ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Academic Internship
MSCCYB1_JAN23B 0

Abdul Basit Dalvi
Student ID: 22134697

School of Computing
National College of Ireland

Supervisor: Mr. Vikas Sahni

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Abdul Basit Dalvi
Student ID: 22134697
Programme: MSCCYB1_JAN23B_O Year: 22-2023
Module: MSc Academic Internship
Lecturer: Mr. Vikas Sahni
Submission Due
Date: 14 Dec, 2023
Project Title: Next-Generation Compliance Support Tool: Leveraging Machine

Learning to Optimize Implementation and Audit Preparedness

Word Count: 2043 (excluding References) Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Abdul Basit Dalvi
Date: 12/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Abdul Basit Dalvi
Student ID; 22134697

1 Introduction

The compliance support tool, a product of extensive academic research outlined in the main
thesis, has been comprehensively documented in this manual. It includes technical
specifications, installation guidelines, and operational instructions for the application.
Insights into the development environment, encompassing hardware and software features,
details on software components and their versions, initial installation steps, and guidelines for
correct operational procedures have been provided in this manual. While the main thesis
delved into the architecture and design phase, this manual has served as a practical guide for
users, ensuring a seamless understanding of the compliance support tool's functionality and
implementation

2 System Configuration

In the subsequent section, a concise overview is provided of the hardware specifications
utilized during the development and testing phases of the compliance support tool.
Additionally, a detailed inventory is presented, cataloging the diverse array of software
tools, frameworks, and solutions strategically employed throughout the application's
development life cycle.

2.1 Hardware and OS Configuration

Below is the hardware and OS configuration of the system used during development of the
tool:

Component Details
Operating System Windows 11 Home Single Language (64-bit)
Processor AMD Ryzen 5 5600H with Radeon Graphics, 6
cores, 12 logical processors
Memory(RAM) 16.0 GB installed RAM
System type x64-based PC

Virtual Memory

Total: 29.8 GB, Available: 15.2 GB

Development Environment

Python virtual environment, Visual Studio Code

2.2 Prerequisites

The tool requirement is very basic and has following prerequisites:

1. Windows OS / Linux OS / Mac OS

Internet Connection

2.
3. Python (Python, n.d.)
4.

Visual Studio Code (Visual Studio Code, n.d.)

2.3 Software Version

e Python

o Version: 3. 11

o Python is a dynamic and versatile high-level programming language which
played a crucial role in the functionality of our application.

o To confirm the Python version installed, users can utilize the terminal or
command prompt. By entering the command:

python --version
it can be verified that Python 3. 11 is successfully installed on the system.
e Visual Studio Code
o Version 1.85

o Provided

2.4 Libraries used

a robust and user-friendly integrated development environment.

Library

Details

CSV Module

The CSV module efficiently handled tabular data through
functionalities to parse CSV data. It facilitated the reading and
writing of CSV files.

Random Module

The standard Python random module generated crucial pseudo-
random numbers for creating random data or making selections.

Faker Library

Employed Faker library offered a wide range of functionalities to
create realistic and randomized data. This enhanced the testing and
development capabilities to handle various scenarios effectively.

Pandas (Python Data
Analysis Library)

A powerful data manipulation tool used to efficiently organize and
process tabular data. The DataFrame structure eased integration with
machine learning workflows.

Scikit-Learn

Scikit-Learn was used for machine learning which incorporated the
DecisionTreeClassifier for building and training decision tree
models. The library's tools contributed to a robust machine learning
pipeline i.e. from development to evaluation and deployment.

3 Project Structure

The project has been divided into two parts. Where one part is related to synthetic data
generation and model building. Whereas the other part is related to the integration of the
build model into the web app using the flask framework of python.

templates
% app
~| generate_data
| model
-| output

=| requirements

15-11-2023 23:41 File folder

15-11-2023 20:39 Python Source File 12 KB
15-11-2023 14:30 Jupyter Source File 4 KB
15-11-2023 14:49 Jupyter Source File 13 KB
15-11-2023 13:44 Comma Separated... 939 KB

15-11-2023 23:42 Text Document 3 KB

The details for each are as follows:
1. generate_data.ipynb: This is the jupyter notebook which includes the code related to
the synthetic data generation as there is no availability of real data and also done the
preprocessing of the random data to make the clear and processed csv file as output.

2

2. model.ipynb: This is the jupyter notebook which includes the data for making the
model for the prediction.

3. output.csv: This is the csv file which has been generated from the
generate_data.ipynb.

4. app.py: This is the entry point of the flask app.

5. requirements.txt: This is the text file which consists of all the packages with their
version to be installed using pip in python to run the web app

6. templates: This is the folder being used by flask app. It contains the views i.e., the
html files which can be seen as views to user.

Steps to Configure and Run the Flask Application

e Download and Install Python 3. 11 : Visit the official Python website (https://www.
python. org/downloads/) to download and install Python 3. 11. Follow the installation
instructions for the operating system.

e On Windows, use the Command Prompt or PowerShell. On macOS and Linux, use
the terminal.

e Create a Virtual Environment: Run the following command to create a virtual
environment named 'venv":

python -m venv

This step isolates your project's dependencies from the global Python environment.

o Activate the virtual environment
o On Windows, activate the virtual environment using:
venv\Scripts\Activate
o On macOS/Linux, use:
source venv/bin/activate
The command prompt or terminal prompt should change to indicate the active virtual
environment.
e Install Required Packages: Run the following command to install the dependencies
listed in the 'requirements. txt' file:
pip install -r requirements. txt
e Set the FLASK APP Environment Variable

o On Windows, use the following command:
set FLASK APP=app. Py
o On macOS/Linux, use:
export FLASK APP=app. Py
This step tells Flask which Python file represents your application.
e Run the Flask Application: Start the Flask development server with the following
command:
flask run
The application should now be running locally. You'll see output indicating the server
address (usually http://127. 0. 0. 1:5000/).
e Access the Application: Open a web browser and navigate to the provided server
address (e. g., http://127. 0. 0. 1:5000/). You should see your Flask application.

5 Source Code Walkthrough

5.1

Data Generation Script (generate_data. py)

This script generates synthetic data for the tool using the Faker library.

5.11

512

513

514

Libraries Used:

import csv: This is being used for creating csv of generated data.

import random: This is being used to create random generated data from given set of
values.

from faker import Faker: This is being used to generate fake data as there is no real
data available.

Data Generation Logic:

It creates a synthetic dataset with details such as company name, employee range,
number of branches, etc. The script utilizes Faker for realistic data generation and
random module for variability.

Output:
The generated data is saved in a CSV file named 'output. csv'.

Coding Steps

Import the required libraries i.e. csv, random and faker.

Set the seed for reproducibility : Sets the seed for the random number generator to
42, ensuring that subsequent random processes will produce the same sequence of
numbers, facilitating reproducibility in the code.

Define the ranges: Defines ranges and lists for various parameters related to a
company's information security, such as company name, employee range, number of
branches, number of network devices, number of workstations, types of information,
processes and frequency of data transfers, cryptographic controls, event logging
mechanisms, and information security events.

Generate CSV data: Generates CSV data for 10,000 rows, where each row represents
information related to a company's security. The data includes company name,
employee count, number of branches, number of network devices, total workstations,
count of workstations with Windows OS, count of workstations with Linux OS, type
of information, frequency of data transfers, cryptographic controls, event logging
mechanisms, and information security events, with values randomly chosen based on
the defined ranges and lists.

Write to CSV file: Writes the generated CSV data (stored in the 'rows' list) to a file
named 'output.csv'. The header, containing the column names, is first written to the
CSV file, followed by the data rows. The file is opened in write mode (‘w') with the
'newline' parameter set to an empty string to ensure proper line endings in the CSV
file. The 'csv.writer' object is used to write the header and rows to the file.

sy
random
faker

fake = Faker()

random.seed(42)

company = ['A", 'B']

employee range = (168,
number_of_branches
number_of_network_devi
number_of workstations = (1, 58)

types_of_information = [2,
cryptographic_controls = [*

event_logging_mechanisms = [*
information_security events = [’

rows = []
range(10008):
total workstations = random.randint(*number_of workstations)
windoi = random.randint(@, total_workstations)
linux_os = total_workstations - windows_os

row = [
random. choice(company),
random.randint(*employee range),
random. randint(*number_of_branches),
random. randint(*number_of_network_devices),
total_workstations,
window S,
linux_os,
random.choice(types_of information),
random. choice(processes_and_frequency of_data_transfers),
random. choice(cryptographic_controls),
random.choice(event_logging mechanisms),
random. choice(information_security events

1

rows. append{row)

print{"csv

Ccsv file generated successfully.

5.2 Machine Learning Model Script (model.py):

This script implements a Decision Tree Classifier using Scikit-Learn to predict the company
based on input parameters.

5.2.1 Libraries Used:

import pandas as pd: This library being used to handle data and also to do
manipulation on the generated data.

from sklearn. model_selection import train_test_split: This is beign used to split
the data into two sets of dataset such as train set and test set.

from sklearn. tree import DecisionTreeClassifier: This is beign used to use
decision tree classifier for the generation of the model using Decision Tree

from sklearn. preprocessing import LabelEncoder: This is being used to convert
the object data type(string data type) into numerical representation to feed the data
into model.

5.2.2

Data Loading and Preprocessing:

The synthetic data generated is loaded into a Pandas DataFrame. Categorical columns are
encoded using LabelEncoder so that it should be feed as numerical data in model.

5.23

Model Training:

A Decision Tree model is created and trained on the data.

5.2.4 Prediction Example:

Example input values are provided, and the trained model is used to predict the company.

5.25

Coding Steps

Import the required libraries.

Load the CSV data into a DataFrame: Uses the pandas library to load the data from
the 'output.csv' file into a DataFrame named 'df', allowing for easy manipulation and
analysis of the tabular data in a structured format.

Convert categorical columns to numerical using Label Encoding: Initializes four
LabelEncoder objects named label encoder_process, label encoder_cryptographic,
label_encoder_event_logging, and label_encoder_information_security. These label
encoders can be used to convert categorical columns in a DataFrame to numerical
values using label encoding,

Separate features (X) and target variable (y): Separates the DataFrame df into features
(X) and the target variable (y). The features include columns such as

‘employee_range', 'number_of branches’, 'number_of network_devices',
'number_of workstations', 'windows_os', ‘'linux_os', ‘'types_of information’,
‘processes_and_frequency of data_transfers’, ‘cryptographic_controls',

‘event_logging_mechanisms', and 'information_security events'. The target variable
(y) is the 'company' column, indicating the company name.

Split the data into training and testing sets: Uses the train_test_split function from
scikit-learn to split the data into training and testing sets. The features (X) and target
variable (y) are split into training sets (X_train and y_train) and testing sets (X_test
and y_test). The parameter test_size=0.2 specifies that 20% of the data will be used
for testing, and random_state=42 sets the seed for reproducibility.

Create a Decision Tree model: Creates a Decision Tree model using the
DecisionTreeClassifier from scikit-learn. The model is then trained on the training
data (X_train and y_train) using the fit method, with random_state=42 setting the seed
for reproducibility.

Make predictions using the trained model: Make predictions using the trained
Decision Tree model (model) on new data.

[ELLER pd
sklearn.model selection train_test split
sklearn.tree DecisionTreeClassifier
sklearn.preprocessing LabelEncoder
sklearn.metrics accuracy_s classification re

df = pd.read csv('output.csv')

label_encoder_process = LabelEncoder()
label_encoder_cryptographic = LabelEncoder()
label_encoder_event_logging = LabelEncoder()
label_encoder_information_security = LabelEncoder()

es_and_frequency_of data_transfe 1}
s'] = label_encoder_cryptographic.fit_transform{df['cryptographic_.
= label encoder event_logging.fit_transform(df[nt_logg

‘number_of_workstations
ata_transfers®,

y = df[ccmpa".-]

X_train, X test, y_train, y_test = train_test split(X, y, test size=8.2, random_state=42)

model = DecisionTreeClassifier(random state-42)
model.fit(X_train, y_train)

new_data = pd.DataFrame({

= ran 3088],

‘numbe| __branches': [3],

* numb _network_devices': [24],

“number_of rkstations®: [25],

‘windows_o: 8],

‘linux_os': [17],

es_of_information’: [2],
_of_data_transfers’: [“week
ptographic cont

ging_mechanisms’: not required’],
ion_: ity nts’: ["not required”

new_data[‘processes_and_frequency_of_data_transfers’'] = label_encoder_process.transform(

new_data[i ncy_of_data_transfers’])
new_data['c R rols"] = label_encoder_cryptographic.transform(

new_data[' cryptographic_controls®])
new_data[‘event_Ii i anisms'] = label_encoder_event_logging.transform(

hanisms"])
nts'] = label_encoder_information_security.transform(
ents'])

prediction = model.predict(new_data)

print(” omp 1", prediction[@])

Predicted Company: B

a = pd.DataFrame(

new_data[’ F fers® label encoder_process.transform(
1
~_cryptographic.transform(
=" 1)
= label encoder_event_logging.transform(

new_data[
new_data[" label_encoder_information_security.transform(

new_data[1

prediction = model.predict(new_data)

print(“Pre =", prediction[@])

Predicted Company: B

5.3 Flask Web Application (app.py)

This script creates a web application using Flask, allowing users to input parameters and
receive control suggestions.

5.3.1 Libraries used

from flask import Flask, render_template, request, redirect, url_for, session:
Here the Flask has been imported to run the app in web, render_template is being used
to display the required view to the use, request is beign used to get and receive the
request, redirect is beign used to redirect the user to certain view after certain
completion of task, url_for is being used to call the route for any particular function of
view.

import os: Here os module has been imported to create the unique secret key of the
flask web app.

5.3.2 Flask Routes
The application has routes for index, controls, and result pages.

5.3.3 Model Integration
The model script is integrated to predict the company based on user inputs.

5.3.4 User Input Handling
User inputs are received through web forms, processed, and used for model prediction.

5.3.5 Session Management

Flask session is utilized to store and pass data between routes.

5.3.6 Coding Steps

e The code is a Python script that utilizes the Flask web framework to create a web
application for predicting and analyzing security controls for companies based on user
input. The application consists of three routes: /' or '/index', '/controls', and '/result'.

e In the 'index' route, user inputs such as company information and security-related
parameters are collected via an HTML form. The input data is then processed using a
pre-trained decision tree classifier. The prediction is stored in the Flask session, and
the user is redirected to the 'controls' route.

e In the 'controls' route, users are prompted to provide additional security controls
based on the predicted company type (‘A' or 'B'). The entered controls are then
redirected to the 'result' route, where the controls and their values are displayed to the
user.

e The code uses the Flask framework to handle web requests, Pandas for data
manipulation, and scikit-learn for machine learning tasks such as label encoding and
decision tree classification.

flask Flask, render_template, request, redirect, url_for, session
0s
pandas pd

sklearn.model_selection train_test split

sklearn.tree DecisionTreeClassifier

sklearn.preprocessing LabelEncoder

app = Flask(_ name__)

app.secret_key = os.urandom(24).hex()
app.jinja_env.auto_reload =
app.config[' TEMPLAT

@app - route()
@app - route(, methods=['GET',
index():

request.method == T':
company_name = request.form[
employees = request.form[
branches = request.form[’
network = request.form['n
workstations = request.form[
windows = request.form[
linux = request.form[
type_i = request.form[
frequency = request.form['f
cryptographic = request.form[
logging = request.form[1
assessing request. form[

df = pd.read_csv('output.csv')
label encoder process = LabelEncoder()
label encoder_cryptographic = LabelEncoder()
label encoder_event_logging = LabelEncoder()
label_encoder_information_security = LabelEncoder()
f_data_transfers'] = label encoder process.fit_transform(
f_data_transfers'])
label encoder cryptographic.fit transform(df[cryptogr

number_of_network_devices', "number_of workstations®,
es_of_information', 'processes_and fr ncy_of_data_transfers’,
V] nt_logging_mechanisms', "information_securi ts']]
y = df[' company
X_train, X_test, y_train, est = train_test_split(X, y, test_size=8.2, random_state=42)
model = DecisionTreeClassifier(random_state=42)
model.fit(X train, y_train)
new_data = pd.DataFrame({
‘employee_range': [employees],
1 branches],
num f_network i "t [network],
number_of_workstations': [workstations],
'windows_os': [windows],
"linux_os': [linux],
s_of_information': [type i],
y_of_data_transfers': [frequency].
cryptographic],
logging],
assessing

y_of_data_transfers’'] = label_encoder_process.transform(
of_data_transfers’])
ptographic_controls'] = label_encoder_cryptographic.transform(

new_data['cryptographic_controls'])
new_data["event_] ing_mechanisms'] = label encoder_event_logging.transform(

new_datal nt_logging mechanisms'])
new_data['information_security_events'] = label_encoder_information_security.transform(

new_data["information_security events'])
prediction = model.predict(new_data)

print(prediction[@])

session['company_name'] = company_name

session["company_prediction’'] = prediction[e]

~eturn redirect(url_for('controls’))
render_template(index.html")

@app.route(’ , methods=["GET", "POST])
def controls():
if request.method == 'POST
controll = request.form[' controll’]
control?2 = request.form['control2’]
control3 = request.form['control3’]
controld = request.form['controld’]
control5 = request.form['control5’]
controlé = request.form[' controle’]
control? = request.form['control7’]
controlg8 = request.form[' controls’]
control9 = request.form['controld’]
controll® = request.
controlll = request.
controll2 = request.
controll3 = request.
controll4 = request.
controll5 = request.
controllé = request.
if session['company prediction'] =
controll? = request.form['contr
controll8 = request.form['controlig’]
controll9 = request.form["controll9’]
if session['company prediction'] == ‘B
control2e = request.form["control2e’]
control2l = request.form["control2l’]
if session[’company prediction'] == ‘A
eturn redirect(url_for('result’,
controlil=controll,
control2=control2,
control3=control3,

ssion[_p
redirect{url_for
controll=controll,
control2=control2,
control3=control3,
control4=control4,
controlS=controls,
controlé=control6,
control7=control?,
control8=controls,
controlg=control9
controlieé=control
controlll=controlll,
controlil2=controli2,

control14=controli4,
controli5=control
controlls=controlil6,
control2@=control2a,
control2l=control21))

render_template(
render_template(’

', method
result():
session[’ p
controll request.ar
contral2 request.ar
control3 = reguest.ar

session[’

controll request.ar
control2 request.args

control3 request.ar

controld request.ar

control5s request.ar

controlé request.ar

control? request.ar

controlg request.args

control9 request.ar

controll® = request.a

controlll request.

controll2 = request

controll3

controll4

controlls request.:

controllbé = request

control2e request

control21l = request.

render_template(’

control1l=int(controll)
control2=int(control2)
control3=int(control3)
controld=int(controld)
control5=int(controls)
controlé=int(control6)
control7=int(control?)
control8=int(control8d)
control9=int(control9)
controlil@=int(controll@)

References

Python. (n.d.). Retrieved from https://www.python.org/downloads/release/python-3110/
Visual Studio Code. (n.d.). Retrieved from https://code.visualstudio.com/download

11

