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Abstract 

The Controller Area Network (CAN) protocol, introduced by Robert BOSCH GmbH in 1983, is a 

critical component of automotive communication and other domains. This thesis aims to improve the 

security of the CAN bus by implementing message authentication mechanisms. With modern vehicles 

containing around 100 Electronic Control Units (ECUs) responsible for critical functions, a reliable 

communication network is essential. The CAN bus includes advantages such as high immunity to 

electrical interference and easy wiring, which makes it perfect for the automotive industry. 

This research addresses the security challenges within the current CAN bus architecture, with a 

specific focus on message authentication, and explores how its implementation can improve the 

overall security. The study includes an extensive literature review of the CAN bus, its security 

challenges, and existing research on message authentication. Additionally, the methodology section 

details the setup of the research environment, including the tools and techniques used to investigate 

the research question. 

The findings demonstrate that while implementing Hash-Based Message Authentication (HMAC) can 

significantly improve the security of the CAN bus communication in vehicles it also has a negative 

impact on the latency of the network. The study also highlights the need for further research into the 

security of the CAN bus, especially with the increasing number of ECUs and the growing 

communication of modern vehicles with back-end servers and other cars. 

1. Introduction 
In 1983 Robert BOSCH GmbH introduced the Controller Area Network (CAN-BUS) protocol, since 

then the protocol has been adopted in a wide range of domains such as domestic appliances, medical 

devices, entertainment, and the area which will be the focus of this thesis automotive communication 

[1]. The CAN is now one of the main in vehicle communication networks that is responsible for the 

communication between the ECUs in the vehicle [2]. Modern vehicles contain in the region of around 

100 ECUs which are responsible for controlling vehicle functions such as engine control, anti-lock 

braking systems and airbag deployment along with a wide range of other functions. [2]. It is vital that 

these systems have a reliable communication network which is why the CAN protocol is used. The 

CAN bus has a number of well-recognised advantages which make it highly suitable for the 

automotive industry these include easy wiring, easily repair errors, ability to self-diagnose and high 

immunity to electrical interference [2].  

 

Despite these advantages of the CAN, the increasing number of ECUs along with the growing 

communication of modern vehicles to back-end servers and other cars leaves the CAN vulnerable to 

cyber-attacks. With the priority of the CAN bus being set on ensuring reliable communication and the 

lack of focus being put on the security of the network it leaves the network vulnerable to cyberattacks  

[3].  Lack of encryption is also something that is concerning on the CAN bus. The CAN bus is 

designed to be a broadcast type network which means the nodes (in this case the ECUs) capture the 

messages relevant to them as they travel through the network. This broadcast data is not encrypted 

which means there is a vulnerability here that could potentially be exploited by malicious actors [3]. 



 
 

Now that modern vehicles are capable of collecting and transmitting the drivers personal information 

it could lead to an invasion of privacy and potential loss of sensitive data to cyber criminals [3] 

 

An in depth study on the security analysis of a modern automobile was conducted by Checkoway and 

Koscher et al. [4] where they investigated a wide arrange of attack surfaces and the challenges faced 

in vehicles found a number of potential security concerns. One of these concerns were the attackers 

obtaining access to the vehicle and being able to gain full control over the vehicle’s brakes. Not only 

this the paper discusses the group being able to systematically control a wide variety of components 

which included, heating, cooling, lights, radio and locks [4]. With these attacks utilising the 

vulnerabilities found in the CAN bus it proves that the security of the CAN bus which includes 

message authentication needs to be taken more seriously going forward especially as vehicles are 

becoming more interconnected.  

 

The research question of this paper is How can the implementation of message authentication 

mechanisms enhance the security of the CAN bus communication in vehicles? To conduct this 

research effectively we will investigate what problems are found in the current CAN bus architecture 

with the primary focus on message authentication and how implementing it in the architecture will 

improve the overall CAN bus security. 

 

The structure of this research paper will be as follows. 

• Literature Review: Here we will conduct an in-depth literature review focusing on 

state-of-the-art research that has been conducted in the field. The literature review 

will start by examining the foundations of the CAN bus, highlighting the security 

challenges faced and examining some of the other research conducted on message 

authentication on the CAN bus. 

• Methodology: This section will detail the set-up of the environment that was used to 

conduct the research on the message authentication. It will include details of the tools 

employed to investigate the research question and highlight the main python scripts 

that were used to carry out the testing of the research. Details of how the testing was 

conducted along with how the HMAC message authentication works is also included 

in this section. 

• Results: Here the findings and results will be interpreted, and meaningful conclusions 

will be drawn up. 

• Conclusion: Will cover emphasise the significance of the work carried out the 

research question will be reviewed and an answer to the question will be provided.  

1. Literature Review 
The Controller Area Network is a hierarchically organised distributed communication system for 

serial data transfer in real time applications. The CAN protocol is built on the Open System 

Interconnection model (OSI) of ISO (International Organisation for Standardisation) containing 

mainly the physical layer and the data link layer of the model [5]. Systems which require real time 

communication and are operating in harsh environments rely on the CAN system as its main 

principals are high availability, reliability, and robustness. These factors along with the high quality 

error detection coupled with the data transfer rate of 1 Mbps for the traditional CAN network make 

the system comfortable for applications that require real time communication [5]. In 2012 Bosch 

released the CAN FD (Flexible data-rate) which boosted the transfer speeds of the CAN up to 5 Mbps 

and is capable of a 64-byte payload compared to the 8 bytes that is the capacity in the traditional 

CAN. [3] The CAN bus was originally developed for automotive purposes but now has many other 

applications in areas such as trains, medical equipment, building automation and household 

appliances. [5]. 



 
 

2.1. Basic Principals of CAN Communication 
CAN by design reduces the amount of cabling that is required in the vehicle as it is a single two-wire 

bus architecture, which is demonstrated in figure 1. As the networks architecture is distributed it 

allows for easy maintenance and reduces the overall system cost. Differential wiring mode is also 

used in the CAN which are represented in the diagram below by CAN H or CAN L, this reduces the 

amount of noise or electrical interference that the network may face [3]. Logically the signals on the 

CAN bus have two states which are controlled by the voltage levels. The dominant logic is ‘0’ and the 

recessive logic is ‘1’. This means that as long as the nodes or ECUs in this case release the logic ‘0’ to 

the bus then the bus signal will always remain ‘0’ which is the dominant logic [3] 

 
Figure 1. A Two-Wire Controller Area Network (CAN) 

 

The CAN protocol provides its communication with the use of frames. These frames have the same 

configurations which contains the following Message Identifier Field, Data Field, Cyclic Redundancy 

Checksum (CRC) and some other control bits. An example of the typical make-up of the traditional 

CAN frame can be seen in figure 2.  below. Each node on the network is listening to all frames which 

are being sent across the network only the frames which are relevant to the specific node will be 

processed by that node. This decision is made with the use of the Message Identifier Field which is 

also the bits of the frame which are used for the arbitration [3] 

 
Figure 2. Traditional Structure of CAN Frame 

 

For arbitration on the bus the Collision Sense Multiple Access/Collision Detection (CSMA/CD) 

medium access method is used along with Non-Destructive Arbitration (NDA) [5]. This works in the 

following way. When Node 1 is attempting to send a message across the CAN network the first check 

is done to confirm that the bus is ‘idle’, this is in relation to the ‘Carrier Sense’ part of the method. If 

this check confirms that the bus is ‘idle’, and no other node wishes to send a message at that time then 

Node 1 becomes the master node and transmits its message. All other nodes that are located on the 

network then switch to receiver mode once the Start of Frame bit (SOF) is sent. [5]. Each node then 

acknowledges the correct reception of the message the message identifier of the CAN Frame is then 

checked and if the message is required by the node then it is stored otherwise the message is discarded 

[5]. ‘Multiple Access’ however is different as it corresponds to the transmission of a message from 

two or more Nodes at the same time and this type of collision is avoided by bitwise arbitration. The 

advanced serial communications protocol carrier sense multiple access/collision detection with non-

destructive arbitration is used to handle bus access. Before sending the bits that make up its message 

identification (MSB), every node checks the bus level. When a node transmits a "recessive" 

identification bit but receives a "dominant" one in return, it forfeits bus arbitration and enters receive 



 
 

mode. This scenario arises when a competing node sends a message with a greater priority and its 

message identifier has a lower binary value, indicating the 'dominant' state or logic 0. [5] 

By doing this, the bus node that has the message with the highest priority wins the bus arbitration 

without wasting time on message repetition. Once the bus returns to the idle state, all other nodes 

attempt to repeat their transmission intention automatically. Transferring messages with the same 

identity from separate nodes is not allowed as doing so could cause the bus arbitration to collapse, 

resulting in errors and collisions. [5] 

2.2. CAN Bus Vulnerabilities 
The attacks in vehicles are normally grouped into four main categories which are Sensor Initiated, 

Infotainment Initiated, Telematics Initiated and Direct Interface Initiated. Within these main 

categories there are two major attack vectors being Wireless Access and Physical Access. Attacks 

utilise these vectors to get access to the internal network of the vehicle. [6] In a report by Rathore et 

al. six types of attacks on CAN bus systems were highlighted these were Bus-off Attacks, Denial of 

Service (DoS), masquerading, injection, eavesdropping and replay attacks [6]. Masquerading attacks 

occur when the attackers gain knowledge of a CAN frame due to the fact that they are not encrypted 

and normally do not support message authentication and can then gain entry to the network [6]. The 

broadcasted CAN messages in the vehicle network may be eavesdropped on by attackers and as a 

result the attackers can infiltrate the CAN network, this type of attack is known as an eavesdropping 

attack [6]. Injection attacks happen when the attackers can gain access to the OBD-II ports in the 

vehicle and send false signals on the bus system. By doing this the attackers may be able to establish a 

connection with then in vehicle network and try to compromise the ECUs [6]. Additionally attackers 

may try to compromise the vehicle’s operation in real time by constantly re-sending legitimate frames 

across the network, this attack is known as a replay attack [6]. Bus-off attacks occur when the 

attackers constantly send bits in the identification field and other fields of the CAN frame. Lastly, 

Denial of Service (DoS) attacks happen when the attackers disrupt the normal processing of the in-

vehicle communication by delivering CAN packets with high priority consistently across the network. 

These high priority packets then effectively block the valid lower priority packets leading to the 

chance of attackers gaining control of the vehicle. [6] 

2.3. Successful CAN Bus Attacks 
In a report by Koscher et al. [4] in 2010 they detailed their success in being able to carry out 

numerous attacks on the CAN bus of a vehicle. In this study the participants took two vehicles of the 

same make and model which were manufactured in 2009 and carried out experiments in different 

environments. The environments included, on the bench, where the hardware was extracted from the 

vehicle and tested on in the lab. Stationary, where the car was placed on jack stands and the 

experiments were carried out. Lastly the experiments were also conducted “On the road” where the 

vehicle was operated in a controlled environment and the experiments were carried out while the 

vehicle was moving. In all states which the vehicle was tested in the participants were able to 

successfully infiltrate the vehicles CA|N network and gain access to the brake control module, engine 

control module, body control module and the instrument cluster. The attack was made possible by 

connecting a laptop to the On-Board Diagnostics II (OBD-II) port of the vehicle. The attackers were 

able to manipulate the fuel levels of the vehicle and the speedometer readings to display falsified data 

on the instrument cluster. They were also successful in being able to disable the engine along with 

being able to manipulate the engine parameters like RPM and timing. The research also details an 

attack on the braking system of the vehicle while it was operational. While the vehicle was travelling 

in a controlled environment at 40MPH the attackers were able to release the brakes and prevent them 

from being activated again with the use of a continuous fuzzing method. [4] 

It can be argued that the fact that the types of attacks mentioned need actual physical access to the 

OBD-II port then it makes the risk of them occurring low therefore not much of a concern. However, 



 
 

research by Woo et al. [7] demonstrated how an attack could be carried out remotely using a 

malicious self-diagnostic smartphone app. This worked by getting the driver/user of the vehicle to 

download a malicious app to monitor or diagnose the vehicle, this then allows the attackers access to 

the vehicle without attaching any device physically. The attackers can then implement a long-range 

attack on the vehicle using the phones internet connectivity. Another remote attack survey was carried 

out in 12 car brands and 21 commercial cars by Valasek and Miller [8]. In each vehicle they identified 

the remote attack surfaces and the difficulties that are faced when trying to compromise the car. In 

their research they detailed that the remote attacks come in three phases, the first stage was 

compromising the ECU that controls the wireless interface. Stage two was injecting messages to 

communicate with the safety-critical ECU. The final stage was gaining control of the ECU and 

forcing it to behave in a malicious manner. The researchers concluded that due to the increasing 

number of cyber-physical systems in the vehicles the number of vulnerabilities will inevitably 

increase, however they cannot verify this practically due to the many different applications in the 

vehicles [8].  

Over the Air (OTA) updates are also a new addition to the automotive industry. This allows the 

vehicle manufacturers to remotely send a patch or an update to the vehicles ECUs. This will now add 

a new attack surface that potential attackers can exploit in the future. There has been no research 

papers or evidence of any attack occurring via this vector yet, but it needs to be considered in the 

future.  

In summary he vulnerability of the modern vehicles to cyber-attacks is a huge concern. The work 

carried out by Koscher et al. demonstrated a variety of attacks that could be carried out when they 

have physical access to the vehicles OBD-II port. This physical access may seem to limit the risk of 

an attack but the research by Woo et al. showed the potential for a remote attack by using a 

smartphone app for diagnoses however the app was malicious. Valasek and Miller demonstrated the 

potential for remote attack surfaces to be exploited in various car brands further showing the increase 

in the challenges faced when safeguarding against cyber threats. This then brings about the work in 

finding the best potential solutions to the problems being faced. 

2.4. Potential Solutions 
As the CAN protocol is a broadcast network then this allows any node access to listen to the messages 

being sent across the network. As CAN systems do not have encryption mechanisms an attacker may 

easily listen to the CAN traffic and be able to understand the messages being sent. [2]. Some 

encryption methods have been proposed to provide confidentiality and prevent attacks. A software-

based approach to providing encryption exists commercially for example Trillium, who are a small 

Japanese based start-up company and have claimed that they have created a CAN bus encryption and 

key management system called SecureCAN. Which can be used for protecting payloads which are 

less than 8 bytes. Trillium claim to be able to use SecureCAN to encrypt CAN messages in real time 

with the use of its ultra-light weight block cipher [9]. However, as ECUs have generally low 

computational power that leads to weak encryption mechanisms this means that software-based 

encryption methods are not favoured as they are not strong enough. Adding encryption can also 

introduce latency to the delivery of CAN messages which for some critical components in the vehicle 

such as the braking system may introduce a delay in the operation which introduces a safety concern. 

We will examine the delay that can be potentially caused by introducing message authentication in the 

methodology section of this report. 

The simplest way to provide security to the CAN bus is to introduce the idea of network segmentation 

by changing the network topology. This is achieved by separating the Critical and non-critical ECUs. 

This means that there would be a separate network topology for each grouping of ECUs therefore the 

messages on the CAN bus would not be an entire broadcast and only ECUs on the critical network 

will receive and monitor broadcast messages on the critical network. The connection for 



 
 

communication between the networks is provided by a gateway ECU. This security measure is found 

on commercial cars already [2]. This method although it provides a better level of security than 

having no network segmentation it is not a solution that will guarantee full CAN network security as 

the gateway ECU can potentially be manipulated and the critical network can be infiltrated. This can 

be done with the use of malicious CAN frames that will contain the ID of a node that belongs to the 

subnet that is being targeted, as the gateway ECU is programmed to pass the relevant IDs to the 

subnetwork then the malicious frame with the correct ID will then be passed into the network. [2]. It 

is good that this type of segregation is being applied to the vehicles that are available commercially 

today as it is a step in the right direction to providing a better overall security to the CAN network in 

vehicles. However, network segmentation alone will not be able to stop attacks on the network and as 

the number of attack surfaces are growing in vehicles as the number of ECUs continue to increase it 

would be best to use network segmentation as one part of the defence along with another method and 

not be used in isolation. 

Currently in the CAN protocol it is not possible to trace a CAN frame to find its source. There is also 

currently no authentication on the CAN which means that the CAN messages being sent across the 

network are not monitored as a result nodes can attach to the network and begin broadcasting 

messages without any authentication. Nodes with malicious intent can therefore inject CAN frames 

which will not be checked for authentication and the other nodes on the network will accept and 

process the message. VeCure was an authentication method which was developed by Wang and 

Sawhney [10]. The authentication method used in this proposal was based on the use of trust groups, 

which means that some nodes/ECUs were selected to be in the high-trust category, these high-trust 

ECUs then share the symmetric secret key. The authentication then works by first sending the data in 

the message immediately followed by an authentication message. The processing of this delay was 

only around 50us (microseconds), this is negligible due to the unnoticeable size of the delay however 

there comes another concern with this authentication method. The concern is that the number of 

messages that are being sent across the network on the high-trust group are doubled as they are 

receiving both the data message followed by the authentication message. This can therefore be 

considered not acceptable due to the limited bandwidth available on the CAN bus [2]. This approach 

does tackle the authentication of the messages and no doubt does provide a solution that is efficient in 

the validation of messages with a delay that can be ignored due to its miniature size. The bandwidth 

issue however may be a concern if the messages could be combined into one then it would be a better 

solution which would remove the need for the sending of the second authentication method. In this 

report we will examine this proposal in some detail and analyse the results of the tests based on the 

latency and the overall security enhancements of the protocol. 

The CAN protocol’s vulnerability showcased by its broadcast type network which lacks encryption 

poses security risks. The encryption solutions mentioned such as SecureCAN face challenges due to 

the computational restrictions of the ECUs. Network segmentation while being a positive security 

measure falls short when trying to provide a complete robust security measure. VeCure’s 

authentication methos used trust groups and symmetric keys this offers a solution but has bandwidth 

concerns. The approach does validate messages but the doubling of messages on the high-trust groups 

may strain the bandwidth of the CAN bus. The next section will go through the environment and the 

potential solution for introducing message authentication to the CAN Network. 

2. Methodology  
 The environment used for the examination of the research question How can the implementation of 

message authentication mechanisms enhance the security of the CAN bus communication in 

vehicles?  Was the following. 

After finding that the topic of this study would be to examine the application of message 

authentication to CAN messages and examine how the security of the message can be improved it was 



 
 

found that a CAN bus was needed to make this possible. There are two ways to set this kind of 

environment up, the first option is to acquire hardware that have physical CAN bus connections 

however these are difficult to acquire as you either need direct access to a vehicle with an OBD-II port 

or to get the physical components from a vehicle manufacturer. This was not possible to achieve as 

this would require special permissions and from the vehicle manufacturer which in the timeframe and 

for this thesis along with the potential costs it was not an option. The second way this experiment 

could be made possible was with the use of virtual CANs (VCAN) and using phyton scripts to 

simulate a CAN environment that was possible to create and send CAN messages across. As this 

could be easily achieved and there are no additional costs or special hardware equipment needed to set 

this environment up then it was the chosen approach. 

Firstly, a virtual machine (VM) was created, and the Ubuntu operating system was installed on it. The 

reason for using Ubuntu was that it can be used in a controlled safe environment that can be installed 

on a VM and kept separate from the host system this reduces the possibility of causing harm to your 

host machine. The Linux operating system which Ubuntu is built upon also has an API called 

SocketCAN which is a free package that can be installed onto the Linux environment which allows 

for the creation of virtual CAN sockets to be which can be configured and then used to simulate a 

realistic CAN network environment. CAN messages then can be configured, controlled, sent, and 

received without the need for hardware components. Although SocketCAN does allow hardware 

components to be connected to the PC and monitored and configured through the API we will be only 

using the virtual CAN environment in this study. Once the environment was decided the virtual 

machine created and the SocketCAN API installed the interfaces for the virtual CAN needed to be 

configured. 

3.1. Configuring Environment 
Each time the Ubuntu VM is launched then by default there is no VCAN interface, this interface is 

needed for the CAN environment and the CAN messages cannot be sent unless a VCAN interface is 

present. The first step was to create a script that can be ran through the terminal of the Ubuntu VM, 

this script can be run while having root privileges to launch the VCAN interface. 

The shell script first gets super user access before then checking if a virtual CAN interface is already 

up and running. If this interface is not running yet, then the shell script will bring the vcan0 interface 

online. Once it is online a simple test can then be done to ensure that the interface is running and 

working as expected. The command “cangen vcan0” can be used to send randomly generated CAN 

messages across the network. By opening a second terminal and running the command “candump 

vcan0” the messages being sent and received will be displayed. If this second terminal displays a 

growing list of randomly generated CAN messages, then the virtual can interface has been set up and 

configured correctly. 

3.2. Necessary CAN Message Python Scripts 
To carry out this experiment it was decided that there would be four main scripts written, these were 

the following: 

1. attack_script.py: This script was written to contain a basic CAN script with no 

authentication or encryption included. The script continuously sends a CAN message with a 

“malicious” payload on the virtual CAN interface. The script will continue to send messages 

every second until the user interrupts the script via a keyboard entry. 

 

2. no_security_receiver.py: This script was created to be a CAN message receiver on the 

virtual CAN interface. The script has no security or authentication so it will log all kinds of 

CAN messages received be it malicious or not with a timestamp and store them in a file in the 

“can_logs” folder.  
 



 
 

3. can_sender_with_auth.py: This script will continuously send authenticated CAN messages 

across the virtual CAN interface while using HMAC for message authentication. The HMAC 

value is calculated and appended to the original data. The messages are sent every one second 

until the user interrupts the script. 
 

4. can_receiver_with_auth.py: This script receives the authenticated CAN messages on the 

VCAN0 interface. The incoming messages are read, and they are verified using the HMAC 

(Hash-based Message Authentication Code) with SHA-256 and then the messages are logged 

along with the authentication result. 
 

These four scripts will be the four main scripts that will be used during the testing of the message 

authentication that was applied to the CAN messages. The scripts that do not have any authentication 

added to them will be used as the baseline for the experiment where the latency and the security of the 

scripts sending the CAN messages will be measured. These values will then be compared with the 

scripts that send and receive the messages that have the message authentication applied. From this we 

will then have a good idea of how the scripts compare against each other and then we can draw our 

conclusions from these results. The message authentication that was used in these scripts was HMAC 

with the hash function used in the scripts being SHA-256 (Secure Hash Algorithm 256-bit). 

 

3.3 HMAC (Hash Based Message Authentication Code) 
HMAC is a specific type of message authentication code that utilises a cryptographic hash function in 

combination with a secret key. The purpose of the HMAC is to provide data integrity and 

authentication. The main properties of HMAC are: 

1. Hash Function: HMAC uses a cryptographic hash function which is denoted as H. The 

choice of the hash function is essential for the security of the HMAC. 

2. Secret Key: The secret key (K) is required, and it is shared between the communicating 

parties. Keeping this secret key confidential is also key to the security. 

3. Message Padding: The message is padded to match the block size of the underlying hash 

function. This padding ensures that the input size aligns with the hash functions requirements. 

4. Double Hashing: The HMAC applies two hash operations to the data which it is encrypting. 

The secret key is used in both hash operations. 

The general hash function algorithm is as follows: 

HMAC (K, M) = H ( ( K ⊕ opad ) ∣∣ H ( ( K ⊕ ipad ) ∣∣ M) ) 

• K is the secret key – It is established between the sender and the receiver. 

• M is the message – This will contain the CAN data that will be sent on the network. 

• ⊕ denotes the XOR operation. 

• ipad is the inner padding – The padded message is XORed with a specific inner padding 

value (denoted as ipad). The result is then hashed using the SHA-256 function. 

• opad is the outer padding – The original key is XORed with a specific outer padding value 

(denoted ad opad). The result is concatenated with the hash output from the inner hashing. 

The concatenated result is hashed using the SHA-256 function. 

• ∣∣ denotes concatenation. [11] 

SHA-256 is a cryptographic hash function that belongs to the SHA-2 family of hash functions. The 

SHA-256 can take an input message and then produce a hash-value of a fixed size, in this case 256 

bits. The main properties of SHA-256 are: 



 
 

1. Fixed output size: The output size of the function will always be 256 bits. 

2. Collison resistance: Computationally it is not possible to find two different inputs that will 

produce the same output. Therefore, avoiding any potential collisions. 

3. Deterministic: The same input to the algorithm will always produce the same output. 

4. One-way Function: It is computationally not possible to reverse the process and obtain the 

input to the algorithm from the output. [12] 

The HMAC and SHA-256 were applied to the scripts can_receiver_with_auth.py and 

can_sender_with_auth.py. This added the message authentication to the scripts, and it was carried 

out in the following manner. Firstly, if we look at the sender script, the first step was to define the 

secret key, in this case for this example a basic secret key of “MyKey” was used and it was defined in 

the type bytes. The next step was the HMAC calculation which was handled by the line of code 

“hmac_value = hmac.new(secret_key, data_to_send, hashlib.sha256).digest()[:4]”. This line of code 

in the script uses the function “hmac.new” along with the SHA-256 hash function and the secret key. 

The output of this is then truncated to the first 4 bytes of the message. There is then a check on the 

message length of the CAN message. There is a comparison done that checks the total message length 

which is the original data + the HMAC which was calculated. This check is done as the maximum 

length of message that be sent on the CAN bus is 8 bytes. Before then sending the CAN message the 

authenticated CAN message needs to be created this is done by concatenating the data to send with 

the calculated HMAC value. The CAN message is then sent using a specific arbitration ID in this case 

‘0x123’ 

The receiver script named can_receiver_with_auth.py, handles the authentication of the received 

CAN messages. It verifies the HMAC of each message using the SHA-256 hash function and the 

shared secret key. After receiving the authenticated CAN message the first step is to calculate the 

received message and the HMAC. The received message is read and the HMAC value is then 

extracted from the last 4 bytes. Then a new HMAC value is calculated for the remaining data which is 

the received message minus the HMAC which was calculated in the sender script. This handling in 

the script is carried out in the code on the following lines: 

received_hmac_value = can_msg.data[-4:] 

calculated_hmac_value = hmac.new(secret_key, can_msg.data[:-4], hashlib.sha256).digest() 

The last step of the CAN receiver script is to carry out the HMAC verification. The script will 

compare the received HMAC from the sender script with the newly calculated HMAC on the receiver 

script. If the message is authentic then these values will match if they do not match the message is 

considered not authentic and the script will log the event.  

In summary, the sender script generates a HMAC value for each message being sent using SHA-256 

and a shared secret key. The receiver script then verifies the authenticity of the received messages by 

comparing the received HMAC with the calculated HMAC. The use of HMAC and SHA-256 ensures 

the integrity and the authenticity of CAN messages in the communication. 

3.4. Testing of Authenticated Scripts. 
To get a baseline for comparing CAN messages including authentication we first needed to see the 

results of latency and security with CAN messages that did not have any authentication techniques 

implemented. Latency is the delay, or the time passed between the sending of the CAN message and 

the reception or the processing of message by its intended recipient. Latency in the CAN 

communication is a critical factor as it influences the responsiveness of the overall system since CAN 

messages are sent in real time. Therefore, along with the handling of the unauthenticated messages 

there will be the two metrics that will be used to judge the overall effectiveness of this message 

authentication method that used in this report.  

The baseline test was conducted using the scripts which did not contain any authentication measures 

these scripts being attack_script.py and no_security_receiver.py. These scripts are configured to 



 
 

both send and receive any type of CAN message without any kind of security built in. By running this 

baseline test we can then measure the latency of the messages as they are being sent across the 

network. As the messages are being sent across the same VCAN network then we can easily agree that 

no factors such as the environment or hardware difference can affect the latency of the messages.  

To test the enhanced security of the messages we will use the sender script attack_script.py and the 

receiver script can_receiver_with_auth.py. The sender script will constantly send the receiver script 

‘malicious’ messages every second until the user stops the script. The receiver script should be able to 

handle these messages accordingly and not allow them to communicate due to the missing 

authentication on the sender script. 

To then test the latency of the authenticated CAN messages we will use the scripts 

can_receiver_with_auth.py and can_sender_with_auth.py the baseline results that were collected 

from the previous scripts will be compared with the results from running the latency test on the scripts 

that contained the authentication handling of the messages. 

4. Results  
The first test was to conduct how effective the authentication management was of the sending of the 

CAN message without authentication to the CAN receiver without authentication. By running the 

attack script and sending it across the CAN network to the CAN receiver with no authentication we 

could see clearly that each message was being logged. Which demonstrates that without any 

authentication measures put in place and due to the broadcast nature of the CAN protocol the CAN 

messages without authentication will always be logged and read by the can receiver without 

authentication.  This is a security concern as it allows for the potential of attack scripts that do not 

contain any authentication and may include malicious content to be passed along the CAN network 

and be received by a node, therefore allowing for the potential to cause harm to the normal 

functionality of the vehicle. 

The second test on the authentication was the used the same attack sender script on the CAN receiver 

with authentication. By sending the attack script to the receiver node that has the authentication 

measures added then the receiver script should not accept these messages due to the lack of the 

HMAC and SHA-256 on the sender script. The result of this was that the receiver script still receives 

the message however after the comparison of the expected HMAC values on the data being sent the 

CAN message is flagged as not authentic. The CAN receiver script (Node) will then discard this 

message and no further action will be taken until a CAN message with the correct and expected 

HMAC value is being received. By running this test and seeing the results we could clearly see and 

demonstrate how by adding authentication measures to the node then it improves the security as only 

authenticated messages will be read and logged. This therefore increases the overall security of the 

CAN network and reduces the risk of falling victim to an attack.  

The final test on the authentication handling of the scripts was the using the CAN message with 

authentication script to send data to the CAN receiver with authentication. Here both scripts have the 

necessary HMAC and Sha-256 included. Therefore, the HMAC comparison can be carried out on the 

sent and received CAN messages and once the same HMAC value was found on both ends then the 

message was labelled as successful. The CAN message can then be delivered to the receiver node and 

the necessary actions be carried out. The result of this test shows that only when the expected HMAC 

values with the correct authentication is received then the message will be successful and logged. By 

adding this authentication to the CAN messages, it protects against scripts like the attack script earlier 

from sending malicious data to a vulnerable node. By stopping these messages when they are first 

received it reduces the attack surface and the potential of disrupting the normal operation of the CAN 

network. 



 
 

The table below details the results of the above tests. Each script was tested against each other and the 

results of whether the message was successful was recorded. From the results table the only way to 

protect fully against the sending or receiving of a malicious CAN message is to have message 

authentication on the CAN at both ends. 

 

 

The next step in the results was to test the latency of the messages being sent and compare the latency 

between the CAN messages that had authentication included and the CAN messages that did not 

include any authentication measures. To conduct this test, we ran the scripts concurrently for one 

minute and logged the results of the latency on both types of CAN messages. This test was conducted 

10 times, and the average latency was then calculated compiling the results from all 10 tests. The 

latency results between the authenticated and the non-authenticated messages were then compared. To 

record these results, we needed to create two separate scripts one to measure the metrics with 

authentication called “metrics_with_auth.py” and one the measure the metrics without 

authentication called “metrics_no_auth.py”. These scripts would constantly measure the CAN 

messages being received on the CAN receiver either with authentication or without authentication and 

then the average latency was then calculated on each run of the test. These results were recorded 10 

times, and the average of the 10 tests latency was calculated. The results from these tests are shown in 

the metrics table below. 

 

The table above shows the results of the latency on each test along with the scripts that were used to 

get the latency results. The smaller table that is shown below is the results table. This takes the results 

that were received over the 10 tests and then calculates the average latency on the messages.  

These results show that the average latency when there was no authentication in the script was 

‘0.000281707 seconds’ this average latency however then grew to an average latency of 

‘0.000437891 seconds’ once the authentication was applied to the message. This represents an 

average increase of ‘0.000156185 seconds’, or in other words it represents approximately a 35.67% 

increase in the latency between the CAN messages without authentication to the CAN messages with 

authentication. Although it can be argued that the increase in latency is so small that the difference 

Sender Script Receiver Script Sender Authentication Receiver Authentication Message Accepted Protected From Attacks

can_sender_with_auth.py can_receiver_with_auth.py ✓ ✓ ✓ ✓

attack_script.py no_security_receiver.py X X ✓ X

attack_script.py can_receiver_with_auth.py X ✓ X X

Test 1 Test 2 Test 3 Test 4 Test 5

Sender Script Receiver Script Latency (seconds) Latency (seconds) Latency (seconds) Latency (seconds) Latency (seconds)

can_sender_with_auth.py can_receiver_with_auth.py 0.000510915 0.000377569 0.000416466 0.000377225 0.000332774

attack_script.py no_security_receiver.py 0.000272133 0.000427481 0.000361685 0.00025535 0.000257285

attack_script.py can_receiver_with_auth.py 0.000521207 0.000438295 0.000363906 0.000315858 0.000311527

Sender Script Receiver Script Test 6 Test 7 Test 8 Test 9 Test 10

can_sender_with_auth.py can_receiver_with_auth.py Latency (seconds) Latency (seconds) Latency (seconds) Latency (seconds) Latency (seconds)

0.000494566 0.000295741 0.000427985 0.000543471 0.000602202

attack_script.py no_security_receiver.py

0.000272004 0.000274904 0.000218528 0.000205461 0.000272235

attack_script.py can_receiver_with_auth.py

0.000309901 0.000328545 0.00028133 0.000353332 0.000446812

Results

Sender Script Receiver Script Average Latency (Seconds)

can_sender_with_auth.py can_receiver_with_auth.py 0.000437891

attack_script.py no_security_receiver.py 0.000281707

attack_script.py can_receiver_with_auth.py 0.000367071



 
 

could be ignored the percentage increase gives a better understanding of how much of an increase this 

is. It also shows how quickly these messages are being sent across the CAN network, the latency is so 

small that to the human eye there seems to be no delay at all when in reality the difference could be 

seen once the metrics scripts were ran. As CAN messages are supposed to be in real time and the 

CAN messages are responsible for sending critical messages such as brake pedal controls, fuel levels, 

warning lights, etc. then this increase could potentially lead to driver safety concerns if a vital CAN 

message is sent. 

5. Conclusion 
The research paper took an in depth look in enhancing the security of the Controller Area Network 

bus communication in vehicles with the implementation of message authentication on the CAN 

messages. The research aimed to address the vulnerabilities and the security challenges that are faced 

by thew CAN bus protocol as now modern vehicles rely on electronic control unites (ECUs) for many 

different functionalities. The literature review provided a comprehensive overview of the CAN 

protocol and explained in detail the areas which the protocol was implemented in. The CAN protocol 

continues to evolve with the introduction of CAN FD (Flexible Data-Rate) which shows the 

increasing demand for the higher transfer speeds and payload capacities as the application of the CAN 

protocol spreads beyond the automotive industry. The literature review also highlighted the main 

reasons why CAN protocol is an ideal fit for the automotive industry this being the robustness, 

reliability, and suitability for real-time communication in harsh environments. 

The methodology section detailed the setup of the experimental environment which explains the use 

of the virtual can s (VCANs) and the python scripts which were created to simulate a working CAN 

environment. Using the Ubuntu operating system along with the SocektCAN API it allowed for the 

creation of a controlled safe environment for conducting the research. This approach also eliminated 

the need for physical CAN bus connections and allowed for the configuration and transmission of 

CAN messages without the need for additional hardware components.  

The focal point of the study was to investigate the message-based authentication on the CAN bus 

Hasb Based Message Authentication (HMAC). The use of baseline tests and vulnerability analysis 

which were conducted using python scripts showed the usefulness and demonstrated the security 

concerns of the CAN bus architecture. 

The findings of the tests which were conducted were analysed and two main points were deducted. 

The first being that by adding the HMAC and SHA-256 message authentication technique to the CAN 

messages then it did increase the overall security. By adding this, only messages that contained the 

correct and matching HMAC values were recorded by the nodes and all other messages were rejected. 

The results showed that only by adding the authentication to both the sender and the receiver scripts 

then the CAN network will be safe from potential attacks. In conclusion for this the CAN protocol 

undoubtedly does become more secure after adding message authentication. However, the latency was 

also measured before and after adding the message authentication. As the CAN network is supposed 

to operate in a “Real-Time” environment the latency in the messages needs to be at an absolute 

minimum. The results of latency were recorded on the network both before and after adding the 

message authentication. The results showed that there was an increase of 0.000156185 seconds on 

average once the message authentication was added, which represents an increase of around 35.67%. 

Although the value in seconds does not represent a large delay in seconds evaluating the increase as a 

percentage gives a bit more insight into how big of an increase this is. As the CAN bus is built on the 

premise of providing real-time high reliability communication between ECUs minimal latency is 

crucial to its operation. As a result, increasing the latency even ever so slightly is detrimental to the 

expected performance of the network. Many applications in the vehicle require real-time 

responsiveness, for example the communication between ECUs for functions like engine control, 

braking, and transmission and having delays in the transmission of these messages can lead to reduced 



 
 

system responsiveness and therefore affect the safety and performance of the vehicle overall. The 

performance of the system also depends on the efficient communication between ECUs, so the latency 

needs to be kept to the bare minimum. Any increase in latency can increase bottlenecks and reduce the 

overall system performance which will affect the user experience and may also cause disruption to the 

normal operation of the system. Therefore, minimal latency is crucial in CAN bus architecture and to 

ensure real-time communication, responsiveness, safety, and overall system performance. Any 

increase in latency can have detrimental effects on functionality and reliability of the system. 

To answer the research question How can the implementation of message authentication 

mechanisms enhance the security of the CAN bus communication in vehicles? We can say the 

following. Adding message authentication measures to the CAN bus protocol with the use of HMAC 

and SHA-256 the security of the CAN bus communication was improved. It protected against non-

authenticated messages and reduced the likeliness of falling victim to an attack. However, the 

introduction of the message authentication also increased the latency which is not a desirable metric to 

increase in the operation of the CAN bus. This increase may diminish the attractiveness of the 

implementation of this solution since the CAN bus us supposed to be a real time network. 

Future work may include introducing a hybrid type solution using both network segmentation and 

message authentication. The vehicle network can be split into two areas time-critical and non-time 

critical. The message authentication can be applied to all non-time critical CAN messages and the 

time critical messages can exist inside their own segmented network. This segmentation and 

application of the message authentication can then lead to a more robust and overall, more effective 

solution to Enhancing CAN Bus Security Using Message Authentication. 
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