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"Unmasking Memory Malware: A Comparative 

Analysis of Individual Machine Learning and Deep 

Learning Using Ensemble Approaches" 

Samita Ramesh Babu 

22132201 

 
Abstract 

 

Abstract: Obfuscated Malware is malware that hides to avoid detection. Cyber- 

attacks are constantly prevailing in recent years even sometimes it is undetected by anti- 

virus software. The study involves detecting memory malware using machine and deep 

learning models using ensemble methods. The implementation is done by preprocessing 

and sampling of data of memory malware detection optimizing the representation of 

memory samples for effective analysis. Experiments were performed on a variety of 

machine learning algorithms and deep learning method, such as MLP Classifier, 

Adaboost, Gaussian Naive Bayes, Bagging classifier, SGD both individually and 

combined. Our findings reveal that ensemble methods performed compared to other 

models used in this research. Bagging classifier is outperformed individual algorithms by 

showing 92% accuracy. Then in combination of models Bagging and GNB showed 89% 

accuracy. The performance of these algorithms is evaluated based on metrics such as 

accuracy, precision, recall, and F1 score. This research can be guide for cybersecurity 

professionals seeking to implement efficient memory malware detection strategies. 

 

Key Words: Obfuscate Malware Memory Malware Analysis, Cybersecurity, 

Ensemble Learning, Machine Learning 

 

1 Introduction 

Malware has been created to attack, damage, or disable mobile phones, computers, apps, or 

systems using a code or script. Memory-based attacks can execute in real time, enabling 

hackers to insert malicious code. It exploits zero-day vulnerabilities. Nowadays, Obfuscation 

technique makes it difficult to read. There were 470.01 million malwares were detected and 

in 2022 around 30 million malwares were detected [2]. Memory analysis data can yield 

valuable insights into the behavior and patterns of malicious software. This is a result of the 

different traces malware leaves on memory. Because of this, one of the topics that needs to be 

researched in malware detection is the memory analysis method. 

 

Encryption: Obfuscators can encrypt the malware code to make it difficult for static analysis 

tools to understand. Randomization: Obfuscators can randomize the layout of the malware 

code in memory to make it difficult for dynamic analysis tools to trace its execution. 
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Code packing: Obfuscators can pack the malware code into a more compact form, which can 

make it more difficult for antivirus scanners to detect. 

Control Flow 

Jumping: Obfuscators can insert unnecessary jumps into the malware code to make it more 

difficult for dynamic analysis tools to follow the execution flow. 

Splicing: Obfuscators can splice together different pieces of code to make it more difficult for 

static analysis tools to understand the overall logic of the malware. Code injection: 

Obfuscators can inject code into the malware at runtime to bypass security checks. 

 

 

Figure 1: Overview of Possibilities of Obfuscation Memory Malware Techniques 
 

 

 

 

 

 

 

 

Figure 2: Stages of an Obfuscation Memory Malware Attack 

 

 

Research Questions 

 

What is the impact of combining diverse machine learning models and deep learning models, 

such as MLP, Adaboost, Gaussian Naive Bayes, Bagging, and Stochastic Gradient Boosting, 

in a hybrid approach for the detection of memory malware, and how does this approach 

compare to individual models and existing methods in terms of accuracy and efficiency? 



3  

In this research, we aim to detect memory malware analysis using MLP Classifier, Adaboost, 

Gaussian Naive Bayes, Bagging classifier, SGD were the five different machine learning and 

deep learning techniques. Experimenting with individual machine learning and deep learning 

algorithms to understand their standalone performance. Determining the most efficient 

algorithm or combination of algorithms of detecting memory malware involves factors such 

as accuracy, speed and other evaluation metrics. Additionally, the research seeks to identify 

the most accurate algorithm and combination of algorithms for memory malware detection. 

Additionally, evaluating the trade-off between accuracy and computational efficiency, 

especially within a limited time frame. Contributing to the advancement of memory malware 

detection methodologies, considering the evolving threat landscape. MLP, Gaussian Naive 

Bayes, and SGD Classifier are individual machine learning algorithms. They might be 

simpler and faster, but their performance can depend on the data and the chosen 

hyperparameters. Ensemble methods combine multiple base learners to form a stronger 

model. They often perform well in practice due to their ability to handle different aspects of 

the data. Bagging can reduce variance and improve stability. 

 

The rest of paper is organized as follows. Literature Review are given section 2, a brief 

review of Machine and Deep Learning methods and its implications in the memory malware 

detection. The survey of all related works is conducted. In section 3, detailed explanations of 

machine and deep learning methods used to include preprocessing of data, feature extraction. 

In section 4, flowchart of the malware detection, details of framework used. In section 5, 

includes the details of Dataset used, training and testing using different algorithms are given. 

Evaluation metrics and experiment results are given in section 6. 

2 Related Work 

In this section a detailed study of ensemble approaches, machine learning and deep learning 

approaches from the existing studies is searched using Google Scholar Database. The articles 

found were scrutinized based on memory malware using ensemble methods, machine 

learning and deep learning, 

2.1 Machine Learning Approaches 

Vashishtha et al. proposed a model using different voting process. In this research they 

converted image files to analyzed. The experiment was based on voting ensembling 

techniques.[13] A hybrid model MalHyStack was incorporated with ensemble learning was 

proposed by Roy et al. The model detected obfuscated malware. Pearson correlation analysis 

has improved accuracy of model a bit more along with reducing the computational time. This 

model can still be made more efficient and reliable in future according to the authors [10]. 

 

Naeem et al. proposed a deep stacked ensemble by combining with CNN and MLP as output 

and input. This model was evaluated using three datasets Dumpware10 dataset, CIC- 
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MalMem2022 and real-world dataset. Windows malware memory dumps [17]. The malware 

detection model based on ensemble learning was performed. The model was trained using 

minimum features extracted from file. These methods performed well than classification 

models but could have used more techniques [18]. In this study, many algorithms were 

experimented SVM, KNN and Random Forest for memory malware analysis, the accuracy of 

these models were around 98.5% but the false were also high [19]. Khalid et al. proposes a 

detection of fileless malware by analyzing features for main memory. The research uses 

feature analysis using machine learning. Random Forest Decision Tree, Support Vector 

Machine, Logistic Regression, XGBoost, and Gradient Boosting were used to experiment. 

VirusShare, AnyRun, PolySwarm, HatchingTriage, and JoESandbox were the five datasets 

used. Authors suggest more techniques can be incorporated for further studies [14]. Bruna 

conducted a comparative study using two datasets CIC-Evasive-PDFMal2022 and CIC- 

MalMem-2022. Random Forest achieved low computational time In the other dataset, was 

bigger and computational time was high and yielded around 74% detection rate.SVM 

classification and perform using other machine learning to yield better results [9]. A 

comprehensive analysis was made by Saad et al. in detecting adversarial malware using 

machine learning and also stating that behavioral analysis can detect malware in future [20]. 

 

2.2 Deep Learning Approaches 

Gombe et al. proposed a model using cRGB_Mem which trains RGB images that is been 

generated in memory allocation patterns in CNN. This RGB-CNN model is distinguished 

between benign and malware. This model predicts Android malware detection between (R01) 

known and (R02) unknown features but the detection accuracies for R01 and R02 are not 

perfect. The memory allocation pattern is based in allocation address which may be 

inaccurate [1]. The paper proposed binary classification using CIC-MalMem-2022 dataset to 

detect malware. This study also provides classification using machine learning and deep 

learning in memory analysis using big data approach [2]. 

Another study proposed memory-based method to detect malwares that reside in the 

computer’s memory. CLAHE and wavelet transform were two techniques for feature 

extraction. This model displayed accuracy and precision using less training time. Further, this 

method can be improved in terms of accuracy by using different feature selection methods 

and computation cost [3]. Another paper proposed machine and deep learning approaches to 

detect Android attacks. Using CICAndMal2017 dataset and LSTM achieved 99.4% accuracy 

using Drebin dataset [4]. 

Bozkir et. al proposed a method that focused on memory analysis by capturing memory 

dumps. The model uses GIST and HOG as image descriptors and used. The UMAP based 

manifold learning strategy has made the model even better by improving accuracy by 

detecting unknown malware. The results tend to show that transforming memory dumps to 

initial images yielded 4096px [5]. Basirah and Sana proposed a rootkit detection model using 

memory analysis Using KNN and LSTM algorithm. KNN performed well in less execution 

time. Deep Learning models proved to provide 18% more accuracy which is moderate. There 



5  

were few limitations as the dataset was too small due to which it created overhead and causes 

low accuracy [6]. 

Xu et al. introduced a hardware assisted malware detection framework using two types of 

malwares kernel rootkits and memory corruption attacks. They have used function call and 

entire program epoch for the detection. By changing the histogram bin size, the entire 

program epoch changes but the function call remains resilient. This needs trial and error 

check each time to check which limited the automation. Random forest and Logistic 

Regression was performed. Although this framework provides 99% detection rate for 

memory corruption attacks and 100% detection for kernel rootkits. The methods seem to 

overfit the framework [7]. 

Klaib et al. used memory dump malware using supervised machine learning algorithms such 

as KNN. This paper used two scenarios with CIC-MalMem-2022 dataset and correlation 

matrix to compare which one was effective [8]. Bruna conducted a comparative study using 

two datasets CIC-Evasive-PDFMal2022 and CIC-MalMem-2022. In first dataset, KNN 

provides better results in hamming distance. Also tried using oversampling and 

undersampling but was not able to improve the results. The drawback author was not able to 

balance the dataset [9]. 

 

Vinayakumar et al. proposed MLAs and deep learning architecture based on Static Analysis, 

Dynamic Analysis, and image processing techniques for malware detection and ScaleMalNet 

for detecting and categorize zero-day malwares. It relies on domain knowledge features for 

dynamic analysis, lacks robustness against adversarial attacks, and encounters challenges in 

handling imbalanced malware datasets. Moreover, its image processing approach may need 

enhancement for flexibility, especially concerning varying image sizes [11]. 

A study proposed MDCD that is dynamic malware detection solution for cloud environments 

employs a lightweight agent to collect runtime utilization and utilizes memory forensics for 

memory object information. The multi-CNN model achieves remarkable average accuracy, 

precision, recall, and F1 Score. The method outperforms existing solutions, effectively 

detecting multiple malicious processes with minimal deployment effort. Although, 

computational cost impacted the performance of VM. Increase of VM affects scalability of 

dynamic malware [12]. 

 

Signature and Machine Learning approach was used to analyze the execution binary. Li et al. 

used dynamic analysis and deep learning approach. Then later CNN, was use to detect the 

memory snapshots from the virtual machine [15]. 

 

Models Used Citation 

Voting Ensemble [13][17] 

MalHyStack [10] 

KNN [6][8] 

Decision Tree [6][8] 

CNN [15][6][1] 

Feature Analysis [14] 
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Table 1: Models Used in existing study 

The literature review reveals significant insights into memory malware detection 

methodologies. Ensemble approaches, such as the hybrid model combining MLP, Adaboost, 

and Gaussian Naive Bayes, demonstrated promising results. Various studies explored 

machine learning and deep learning techniques, including CNN, SVM, and dynamic analysis, 

emphasizing the need for effective models. In the existing study, balancing the dataset was 

not easy and algorithms shows accuracy, but false positives are bit high. Notable works 

addressed obfuscation techniques, encryption, and code packing, highlighting the evolving 

threat landscape and the importance of accurate, efficient detection methods in countering the 

rising tide of malware. 

 

3 Research Methodology 

In this section, a detailed explanation of project is explained. Many machine learning models 

are used for comparative analysis of which algorithm performs the best out of others. MLP, 

AdaBoost, GNB, Bagging and SGB are experimented individually and in combinations to 

identify memory malware. To build the models, it comprises of 4 parts mainly, Data Pre- 

processing, Sampling of Data, Malware Families and Classification. Although, a overview of 

all the types and subtypes of each malware is mentioned but will be focusing on more three 

particular malwares such as Trojan Horse, Spyware and Ransomware. 

3.1 Data Preprocessing: 

The initial phase of research conducted to make the CIC-MalMem2022 dataset suitable for 

classification. This Is done to improve the efficiency of classification models. The CIC 

MalMem2022 dataset is balanced dataset which consists of two classes benign and malware. 

Next step is categorized benign and malwares into four categories such as Benign, 

Ransomware, Spy and Trojan. The Label Encoder process is used for converting categorical 

class values to numerical values. Benign and Malware are assigned as 0 and 1 in class 

column. By creating an output column for the Category. 

 

3.2 Sampling of Data 

The dataset is each category is given a unique value such as 0,1,2 and 3. Each correspond to 

benign, ransomware, spyware and trojan. The dataset used in this research paper has more 

benign values than each malware. Therefore, it indicates a class imbalance in the dataset. 

This imbalance can potentially affect the performance of machine learning models, 

particularly in their ability to accurately predict minority classes (malware instances) during 

training and validation. To address this imbalance, Synthetic Minority Over-sampling 

Technique (SMOTE) is applied to generate synthetic samples of Trojan, Spyware and 

Ransomware categories. This is done balance the class distribution. Thus, making the model 

more robust and unbiased. In previous study [9], were not able to perform sampling of data. 

In this, we were able to perform oversampling using SMOTE technique. 
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Further, the dataset is split into training, validation, and testing. The first split is of 60% of 

data is used for training and 40% for testing. Then second split is 50% for training and 50% 

for testing. 

 

3.3 Malware Families 

A Trojan Horse refers to a kind of software that operates discreetly in the background 

pretending to be legitimate. When a user downloads a file, it replicates itself without 

authorization, across all directories where the user has access. There are types of Trojan 

Horses that have emerged over time. 

 

Another type is Emonet, which emerged in 2014 as banking malware designed to gather 

information by sniffing network traffic. As time passed it transformed into a platform of 

facilitating the installation of malware. Emonet can also. Manage botnets while possessing 

some worm characteristics. 

 

Refroso is another type of trojan horse that significantly disrupts Windows systems. It 

handles access connections. Performs distributed denial of service (DDoS) attacks. It even 

automatically modifies firewall settings by deleting registry entries. 

There are activities that it conceals. It also redirects web browsers to harmful websites. 

 

Scar: It functions, as a Trojan horse enabling the installation of types of malwares on the 

device. It downloads a list of URLs that contain files with the ".exe" extension allowing for 

the download of malware. Additionally, it can carry out operations like gathering information 

from the device and altering system settings. 

 

Reconyc As a Trojan horse its primary function is to download forms of malware onto the 

compromised device. Like malware it spreads through websites or as attachments to other 

files. It can also restrict access to tools within the operating system such as Command 

Prompt, Task Manager and Registry Editor. 

 

Spyware: This category encompasses malware designed to record user information and 

activities. Then transmit them to third parties. Typically, spyware collects data about a user’s 

browsing patterns and online activities. Within our dataset we have identified five types of 

spyware. 

 

180Solutions; Also known as Zango this spyware monitors internet activities including user 

movements visited URLs and cookies. It utilizes this collected information, for displaying 

pop up ads and targeted advertisements. 

 

CoolWebSearch (CWS); This browser hijacker first emerged in 2003. 

There is a type of software called CoolWebSearch that transfers data collected from web 

browsers to networks. It comes in versions, such, as DataNoter, BootConf, PnP, Winres, 
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SvcHost and MSInfo. Each version has its functions like monitoring websites access ensuring 

CoolWebSearch doesn't appear on whitelists and downloading adware. Then there's Gator 

which's an adware also known as Gain AdServer. It can pretend to be a virus to replicate 

itself. Can also download spyware programs and perform updates. Like adware it tracks user 

activities and displays targeted ads and pop ups. Gator can use up a lot of hard disk space 

causing memory wear. 

 

Another one is Transponder which is spyware that installs itself as a Browser Helper Object 

(BHO) distributed with third party software. During its setup it collects information about the 

device and user ID. After that it monitors activities such, as user movements visited URLs 

cookies usage etc.. Sends them to the server. It also creates pop up banners. 

 

Lastly TIBS is a malware referred to as TIBS dialer. It spreads through email attachments and 

unreliable websites. Its purpose is to make paid calls to adult websites using the modem. 

There is a background process running on the device that doesn't impact its performance. It 

shows up through situations, like connections, unwanted downloads, and hidden internet 

connections. 

 

Ransomware is a type of software that aims to extort money from users. It restricts user 

access by encrypting files, disks, or other data on the device. To regain access users are 

required to pay a fee to remove the encryption. However, there's no guarantee that paying the 

specified ransom will always result in accessing the encrypted data. Ransomware is currently 

a growing issue [2]. 

 

These are five types of spyware included in the dataset; 

1. Conti; This ransomware emerged in 2020. Infiltrates networked drives through phishing 

emails. When clicked it downloads Bazar backdoor and IcedID Trojan horse onto targeted 

machines. It encrypts SMB type files using AES 256 with up to 32 threads during encryption 

process. It ignores files with dll, exe, lnk and sys extensions while encrypting and also deletes 

shadow copies of encrypted files while preventing their restoration. 

2. Maze; First observed in 2019 Maze is typically distributed via phishing emails containing 

macros attached as files or through vulnerabilities found in networks such, as RDP servers 

and Citrix/VPN servers. 

It is also available, in the form of a PE binary (dll, exe). It uses ChaCha20 stream ciphers and 

RSA 2048 public encryption keys to encrypt files. That's why it is sometimes referred to as 

ChaCha ransomware. The individuals behind Maze ransomware publish encrypted 

documents on their websites. 

Pysa; This particular type of ransomware emerged in 2018. Cannot spread on its own. It is 

also known as Mespinoza. By employing Brute Force attacks against RDP servers and Active 

Directory phishing emails manage to infiltrate machines. Pysa utilizes an encryption method 

that combines AES CBC and RSA algorithms. Encrypted files are stored with the Pysa 

extension. Additionally it removes shadow copies of encrypted files to prevent their 

restoration. 
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Ako; This ransomware appeared in 2020. Gains access to machines through phishing emails. 

It is also known as MedusaReborn. Ako is distributed via an encrypted zip file in the folders 

src file. MD5, SHA 1 and SHA 256 are employed for encrypting file types excluding exe, dll, 

sys, ini, lnk, key and rdp files. Upon infiltration Ako drops a text containing the ransom note 

alongside a folder named "id.key" that holds the encryption key, on the target desktop. 

Shade is a type of ransomware that emerged in 2019 and gains access, to computers through 

phishing emails. It is also referred to as Troldesh. Shade spreads through a zip file written in 

Javascript. Employs two keys generated using AES 256 in CBC mode to encrypt both the 

content and filenames of individual files. Additionally, it is notorious for leaving notes with 

extensions, on infected computers. 

3.4 Methods Used 

 
MLP is a type of artificial neural network that can learn complex nonlinear relationships 

between features and targets. AdaBoost is an ensemble learning algorithm that combines 

multiple weak learners to create a strong learner. GNB is a probabilistic classifier that 

assumes that the features of a data point are independent of each other. SGD is an algorithm 

for training linear models. Bagging is an ensemble learning algorithm that creates multiple 

copies of a base learner and trains each copy on a different subset of the training data. All the 

models are trained separately, and different parameters were used for all algorithms. Another 

part of methodology includes combination of these models, with different parameters to see 

which hybrid performs best in identifying memory malware. 

 

4 Design Specification 

4.1 Flow Chart 

 

Figure 3: Flow Chart 
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4.2 Chart of Benign and different Malwares 

 

Figure 3: Detailed Graph of Categories and Malwares 

Based on the dataset, consists of 4 categories such as benign (ben), ransomware (ransom), 

spyware(spy) and trojan horse (trojan). Based on the graph, benign is the majority category 

and rest of the malwares are almost in the equal ratio. 

 

4.3 Comparison of Category with respect to Class 
 

Figure 4: Comparison of Category with respect to Class 
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In this graph, according to the class benign and malware. Benign is higher than malwares 

such as ransom, spy and trojan. This can create slight imbalance in dataset as benign values 

are higher than that of other malwares. 

5 Implementation 

In the implementation phase, many machine learning, deep learning and ensemble algorithms 

were employed to detect memory malware. The primary models used were the MLP (Multi- 

Layer Perceptron) Classifier, Adaboost Classifier, Gaussian Naive Bayes Classifier, Bagging 

Classifier, and SGD (Stochastic Gradient Descent) Classifier. Using Jupyter Notebook 7, we 

train the machine learning models. 

 

5.1 Dataset 

The CIC-MalMem-2022 dataset was used in this research. This dataset was publicly available 

by Canadian Institute for Cybersecurity in 2022. This dataset is used for detecting obfuscated 

malware using memory dump. This is balanced dataset which consists of 58,596 records. Out 

of which 29,298 are benign and 29,298 are malicious. This dataset comprises of malwares 

such as Spyware, Ransomware and Trojan Horse malware. This dataset contains 57 attributes 

that has traces of different malwares in its memory. 

 

Total Records 59596 

Benign 29231 

Ransomware 9523 

Spyware 9803 

Trojan 9480 

 

Table 2: Overview of the Dataset 

 

The dataset was preprocessed which includes handling missing values, encoding categorical 

variables and scaling numerical features. Then the dataset was saved in suitable format. 

Trained on multiple machine learning models MLP Classifier, Adaboost Classifier, Gaussian 

Naive Bayes Classifier, Bagging Classifier, and SGD Classifier. 

 

5.2 Comparison of Models 

 
MLP Classifier: The model was trained on the preprocessed dataset using the configured 

hyperparameters. It involved optimizing the weights and biases in the neural network through 

backpropagation. During training, the model learned to capture patterns and relationships 

within the data. 

 

Alpha Batch size Solver 

0.1 50 Adam 
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Table 3: Parameter of MLP Classifier 

 

Adaboost Classifier: The AdaBoost model was trained on the preprocessed dataset, focusing 

on iteratively improving its performance by adjusting the weights of misclassified instances. 

Each weak learner (decision stump) was sequentially added to form a strong classifier. 

 

Algorithm Learning rate Estimators 

SAMME.R 0.1 50 

 

Table 4 Parameters of AdaBoost Classifier 

 

Gaussian Naive Bayes : The GNB model was trained on the preprocessed dataset using the 

Gaussian probability density function. This probabilistic model allowed GNB to make 

predictions based on the likelihood that a particular instance belongs to a certain class. 

GridSearch Approach was employed to explore values of var_smoothing during the 

hyperparameter tuning phase. 

 

Var_smoothing 

1e.09 

 

Table 5: Parameters of Gaussian Naïve Bayes 

 

Bagging Classifier: The Bagging Classifier, an ensemble learning method, was employed as 

a key component in the memory malware detection pipeline. Bagging, short for Bootstrap 

Aggregating, involves training multiple instances of a base model on different subsets of the 

training data to improve overall performance and reduce overfitting. The primary 

hyperparameters considered for the Bagging Classifier were n_estimators and max_features. 

n_estimators determine the number of base estimators, and max_features controls the 

maximum number of features considered for individual base models. A grid search was 

performed with values [50, 20, 10] for n_estimators and [30, 40, 50] for max_features to find 

the optimal combination. During the training phase, multiple base models were trained on 

bootstrapped subsets of the training data. The ensemble then aggregated their predictions to 

make the final classification. 

 

Max_features N_estimators 

50 50 

 

Table 6: Parameters of Bagging Classifier 

 

Stochastic Gradient Boosting (SGB): The Stochastic Gradient Boosting (SGB) Classifier, 

an ensemble learning method, was employed as a powerful algorithm in the memory malware 

detection pipeline. SGB builds a sequence of weak learners, typically decision trees, with 
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each learner compensating for the weaknesses of the previous one. The optimal 

hyperparameters determined through the grid search were loss = 'deviance', learning rate = 

0.1, n_estimators = 100, and max_depth = 3. These values were chosen based on their ability 

to strike a balance between model complexity and generalization. 

 

Alpha Penalty 

0.1 None 

Table 7: Parameters of Stochastic Gradient Boosting 

 

5.3 Comparison of Models 

MLP and AdaBoost: 

In this section, an experiment of hybrid model of MLP and Adaboost is presented. Both are 

algorithms are trained separately and then combined. This model was created using by 

combining MLP and AdaBoost model using voting mechanism based on hard or soft with 
cross validation as 2. 

AdaBoost and Gaussian Naïve Bayes: 

In this section, an experiment of hybrid model of AdaBoost and Gaussian Naive Bayes for 

Memory Malware detection. Hyperparameters tuning is based on GridSearchCV with 

parameters same as what was trained during individual algorithms, cross validation as 2 is 
same for all models that is trained. 

Bagging and Gaussian Naive Bayes: 

In this section, an experiment of hybrid model of Bagging and Gaussian Naive Bayes for 

Memory Malware detection. Voting classifier is based on soft or hard and hyperparameters 

for Bagging was set max_features= 40, n_estimators= 50 and for Gaussian Naïve Bayes 
var_smoothing= 1e-09 is set. 

Bagging and Stochastic Gradient Descent: In this section, an experiment of combination of 

Bagging and Stochastic Gradient Descent model for implemented for memory malware 
detection. Both the algorithms were trained separately and then combined using voting 

scheme. 

SGD and MLP: In this experiment, Stochastic Gradient Descent (SGD) and Multi-layer 

Perceptron (MLP) to create a hybrid model for classification. The parameter for SGD is set to 
alpha= 0.1, penalty= 'elasticnet’ and MLP alpha= 0.001, batch_size= 50, solver= 'adam' are 

set. 

 

MLP, Adaboost & Gaussian NB: In this experiment, hybrid model of MLP, Adaboost & 

Gaussian NB is implemented. MLP, AdaBoost and Gaussian NB are trained separately and 
combined with same parameters as before. 

Gaussian NB, Bagging & SGD: In this experiment, hybrid model of Gaussian NB, Bagging 

& SGD is implemented. The training of this model is like other hybrid models. 



14  

6 Evaluation 

6.1 Accuracy 

 
The overall performance of the proposed model evaluated using accuracy. It is one of the 

evaluation metrics for the classification model. 

 

 

 

6.1.1 Accuracy for Indivdual Models 
 

 

Figure 5: Visualisation for MLP, AdaBoost, Gaussian Naïve Bayes Bagging and SGB 

 

Models Used Accuracy Testing time 
MLP Classifier 52 0.257 

AdaBoost Classifier 63 0.345 

Gaussian Naïve Bayes 54 0.126 
Bagging Classifier 92 0.573 

SGB Classifier 53 0.078 

Table 8: Accuracy of Models 

These are the accuracy of five models MLP, Adaboost, Gaussian Naive Bayes [19], Bagging 

and SGB. By comparing all these models, Bagging proved to be best fit compared to other 

models. It showcased an accuracy of 92%. This model is not overfitting the training data. 

Both training and testing sets accuracy values are similar. 
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6.1.2 Accuracy for Hybrid Models 

 
MLP and AdaBoost: The experimental results show that MLP + Adaboost to give 64% 

accuracy in detecting malwares. This is an average model. Grid search was employed to find 

the optimal hyperparameters for the ensemble model. The hyperparameters considered were 

related to the voting strategy and individual model parameters. 

 

Figure 6: Confusion Matrix for MLP and Adaboost 

 

AdaBoost and Gaussian Naive Bayes: The model accuracy is 64% which is similar to 

AdaBoost and MLP. This combination showcases a promising balance between accuracy and 

efficiency in identifying memory malware. 

 

Figure 7: Confusion Matrix AdaBoost and Gaussian Naive Bayes 

 

 

 

Bagging and Gaussian Naive Bayes: Using default hyperparameters tuning, model accuracy 

is 89% which is best performing hybrid model when compared to others models. This 

combination showcases a promising balance between accuracy and efficiency in identifying 

memory malware. 
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Figure 8: Confusion Bagging and Gaussian Naive Bayes for Testing 

 

Bagging and Stochastic Gradient Descent: After tuning the hyperparameters, model 

accuracy showed an accuracy of 83%, precision of 85% which tells the model is performing 

great. 

 

Figure 9:Visualization of Bagging and Stochastic Gradient Boosting 

SGD and MLP: In this experiment, Stochastic Gradient Descent (SGD) and Multi layer 

Perceptron (MLP) to create a hybrid model for classification. The model achieves an 

accuracy of 50% which shows that performance of the model is poor compared to other 

models. 

 

Figure 10: Visualization of SGB and MLP 
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MLP, Adaboost & Gaussian NB: After tuning the hyperparameters, validating and testing 

model it shows a accuracy of 59% with testing time of 0.55s, precision of 0.59, and F1 score 

of 0.56 which shows that even this model is also performing poor. 

 

Figure 11: Visualization of MLP, AdaBoost and GNB 

 

Gaussian NB, Bagging & SGD: After tuning the hyperparameters, validating and testing 

model it shows an accuracy of 59% with testing time of 0.49s, precision of 0.71, recall of 

0.59 and F1 score of 0.55 which shows that even this model is also performing poor. 
 

 

 

 

 

 

 

 

 

 

 

Figure 12: Visualization of Gaussian NB, Bagging & SGD 

Predicted outcomes for the classification are summarised in the confusion matrix. 

 

Hybrid Models Accuracy 

MLP and Adaboost 64 

AdaBoost + Gaussian Naïve 

Bayes 

64 

Bagging and Gaussian Naive 
Bayes 

89 

Bagging and Stochastic 

Gradient Descent 

83 

SGD and MLP 50 

MLP, AdaBoost & Gaussian 59 
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NB  

Gaussian NB, Bagging &SGD 55 
  

 

 

6.5 Discussion 

Table 9: Accuracy of Hybrid Model. 

 

The experiments conducted in for individual classification algorithm Bagging proved to be 

efficient with 0.57 testing time in detecting malware. Although SGB classifier executed in 

0.07s but accuracy is 53%. By prioritising higher accuracy and bit more testing time Bagging 

model is considered. The experiments showed that the hybrid model of Bagging and 

Gaussian Naive Bayes is the best performing model for memory malware detection. This 

model achieved an accuracy of 89%, which is significantly higher than the accuracy of any of 

the individual models. The hybrid model is also the most efficient, with a testing time of 1.27 

seconds. The experiment was well-designed, and the results were statistically significant. 

However, the experiment could be improved by using a larger dataset and by using more 

rigorous hyperparameter tuning. The results are consistent with previous research on hybrid 

models for malware detection. But when comparing to individual algorithm Bagging is good 

model compared to other models. 

7 Conclusion and Future Work 

The experiments conducted to detect memory malware yielded insightful findings that 

underscore the strengths and considerations in employing machine learning models and 

ensembles for cybersecurity. Bagging Classifier showed an accuracy of 91% with time gap 

for testing 0.5736s. Notably, the ensemble of Bagging and Gaussian Naive Bayes exhibited 

commendable accuracy of 89%, emphasizing the synergy achieved through combining 

boosting and probabilistic modelling. According to the research conducted ensemble methods 

proved to be efficient and then other individual classification models and even in 

combination of models. The experiments also shed light on the crucial factor of time 

efficiency, with the ensemble demonstrating competitive accuracy while requiring less 

training time compared to individual models. However, limitations, such as fixed dataset size, 

call for future investigations with more extensive and diverse dataset. Further studies can also 

include in detecting subcategories of ransomware, trojan horse and spyware. 
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