

"Unmasking Memory Malware: A Comparative Analysis of

Individual Machine Learning and Deep Learning Using Ensemble

Approaches"

MSc Research Project

Programme Name

Samita Ramesh Babu
Student ID: 22132201

School of Computing

National College of Ireland

Supervisor: Evgeniia Jayasekera

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: SAMITA RAMESH BABU

Student ID: 22132201

Programme: MSc Cybersecurity Year: 2023-2024

Module: MSc Research Project

Supervisor: Evgeniia Jayasekera

Submission Due

Date:

31 Jan 2024

Project Title: "Unmasking Memory Malware: A Comparative Analysis of

Individual Machine Learning and Deep Learning using Ensemble

Approaches"

Word Count: 6106 Page Count: 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Samita

Date: 31 Jan 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

"Unmasking Memory Malware: A Comparative

Analysis of Individual Machine Learning and Deep

Learning Using Ensemble Approaches"

Samita Ramesh Babu

22132201

Abstract

Abstract: Obfuscated Malware is malware that hides to avoid detection. Cyber-

attacks are constantly prevailing in recent years even sometimes it is undetected by anti-

virus software. The study involves detecting memory malware using machine and deep

learning models using ensemble methods. The implementation is done by preprocessing

and sampling of data of memory malware detection optimizing the representation of

memory samples for effective analysis. Experiments were performed on a variety of

machine learning algorithms and deep learning method, such as MLP Classifier,

Adaboost, Gaussian Naive Bayes, Bagging classifier, SGD both individually and

combined. Our findings reveal that ensemble methods performed compared to other

models used in this research. Bagging classifier is outperformed individual algorithms by

showing 92% accuracy. Then in combination of models Bagging and GNB showed 89%

accuracy. The performance of these algorithms is evaluated based on metrics such as

accuracy, precision, recall, and F1 score. This research can be guide for cybersecurity

professionals seeking to implement efficient memory malware detection strategies.

Key Words: Obfuscate Malware Memory Malware Analysis, Cybersecurity,

Ensemble Learning, Machine Learning

1 Introduction

Malware has been created to attack, damage, or disable mobile phones, computers, apps, or

systems using a code or script. Memory-based attacks can execute in real time, enabling

hackers to insert malicious code. It exploits zero-day vulnerabilities. Nowadays, Obfuscation

technique makes it difficult to read. There were 470.01 million malwares were detected and

in 2022 around 30 million malwares were detected [2]. Memory analysis data can yield

valuable insights into the behavior and patterns of malicious software. This is a result of the

different traces malware leaves on memory. Because of this, one of the topics that needs to be

researched in malware detection is the memory analysis method.

Encryption: Obfuscators can encrypt the malware code to make it difficult for static analysis

tools to understand. Randomization: Obfuscators can randomize the layout of the malware

code in memory to make it difficult for dynamic analysis tools to trace its execution.

2

Code packing: Obfuscators can pack the malware code into a more compact form, which can

make it more difficult for antivirus scanners to detect.

Control Flow

Jumping: Obfuscators can insert unnecessary jumps into the malware code to make it more

difficult for dynamic analysis tools to follow the execution flow.

Splicing: Obfuscators can splice together different pieces of code to make it more difficult for

static analysis tools to understand the overall logic of the malware. Code injection:

Obfuscators can inject code into the malware at runtime to bypass security checks.

Figure 1: Overview of Possibilities of Obfuscation Memory Malware Techniques

Figure 2: Stages of an Obfuscation Memory Malware Attack

Research Questions

What is the impact of combining diverse machine learning models and deep learning models,

such as MLP, Adaboost, Gaussian Naive Bayes, Bagging, and Stochastic Gradient Boosting,

in a hybrid approach for the detection of memory malware, and how does this approach

compare to individual models and existing methods in terms of accuracy and efficiency?

3

In this research, we aim to detect memory malware analysis using MLP Classifier, Adaboost,

Gaussian Naive Bayes, Bagging classifier, SGD were the five different machine learning and

deep learning techniques. Experimenting with individual machine learning and deep learning

algorithms to understand their standalone performance. Determining the most efficient

algorithm or combination of algorithms of detecting memory malware involves factors such

as accuracy, speed and other evaluation metrics. Additionally, the research seeks to identify

the most accurate algorithm and combination of algorithms for memory malware detection.

Additionally, evaluating the trade-off between accuracy and computational efficiency,

especially within a limited time frame. Contributing to the advancement of memory malware

detection methodologies, considering the evolving threat landscape. MLP, Gaussian Naive

Bayes, and SGD Classifier are individual machine learning algorithms. They might be

simpler and faster, but their performance can depend on the data and the chosen

hyperparameters. Ensemble methods combine multiple base learners to form a stronger

model. They often perform well in practice due to their ability to handle different aspects of

the data. Bagging can reduce variance and improve stability.

The rest of paper is organized as follows. Literature Review are given section 2, a brief

review of Machine and Deep Learning methods and its implications in the memory malware

detection. The survey of all related works is conducted. In section 3, detailed explanations of

machine and deep learning methods used to include preprocessing of data, feature extraction.

In section 4, flowchart of the malware detection, details of framework used. In section 5,

includes the details of Dataset used, training and testing using different algorithms are given.

Evaluation metrics and experiment results are given in section 6.

2 Related Work

In this section a detailed study of ensemble approaches, machine learning and deep learning

approaches from the existing studies is searched using Google Scholar Database. The articles

found were scrutinized based on memory malware using ensemble methods, machine

learning and deep learning,

2.1 Machine Learning Approaches

Vashishtha et al. proposed a model using different voting process. In this research they

converted image files to analyzed. The experiment was based on voting ensembling

techniques.[13] A hybrid model MalHyStack was incorporated with ensemble learning was

proposed by Roy et al. The model detected obfuscated malware. Pearson correlation analysis

has improved accuracy of model a bit more along with reducing the computational time. This

model can still be made more efficient and reliable in future according to the authors [10].

Naeem et al. proposed a deep stacked ensemble by combining with CNN and MLP as output

and input. This model was evaluated using three datasets Dumpware10 dataset, CIC-

4

MalMem2022 and real-world dataset. Windows malware memory dumps [17]. The malware

detection model based on ensemble learning was performed. The model was trained using

minimum features extracted from file. These methods performed well than classification

models but could have used more techniques [18]. In this study, many algorithms were

experimented SVM, KNN and Random Forest for memory malware analysis, the accuracy of

these models were around 98.5% but the false were also high [19]. Khalid et al. proposes a

detection of fileless malware by analyzing features for main memory. The research uses

feature analysis using machine learning. Random Forest Decision Tree, Support Vector

Machine, Logistic Regression, XGBoost, and Gradient Boosting were used to experiment.

VirusShare, AnyRun, PolySwarm, HatchingTriage, and JoESandbox were the five datasets

used. Authors suggest more techniques can be incorporated for further studies [14]. Bruna

conducted a comparative study using two datasets CIC-Evasive-PDFMal2022 and CIC-

MalMem-2022. Random Forest achieved low computational time In the other dataset, was

bigger and computational time was high and yielded around 74% detection rate.SVM

classification and perform using other machine learning to yield better results [9]. A

comprehensive analysis was made by Saad et al. in detecting adversarial malware using

machine learning and also stating that behavioral analysis can detect malware in future [20].

2.2 Deep Learning Approaches

Gombe et al. proposed a model using cRGB_Mem which trains RGB images that is been

generated in memory allocation patterns in CNN. This RGB-CNN model is distinguished

between benign and malware. This model predicts Android malware detection between (R01)

known and (R02) unknown features but the detection accuracies for R01 and R02 are not

perfect. The memory allocation pattern is based in allocation address which may be

inaccurate [1]. The paper proposed binary classification using CIC-MalMem-2022 dataset to

detect malware. This study also provides classification using machine learning and deep

learning in memory analysis using big data approach [2].

Another study proposed memory-based method to detect malwares that reside in the

computer’s memory. CLAHE and wavelet transform were two techniques for feature

extraction. This model displayed accuracy and precision using less training time. Further, this

method can be improved in terms of accuracy by using different feature selection methods

and computation cost [3]. Another paper proposed machine and deep learning approaches to

detect Android attacks. Using CICAndMal2017 dataset and LSTM achieved 99.4% accuracy

using Drebin dataset [4].

Bozkir et. al proposed a method that focused on memory analysis by capturing memory

dumps. The model uses GIST and HOG as image descriptors and used. The UMAP based

manifold learning strategy has made the model even better by improving accuracy by

detecting unknown malware. The results tend to show that transforming memory dumps to

initial images yielded 4096px [5]. Basirah and Sana proposed a rootkit detection model using

memory analysis Using KNN and LSTM algorithm. KNN performed well in less execution

time. Deep Learning models proved to provide 18% more accuracy which is moderate. There

5

were few limitations as the dataset was too small due to which it created overhead and causes

low accuracy [6].

Xu et al. introduced a hardware assisted malware detection framework using two types of

malwares kernel rootkits and memory corruption attacks. They have used function call and

entire program epoch for the detection. By changing the histogram bin size, the entire

program epoch changes but the function call remains resilient. This needs trial and error

check each time to check which limited the automation. Random forest and Logistic

Regression was performed. Although this framework provides 99% detection rate for

memory corruption attacks and 100% detection for kernel rootkits. The methods seem to

overfit the framework [7].

Klaib et al. used memory dump malware using supervised machine learning algorithms such

as KNN. This paper used two scenarios with CIC-MalMem-2022 dataset and correlation

matrix to compare which one was effective [8]. Bruna conducted a comparative study using

two datasets CIC-Evasive-PDFMal2022 and CIC-MalMem-2022. In first dataset, KNN

provides better results in hamming distance. Also tried using oversampling and

undersampling but was not able to improve the results. The drawback author was not able to

balance the dataset [9].

Vinayakumar et al. proposed MLAs and deep learning architecture based on Static Analysis,

Dynamic Analysis, and image processing techniques for malware detection and ScaleMalNet

for detecting and categorize zero-day malwares. It relies on domain knowledge features for

dynamic analysis, lacks robustness against adversarial attacks, and encounters challenges in

handling imbalanced malware datasets. Moreover, its image processing approach may need

enhancement for flexibility, especially concerning varying image sizes [11].

A study proposed MDCD that is dynamic malware detection solution for cloud environments

employs a lightweight agent to collect runtime utilization and utilizes memory forensics for

memory object information. The multi-CNN model achieves remarkable average accuracy,

precision, recall, and F1 Score. The method outperforms existing solutions, effectively

detecting multiple malicious processes with minimal deployment effort. Although,

computational cost impacted the performance of VM. Increase of VM affects scalability of

dynamic malware [12].

Signature and Machine Learning approach was used to analyze the execution binary. Li et al.

used dynamic analysis and deep learning approach. Then later CNN, was use to detect the

memory snapshots from the virtual machine [15].

Models Used Citation

Voting Ensemble [13][17]

MalHyStack [10]

KNN [6][8]

Decision Tree [6][8]

CNN [15][6][1]

Feature Analysis [14]

6

Table 1: Models Used in existing study

The literature review reveals significant insights into memory malware detection

methodologies. Ensemble approaches, such as the hybrid model combining MLP, Adaboost,

and Gaussian Naive Bayes, demonstrated promising results. Various studies explored

machine learning and deep learning techniques, including CNN, SVM, and dynamic analysis,

emphasizing the need for effective models. In the existing study, balancing the dataset was

not easy and algorithms shows accuracy, but false positives are bit high. Notable works

addressed obfuscation techniques, encryption, and code packing, highlighting the evolving

threat landscape and the importance of accurate, efficient detection methods in countering the

rising tide of malware.

3 Research Methodology

In this section, a detailed explanation of project is explained. Many machine learning models

are used for comparative analysis of which algorithm performs the best out of others. MLP,

AdaBoost, GNB, Bagging and SGB are experimented individually and in combinations to

identify memory malware. To build the models, it comprises of 4 parts mainly, Data Pre-

processing, Sampling of Data, Malware Families and Classification. Although, a overview of

all the types and subtypes of each malware is mentioned but will be focusing on more three

particular malwares such as Trojan Horse, Spyware and Ransomware.

3.1 Data Preprocessing:

The initial phase of research conducted to make the CIC-MalMem2022 dataset suitable for

classification. This Is done to improve the efficiency of classification models. The CIC

MalMem2022 dataset is balanced dataset which consists of two classes benign and malware.

Next step is categorized benign and malwares into four categories such as Benign,

Ransomware, Spy and Trojan. The Label Encoder process is used for converting categorical

class values to numerical values. Benign and Malware are assigned as 0 and 1 in class

column. By creating an output column for the Category.

3.2 Sampling of Data

The dataset is each category is given a unique value such as 0,1,2 and 3. Each correspond to

benign, ransomware, spyware and trojan. The dataset used in this research paper has more

benign values than each malware. Therefore, it indicates a class imbalance in the dataset.

This imbalance can potentially affect the performance of machine learning models,

particularly in their ability to accurately predict minority classes (malware instances) during

training and validation. To address this imbalance, Synthetic Minority Over-sampling

Technique (SMOTE) is applied to generate synthetic samples of Trojan, Spyware and

Ransomware categories. This is done balance the class distribution. Thus, making the model

more robust and unbiased. In previous study [9], were not able to perform sampling of data.

In this, we were able to perform oversampling using SMOTE technique.

7

Further, the dataset is split into training, validation, and testing. The first split is of 60% of

data is used for training and 40% for testing. Then second split is 50% for training and 50%

for testing.

3.3 Malware Families

A Trojan Horse refers to a kind of software that operates discreetly in the background

pretending to be legitimate. When a user downloads a file, it replicates itself without

authorization, across all directories where the user has access. There are types of Trojan

Horses that have emerged over time.

Another type is Emonet, which emerged in 2014 as banking malware designed to gather

information by sniffing network traffic. As time passed it transformed into a platform of

facilitating the installation of malware. Emonet can also. Manage botnets while possessing

some worm characteristics.

Refroso is another type of trojan horse that significantly disrupts Windows systems. It

handles access connections. Performs distributed denial of service (DDoS) attacks. It even

automatically modifies firewall settings by deleting registry entries.

There are activities that it conceals. It also redirects web browsers to harmful websites.

Scar: It functions, as a Trojan horse enabling the installation of types of malwares on the

device. It downloads a list of URLs that contain files with the ".exe" extension allowing for

the download of malware. Additionally, it can carry out operations like gathering information

from the device and altering system settings.

Reconyc As a Trojan horse its primary function is to download forms of malware onto the

compromised device. Like malware it spreads through websites or as attachments to other

files. It can also restrict access to tools within the operating system such as Command

Prompt, Task Manager and Registry Editor.

Spyware: This category encompasses malware designed to record user information and

activities. Then transmit them to third parties. Typically, spyware collects data about a user’s

browsing patterns and online activities. Within our dataset we have identified five types of

spyware.

180Solutions; Also known as Zango this spyware monitors internet activities including user

movements visited URLs and cookies. It utilizes this collected information, for displaying

pop up ads and targeted advertisements.

CoolWebSearch (CWS); This browser hijacker first emerged in 2003.

There is a type of software called CoolWebSearch that transfers data collected from web

browsers to networks. It comes in versions, such, as DataNoter, BootConf, PnP, Winres,

8

SvcHost and MSInfo. Each version has its functions like monitoring websites access ensuring

CoolWebSearch doesn't appear on whitelists and downloading adware. Then there's Gator

which's an adware also known as Gain AdServer. It can pretend to be a virus to replicate

itself. Can also download spyware programs and perform updates. Like adware it tracks user

activities and displays targeted ads and pop ups. Gator can use up a lot of hard disk space

causing memory wear.

Another one is Transponder which is spyware that installs itself as a Browser Helper Object

(BHO) distributed with third party software. During its setup it collects information about the

device and user ID. After that it monitors activities such, as user movements visited URLs

cookies usage etc.. Sends them to the server. It also creates pop up banners.

Lastly TIBS is a malware referred to as TIBS dialer. It spreads through email attachments and

unreliable websites. Its purpose is to make paid calls to adult websites using the modem.

There is a background process running on the device that doesn't impact its performance. It

shows up through situations, like connections, unwanted downloads, and hidden internet

connections.

Ransomware is a type of software that aims to extort money from users. It restricts user

access by encrypting files, disks, or other data on the device. To regain access users are

required to pay a fee to remove the encryption. However, there's no guarantee that paying the

specified ransom will always result in accessing the encrypted data. Ransomware is currently

a growing issue [2].

These are five types of spyware included in the dataset;

1. Conti; This ransomware emerged in 2020. Infiltrates networked drives through phishing

emails. When clicked it downloads Bazar backdoor and IcedID Trojan horse onto targeted

machines. It encrypts SMB type files using AES 256 with up to 32 threads during encryption

process. It ignores files with dll, exe, lnk and sys extensions while encrypting and also deletes

shadow copies of encrypted files while preventing their restoration.

2. Maze; First observed in 2019 Maze is typically distributed via phishing emails containing

macros attached as files or through vulnerabilities found in networks such, as RDP servers

and Citrix/VPN servers.

It is also available, in the form of a PE binary (dll, exe). It uses ChaCha20 stream ciphers and

RSA 2048 public encryption keys to encrypt files. That's why it is sometimes referred to as

ChaCha ransomware. The individuals behind Maze ransomware publish encrypted

documents on their websites.

Pysa; This particular type of ransomware emerged in 2018. Cannot spread on its own. It is

also known as Mespinoza. By employing Brute Force attacks against RDP servers and Active

Directory phishing emails manage to infiltrate machines. Pysa utilizes an encryption method

that combines AES CBC and RSA algorithms. Encrypted files are stored with the Pysa

extension. Additionally it removes shadow copies of encrypted files to prevent their

restoration.

9

Ako; This ransomware appeared in 2020. Gains access to machines through phishing emails.

It is also known as MedusaReborn. Ako is distributed via an encrypted zip file in the folders

src file. MD5, SHA 1 and SHA 256 are employed for encrypting file types excluding exe, dll,

sys, ini, lnk, key and rdp files. Upon infiltration Ako drops a text containing the ransom note

alongside a folder named "id.key" that holds the encryption key, on the target desktop.

Shade is a type of ransomware that emerged in 2019 and gains access, to computers through

phishing emails. It is also referred to as Troldesh. Shade spreads through a zip file written in

Javascript. Employs two keys generated using AES 256 in CBC mode to encrypt both the

content and filenames of individual files. Additionally, it is notorious for leaving notes with

extensions, on infected computers.

3.4 Methods Used

MLP is a type of artificial neural network that can learn complex nonlinear relationships

between features and targets. AdaBoost is an ensemble learning algorithm that combines

multiple weak learners to create a strong learner. GNB is a probabilistic classifier that

assumes that the features of a data point are independent of each other. SGD is an algorithm

for training linear models. Bagging is an ensemble learning algorithm that creates multiple

copies of a base learner and trains each copy on a different subset of the training data. All the

models are trained separately, and different parameters were used for all algorithms. Another

part of methodology includes combination of these models, with different parameters to see

which hybrid performs best in identifying memory malware.

4 Design Specification

4.1 Flow Chart

Figure 3: Flow Chart

10

4.2 Chart of Benign and different Malwares

Figure 3: Detailed Graph of Categories and Malwares

Based on the dataset, consists of 4 categories such as benign (ben), ransomware (ransom),

spyware(spy) and trojan horse (trojan). Based on the graph, benign is the majority category

and rest of the malwares are almost in the equal ratio.

4.3 Comparison of Category with respect to Class

Figure 4: Comparison of Category with respect to Class

11

In this graph, according to the class benign and malware. Benign is higher than malwares

such as ransom, spy and trojan. This can create slight imbalance in dataset as benign values

are higher than that of other malwares.

5 Implementation

In the implementation phase, many machine learning, deep learning and ensemble algorithms

were employed to detect memory malware. The primary models used were the MLP (Multi-

Layer Perceptron) Classifier, Adaboost Classifier, Gaussian Naive Bayes Classifier, Bagging

Classifier, and SGD (Stochastic Gradient Descent) Classifier. Using Jupyter Notebook 7, we

train the machine learning models.

5.1 Dataset

The CIC-MalMem-2022 dataset was used in this research. This dataset was publicly available

by Canadian Institute for Cybersecurity in 2022. This dataset is used for detecting obfuscated

malware using memory dump. This is balanced dataset which consists of 58,596 records. Out

of which 29,298 are benign and 29,298 are malicious. This dataset comprises of malwares

such as Spyware, Ransomware and Trojan Horse malware. This dataset contains 57 attributes

that has traces of different malwares in its memory.

Total Records 59596

Benign 29231

Ransomware 9523

Spyware 9803

Trojan 9480

Table 2: Overview of the Dataset

The dataset was preprocessed which includes handling missing values, encoding categorical

variables and scaling numerical features. Then the dataset was saved in suitable format.

Trained on multiple machine learning models MLP Classifier, Adaboost Classifier, Gaussian

Naive Bayes Classifier, Bagging Classifier, and SGD Classifier.

5.2 Comparison of Models

MLP Classifier: The model was trained on the preprocessed dataset using the configured

hyperparameters. It involved optimizing the weights and biases in the neural network through

backpropagation. During training, the model learned to capture patterns and relationships

within the data.

Alpha Batch size Solver

0.1 50 Adam

12

Table 3: Parameter of MLP Classifier

Adaboost Classifier: The AdaBoost model was trained on the preprocessed dataset, focusing

on iteratively improving its performance by adjusting the weights of misclassified instances.

Each weak learner (decision stump) was sequentially added to form a strong classifier.

Algorithm Learning rate Estimators

SAMME.R 0.1 50

Table 4 Parameters of AdaBoost Classifier

Gaussian Naive Bayes : The GNB model was trained on the preprocessed dataset using the

Gaussian probability density function. This probabilistic model allowed GNB to make

predictions based on the likelihood that a particular instance belongs to a certain class.

GridSearch Approach was employed to explore values of var_smoothing during the

hyperparameter tuning phase.

Var_smoothing

1e.09

Table 5: Parameters of Gaussian Naïve Bayes

Bagging Classifier: The Bagging Classifier, an ensemble learning method, was employed as

a key component in the memory malware detection pipeline. Bagging, short for Bootstrap

Aggregating, involves training multiple instances of a base model on different subsets of the

training data to improve overall performance and reduce overfitting. The primary

hyperparameters considered for the Bagging Classifier were n_estimators and max_features.

n_estimators determine the number of base estimators, and max_features controls the

maximum number of features considered for individual base models. A grid search was

performed with values [50, 20, 10] for n_estimators and [30, 40, 50] for max_features to find

the optimal combination. During the training phase, multiple base models were trained on

bootstrapped subsets of the training data. The ensemble then aggregated their predictions to

make the final classification.

Max_features N_estimators

50 50

Table 6: Parameters of Bagging Classifier

Stochastic Gradient Boosting (SGB): The Stochastic Gradient Boosting (SGB) Classifier,

an ensemble learning method, was employed as a powerful algorithm in the memory malware

detection pipeline. SGB builds a sequence of weak learners, typically decision trees, with

13

each learner compensating for the weaknesses of the previous one. The optimal

hyperparameters determined through the grid search were loss = 'deviance', learning rate =

0.1, n_estimators = 100, and max_depth = 3. These values were chosen based on their ability

to strike a balance between model complexity and generalization.

Alpha Penalty

0.1 None

Table 7: Parameters of Stochastic Gradient Boosting

5.3 Comparison of Models

MLP and AdaBoost:

In this section, an experiment of hybrid model of MLP and Adaboost is presented. Both are

algorithms are trained separately and then combined. This model was created using by

combining MLP and AdaBoost model using voting mechanism based on hard or soft with
cross validation as 2.

AdaBoost and Gaussian Naïve Bayes:

In this section, an experiment of hybrid model of AdaBoost and Gaussian Naive Bayes for

Memory Malware detection. Hyperparameters tuning is based on GridSearchCV with

parameters same as what was trained during individual algorithms, cross validation as 2 is
same for all models that is trained.

Bagging and Gaussian Naive Bayes:

In this section, an experiment of hybrid model of Bagging and Gaussian Naive Bayes for

Memory Malware detection. Voting classifier is based on soft or hard and hyperparameters

for Bagging was set max_features= 40, n_estimators= 50 and for Gaussian Naïve Bayes
var_smoothing= 1e-09 is set.

Bagging and Stochastic Gradient Descent: In this section, an experiment of combination of

Bagging and Stochastic Gradient Descent model for implemented for memory malware
detection. Both the algorithms were trained separately and then combined using voting

scheme.

SGD and MLP: In this experiment, Stochastic Gradient Descent (SGD) and Multi-layer

Perceptron (MLP) to create a hybrid model for classification. The parameter for SGD is set to
alpha= 0.1, penalty= 'elasticnet’ and MLP alpha= 0.001, batch_size= 50, solver= 'adam' are

set.

MLP, Adaboost & Gaussian NB: In this experiment, hybrid model of MLP, Adaboost &

Gaussian NB is implemented. MLP, AdaBoost and Gaussian NB are trained separately and
combined with same parameters as before.

Gaussian NB, Bagging & SGD: In this experiment, hybrid model of Gaussian NB, Bagging

& SGD is implemented. The training of this model is like other hybrid models.

14

6 Evaluation

6.1 Accuracy

The overall performance of the proposed model evaluated using accuracy. It is one of the

evaluation metrics for the classification model.

6.1.1 Accuracy for Indivdual Models

Figure 5: Visualisation for MLP, AdaBoost, Gaussian Naïve Bayes Bagging and SGB

Models Used Accuracy Testing time
MLP Classifier 52 0.257

AdaBoost Classifier 63 0.345

Gaussian Naïve Bayes 54 0.126
Bagging Classifier 92 0.573

SGB Classifier 53 0.078

Table 8: Accuracy of Models

These are the accuracy of five models MLP, Adaboost, Gaussian Naive Bayes [19], Bagging

and SGB. By comparing all these models, Bagging proved to be best fit compared to other

models. It showcased an accuracy of 92%. This model is not overfitting the training data.

Both training and testing sets accuracy values are similar.

15

6.1.2 Accuracy for Hybrid Models

MLP and AdaBoost: The experimental results show that MLP + Adaboost to give 64%

accuracy in detecting malwares. This is an average model. Grid search was employed to find

the optimal hyperparameters for the ensemble model. The hyperparameters considered were

related to the voting strategy and individual model parameters.

Figure 6: Confusion Matrix for MLP and Adaboost

AdaBoost and Gaussian Naive Bayes: The model accuracy is 64% which is similar to

AdaBoost and MLP. This combination showcases a promising balance between accuracy and

efficiency in identifying memory malware.

Figure 7: Confusion Matrix AdaBoost and Gaussian Naive Bayes

Bagging and Gaussian Naive Bayes: Using default hyperparameters tuning, model accuracy

is 89% which is best performing hybrid model when compared to others models. This

combination showcases a promising balance between accuracy and efficiency in identifying

memory malware.

16

Figure 8: Confusion Bagging and Gaussian Naive Bayes for Testing

Bagging and Stochastic Gradient Descent: After tuning the hyperparameters, model

accuracy showed an accuracy of 83%, precision of 85% which tells the model is performing

great.

Figure 9:Visualization of Bagging and Stochastic Gradient Boosting

SGD and MLP: In this experiment, Stochastic Gradient Descent (SGD) and Multi layer

Perceptron (MLP) to create a hybrid model for classification. The model achieves an

accuracy of 50% which shows that performance of the model is poor compared to other

models.

Figure 10: Visualization of SGB and MLP

17

MLP, Adaboost & Gaussian NB: After tuning the hyperparameters, validating and testing

model it shows a accuracy of 59% with testing time of 0.55s, precision of 0.59, and F1 score

of 0.56 which shows that even this model is also performing poor.

Figure 11: Visualization of MLP, AdaBoost and GNB

Gaussian NB, Bagging & SGD: After tuning the hyperparameters, validating and testing

model it shows an accuracy of 59% with testing time of 0.49s, precision of 0.71, recall of

0.59 and F1 score of 0.55 which shows that even this model is also performing poor.

Figure 12: Visualization of Gaussian NB, Bagging & SGD

Predicted outcomes for the classification are summarised in the confusion matrix.

Hybrid Models Accuracy

MLP and Adaboost 64

AdaBoost + Gaussian Naïve

Bayes

64

Bagging and Gaussian Naive
Bayes

89

Bagging and Stochastic

Gradient Descent

83

SGD and MLP 50

MLP, AdaBoost & Gaussian 59

18

NB

Gaussian NB, Bagging &SGD 55

6.5 Discussion

Table 9: Accuracy of Hybrid Model.

The experiments conducted in for individual classification algorithm Bagging proved to be

efficient with 0.57 testing time in detecting malware. Although SGB classifier executed in

0.07s but accuracy is 53%. By prioritising higher accuracy and bit more testing time Bagging

model is considered. The experiments showed that the hybrid model of Bagging and

Gaussian Naive Bayes is the best performing model for memory malware detection. This

model achieved an accuracy of 89%, which is significantly higher than the accuracy of any of

the individual models. The hybrid model is also the most efficient, with a testing time of 1.27

seconds. The experiment was well-designed, and the results were statistically significant.

However, the experiment could be improved by using a larger dataset and by using more

rigorous hyperparameter tuning. The results are consistent with previous research on hybrid

models for malware detection. But when comparing to individual algorithm Bagging is good

model compared to other models.

7 Conclusion and Future Work

The experiments conducted to detect memory malware yielded insightful findings that

underscore the strengths and considerations in employing machine learning models and

ensembles for cybersecurity. Bagging Classifier showed an accuracy of 91% with time gap

for testing 0.5736s. Notably, the ensemble of Bagging and Gaussian Naive Bayes exhibited

commendable accuracy of 89%, emphasizing the synergy achieved through combining

boosting and probabilistic modelling. According to the research conducted ensemble methods

proved to be efficient and then other individual classification models and even in

combination of models. The experiments also shed light on the crucial factor of time

efficiency, with the ensemble demonstrating competitive accuracy while requiring less

training time compared to individual models. However, limitations, such as fixed dataset size,

call for future investigations with more extensive and diverse dataset. Further studies can also

include in detecting subcategories of ransomware, trojan horse and spyware.

References

1. Aisha Ali-Gombe , Sneha Sudhakaran , Ramyapandian Vijayakanthan, Golden G.

Richard III, cRGB_Mem: At the intersection of memory forensics and machine

learning, https://doi.org/10.1016/j.fsidi.2023.301564, 7 July 2023

2. Dener, M., Ok, G., & Orman, A. (2022). Malware detection using memory analysis

data in big data environment. Applied Sciences, 12(17), 8604.

https://doi.org/10.1016/j.fsidi.2023.301564

19

3. Shah, S. S. H., Ahmad, A. R., Jamil, N., & Khan, A. U. R. (2022). Memory forensics-

based malware detection using computer vision and machine learning. Electronics,

11(16), 2579.

4. Alkahtani, H., & Aldhyani, T. H. (2022). Artificial intelligence algorithms for

malware detection in android-operated mobile devices. Sensors, 22(6), 2268.

5. Bozkir, A. S., Tahillioglu, E., Aydos, M., & Kara, I. (2021). Catch them alive: A

malware detection approach through memory forensics, manifold learning and

computer vision. Computers & Security, 103, 102166.

6. Noor, B., & Qadir, S. (2023). Machine Learning and Deep Learning Based Model for

the Detection of Rootkits Using Memory Analysis. Applied Sciences, 13(19), 10730.

7. Xu, Z., Ray, S., Subramanyan, P., & Malik, S. (2017, March). Malware detection

using machine learning based analysis of virtual memory access patterns. In Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2017 (pp. 169-174).

IEEE.

8. Klaib, A. K., Al-Nabhan, M., & Abu Al-Haija, Q. (2023, February). Identifying

Memory Dump Malware Using Supervised Learning. In Proceedings of Third

International Conference on Sustainable Expert Systems: ICSES 2022 (pp. 1009-

1020). Singapore: Springer Nature Singapore.

9. Bruna Moralejo, L. (2023). Machine Learning for malware detection and

classification (Master's thesis, Universitat Politècnica de Catalunya).

10. Roy, K. S., Ahmed, T., Udas, P. B., Karim, M. E., & Majumdar, S. (2023).

MalHyStack: A hybrid stacked ensemble learning framework with feature

engineering schemes for obfuscated malware analysis. Intelligent Systems with

Applications, 20, 200283.

11. R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran and S. Venkatraman,

"Robust Intelligent Malware Detection Using Deep Learning," in IEEE Access, vol.

7, pp. 46717-46738, 2019, doi: 10.1109/ACCESS.2019.2906934.

12. Tian, D., Zhao, R., Ma, R., Jia, X., Shen, Q., Hu, C., & Liu, W. (2022). MDCD: A

malware detection approach in cloud using deep learning. Transactions on Emerging

Telecommunications Technologies, 33(11), e4584.

13. Vashishtha, L. K., Chatterjee, K., & Rout, S. S. (2023). An Ensemble approach for

advance malware memory analysis using Image classification techniques. Journal of

Information Security and Applications, 77, 103561.

14. Gupta, D., & Rani, R. (2020). Improving malware detection using big data and

ensemble learning. Computers & Electrical Engineering, 86, 106729.

20

15. Khalid, O., Ullah, S., Ahmad, T., Saeed, S., Alabbad, D.A., Aslam, M., Buriro, A. and

Ahmad, R., 2023. An insight into the machine-learning-based fileless malware

detection. Sensors, 23(2), p.612.

16. Li, H., Zhan, D., Liu, T. and Ye, L., 2019, November. Using deep-learning-based

memory analysis for malware detection in cloud. In 2019 IEEE 16th international

conference on mobile ad hoc and sensor systems workshops (MASSW) (pp. 1-6).

IEEE

17. Naeem, H., Dong, S., Falana, O.J. and Ullah, F., 2023. Development of a deep

stacked ensemble with process based volatile memory forensics for platform

independent malware detection and classification. Expert Systems with Applications,

223, p.119952.

18. Zelinka, I. and Amer, E., 2019, December. An ensemble-based malware detection

model using minimum feature set. In Mendel (Vol. 25, No. 2, pp. 1-10).

19. Sihwail, R., Omar, K., Zainol Ariffin, K.A. and Al Afghani, S., 2019. Malware

detection approach based on artifacts in memory image and dynamic analysis.

Applied Sciences, 9(18),

20. Saad, S., Briguglio, W. and Elmiligi, H., 2019. The curious case of machine learning

in malware detection. arXiv preprint arXiv:1905.07573.

