Efgh5678213  56 

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#$Efgh5678214 11.78% 

1234Abcd!@#$Efgh5678Ijkl!@#$%&*(

)1234Abcd!@#$Efgh5678Ijkl!@#$%&*

()123432eawd 76 

1234Abcd!@#$Efgh5678Ijkl!@#$%&

*()1234Abcd!@#$Efgh5678Ijkl!@#$

%&*()123432eawe 55.36% 

Table 6.4: Avalanche Effect of AES. 

 

Similarly, as illustrated in Table 6.2, The above table (Table 6.4) depicts the Avalanche 

Effect in AES encryption, demonstrating how little changes in plaintext inputs result in 

significant changes in the encrypted output. Similarly, changes to different passwords 

resulted in varied degrees of variation in the encrypted output. However, the observations 
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mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678214
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678214
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawd
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawd
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawd
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawe
mailto:1234Abcd!@#$Efgh5678Ijkl!@#$%&*()1234Abcd!@#$Efgh5678Ijkl!@#$%&*()123432eawe
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depict a comparatively lower avalanche effect for smaller sized passwords and a gradual 

increase as the byte size increases, this shows AES gives similar looking cipher text, almost 

80% similarity between them, when the sizes are smaller, but the effect becomes noticeable 

once the byte size starts increasing. 

6.3 Comparative Analysis of HexaCha and AES 

The graph in figure 6.3 depicts a comparison between HexaCha and AES encryption 

times. 

 

Figure 6.3: Graph of the encryption time of HexaCha and AES 

The graph in Figure 6.4 depicts a comparison between HexaCha and AES decryption. 

Variation in execution time when password length changed. By combining Honey Encryption 

with ChaCha20, this study developed HexaCha, a hybrid encryption technique. We observed 

that the combination of Honey Encryption with ChaCha20 exceeds the rest in terms of 

security and performance after comparing it to other hybrid encryption schemes such as “AES 

plus Honey”. 

The graph (Figure 6.5) illustrates the throughput performance of AES and HexaCha 

encryption algorithms across various password sizes, which are depicted on the x-axis 

ranging from 16 to 1080 bytes. For both algorithms, the throughput appears to increase as the 

password size increases. The AES algorithm shows a more gradual and consistent increase 

throughout the range of password sizes. In contrast, the HexaCha throughput remains 

relatively stable up to 256 bytes, after which it exhibits a substantial increase, particularly 

from 548 to 1080 bytes. 
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Figure 6.4: Graph of the Decryption time of HexaCha and AES 

 

 

Figure 6.5: Graph of the Throughput of HexaCha and AES 

In general, a higher throughput means the algorithm is consuming lower power. The 

overall trend suggests that larger password sizes may lead to higher throughput for these 

encryption algorithms, with AES showing a more pronounced growth at higher password 

sizes compared to HexaCha, meaning AES consumes lesser power as compared to HexaCha 

when processing larger sized bytes meaning both the algorithms can be preferable when 

processing lower sizes data but AES seems beneficial when working on larger data sizes. 
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Figure 6.6: Graph of the Avalanche Effect of HexaCha and AES 

The above graph (Figure 6.6), illustrates and compares the Avalanche Effect of 

HexaCha and AES, can be approached by considering the underlying principles of the 

Avalanche Effect and how they apply to both encryption algorithms, using the data from 

Tables 6.2 and 6.4 as additional aids. 

Avalanche Effect in Cryptography: The Avalanche Effect is a desirable property in 

cryptography, where a small change in the input (e.g., a single bit) should cause a significant 

and unpredictable change in the output. This makes the encryption algorithm more secure 

against differential cryptanalysis, as it obscures the relationship between the plaintext and the 

ciphertext (Burgess, 2017). 

In this analysis, It is observed that HexaCha has a steady observation at around 45-50% 

meaning that a single bit change between passwords results in approximately 50% difference 

in ciphertexts which is a cascading difference and the same cannot be said for AES and 

Honey encryption as the curve behaves erratically and showing extremely low readings of 

11%, HexaCha outperforms AES and Honey hybrid for some degree in terms of constant 

avalanche effects and is secure for practical uses while being efficient. 

6.4 Discussion 

In this chapter, we compared HexaCha and AES encryption algorithms across various 

performance metrics. While HexaCha maintains stable encryption and decryption times up to 

a 256-byte password size, it experiences a significant slowdown in encryption beyond this 

point. AES, on the other hand, shows minor fluctuations without a clear trend relating to 

password size. Throughput analysis indicates AES's gradual performance increase across 

password sizes, whereas HexaCha’s throughput surges dramatically after the 548-byte mark. 

Additionally, HexaCha consistently demonstrates a stronger Avalanche Effect, suggesting 

enhanced security through better sensitivity to password changes. Overall, HexaCha shows 

potential advantages in security features, while AES displays steady performance, presenting 

a trade-off between security and efficiency. HexaCha would be a valid choice if the 

application is on a lightweight system or device, as the throughput data shows AES and 

HexaCha performs similarly at smaller data ranges while HexaCha provided better security 

overall. The use of HexaCha in IOT or similar devices will be a preferable choice as it 

provides better security and is lightweight and efficient at processing smaller data sizes and 

securing it from brute-force attacks. 
 



18 

 
 

7 Conclusion and Future Work 

7.1 Conclusions 

This study helps to understand the performance and security differences between the 

two algorithms, HexaCha and AES as they performed similarly in terms of performance 

while processing smaller data sizes but an increase in password size resulted in a substantial 

rise in execution time and resource utilization of both the algorithms where HexaCha ended 

up being less efficient. On the other hand, HexaCha outperformed AES in terms of stable and 

predictable security with higher and constant Avalanche Scores while processing smaller 

password sizes and AES barely catching up with the avalanche score at the higher password 

sizes. This gives the understanding that HexaCha performs like AES in terms of performance 

while processing smaller size data but offers way better security by a better avalanche score, 

making it a suitable option for devices or systems which process sensitive data and have a 

smaller computational power such as POS machines, IOT authenticator devices etc. which 

usually process smaller but sensitive data sizes.  

7.2 Limitations 

The study recognises many limitations that may have an impact on the breadth and 

generalizability of the findings. One significant limitation is the range of data sizes 

investigated. The study concentrated on a specific range of data sizes for analysing the 

performance of the Honey and ChaCha20 encryption algorithms within the web application 

framework. This narrow focus may limit the study’s results’ application to a larger range of 

data changes found in real-world circumstances. As a result, while the findings provide 

insights into algorithmic effectiveness across certain data sizes, extrapolation to various 

datasets may need more analysis and confirmation also in the complete evaluation process the 

complete memory used by the algorithm was not calculated which is one of the vital 

resources for any application and any low resource environment. Furthermore, development 

and evaluation of encryption algorithms in a web-based platform cannot completely prove its 

efficiency in IOT or other hardware-based devices so additional research and evaluation on 

different hardware can be beneficial. 

7.3 Future Works 

To confirm and extend the current findings, future research efforts should include a more 

extensive examination of data volumes and real-world scenarios. Investigating the practical 

implementations of these encryption algorithms in various applications, as well as their 

adaptability technologies such as IoT and cloud computing, will improve our knowledge of 

their applicability. Furthermore, future studies should focus on improving Honey Encryption 

approaches and determining their effectiveness against emerging cyber-attacks. Exploring 

hybrid encryption methods that incorporate Honey, ChaCha, and other developing algorithms 

may provide a more complete approach to data protection in changing digital landscapes. 
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