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Abstract

The rapid proliferation of Internet of Things (IoT) devices has underscored the
critical need for effective anomaly detection mechanisms within the serverless cloud
environment. This study delves into exploring and implementing diverse anomaly
detection models, including Decision Tree Classifier, Logistic Regression, Random
Forest Classifier, Convolutional Neural Network with Long Short-Term Memory
(CNN with LSTM) and Convolutional Neural Network with Bidirectional Long
Short-Term Memory (CNN with BiLSTM) to identify the most effective model for
this purpose. Through comprehensive experimentation and evaluation, it was found
that CNN with BiLSTM outperforms other models, demonstrating an impressive
accuracy of approximately 83%. The bidirectional aspect of the BiLSTM layer
permits to the model to capture both past and future context, enabling a better
understanding of the sequential nature of IoT device behaviour. The implications
of this research are substantial, underscoring the significance of leveraging advanced
deep learning architectures, particularly CNN with BiLSTM, for anomaly detection
in IoT applications. The superior performance of this model suggests its potential
to significantly enhance IoT security, cloud computing and reliability. The find-
ings of this study pave the way for future research and practical implementations,
propelling the domain of IoT anomaly detection forward and fostering a safer and
more resilient IoT ecosystem.

1 Introduction

The fast rise of the Internet of Things (IoT) has resulted in an exponential increase in
the number of linked devices, helping to create a hyper-connected society. These Internet
of Things devices, which range from smart household appliances to industrial sensors,
create vast amounts of data that are important for a variety of applications and decision-
making processes. The foundation of a cloud system and its array of services is a cloud
platform created and managed by the respective vendor (e.g., Amazon for AWS, IBM
for IBM Cloud, and Google for Google Cloud). This platform assumes responsibility for
delivering and overseeing a range of cloud services, governing their deployment, managing
identity and access, and overseeing essential business operations such as client billing.
Each vendor tailors its platform to support specific services and functionalities, aligning
with their unique cloud offerings. This central platform is critical in facilitating efficient
and secure cloud service provisioning, ensuring seamless business processes, and enabling
clients to access and utilize the cloud services provided by the vendor (Islam et al.; 2021)).



Furthermore, AWS provides AWS Lambda, a cloud-computing service that allows
customers to execute code and no need to deploy or manage servers. Users are invoiced
for the precise amount of constitution which gives and computes time, assessed in 100-
millisecond intervals, in this serverless paradigm, with no expenses incurred during inact-
ive times. This method maximizes cost-effectiveness by matching expenditures with the
precise usage of computational resources, hence increasing the attraction and acceptance
of cloud computing, specifically within the AWS ecosystem (Shankar et al.; |2020)).

1.1 Background

The context for this study is the fast-growing IoT (Internet of Things) landscape and its
interaction with serverless cloud settings. The Internet of Things concept incorporates
networked devices that create massive amounts of data, enabling a plethora of applications
across several areas. Additionally, serverless cloud computing has gained popularity due
to its scalability, low cost, and event-driven processing, making it a perfect platform for
[oT deployments. The proliferation of [oT devices has transformed how data is received,
processed, and used, altering a wide range of industries like transportation, healthcare,
smart homes and agriculture. These networked devices communicate with one another
and with central cloud platforms, producing data that is critical for monitoring, analysis,
and decision-making. However, this exponential development has also raised serious
security issues, since the sheer quantity of devices makes them an appealing target for
nefarious activity (Yousuf and Kadri; 2023).
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Figure 1: ML workflow for the detection of an anomaly in ToT (Alghanmi et al.j 2022)

1.2 Aim of the study

The goal of this research is to investigate and enhance anomaly detection approaches
designed particularly for IoT devices in a serverless cloud environment, hence creating
a more efficient and secure ecosystem for IoT applications. The report aims to exam-
ine innovative techniques and methodologies that improve anomaly detection consistency
and accuracy while addressing the particular constraints given by virtualized cloud ar-
chitectures and IoT device characteristics. The fundamental goal of this research is to
develop and improve anomaly detection methods for IoT devices by utilizing advances in
machine learning, artificial intelligence, and statistical analysis and want to increase our



capacity to recognise anomalous patterns and behaviours that may indicate security risks,
illegal access, or malfunctioning IoT devices by doing so. In the ambitious aim of the
study, cloud computing emerges as a crucial enabler. The seamless integration of cloud
computing amplifies the potential of our IoT-based anomaly detection systems, offering
scalability and flexibility in handling vast data streams. By harnessing the power of the
cloud, we aim to optimize resource allocation, reduce computational burden, and enhance
the overall performance of our anomaly detection algorithms. This fusion aligns with the
rapid advancements in cloud technologies, positioning our research at the forefront of
innovation in anomaly detection within IoT ecosystems.

This report aims to create and implement anomaly detection algorithms capable of
analyzing multiple characteristics such as device behaviour, network traffic, data trans-
mission patterns, and resource utilization in a serverless cloud environment. Furthermore,
the goal of this study is to contribute to current efforts to reduce security concerns as-
sociated with IoT installations in serverless cloud infrastructures. The goal is to offer
effective and scalable anomaly detection approaches that allow for early identification of
possible threats and prompt actions to improve the security posture of [oT systems. The
study intends to decrease mistakes in anomaly detection by guaranteeing precise and fast
anomaly warnings, hence optimizing the operational efficiency of IoT systems. Another
goal is to assess how serverless computing affects anomaly detection in IoT devices.

1.3 Research Objectives

The study’s research aims are to develop anomaly detection of IoT devices in a serverless
cloud environment, extending the frontiers of efficacy, efficiency, and practicability. The
methodology is comprehensive, concentrating on three main dimensions: the development
of new procedures, the assessment of existing approaches, and the improvement of anom-
aly detection systems. To begin, the study stresses the development of novel approaches.
This entails developing unique methodologies and algorithms that may detect abnor-
malities particular to IoT devices. These approaches should improve the accuracy and
speed of anomaly detection, hence increasing the overall security of IoT implementations.
Second, the research includes a critical assessment of existing methodologies. The study
attempts to find gaps and possibilities for development by comprehensively examining
current anomaly detection technologies, their strengths, shortcomings, and adaptation to
serverless cloud systems. This evaluation will be used to refine and innovate on these
strategies. The following are some research objectives given below:

1. To Develop Innovative Anomaly Detection Algorithms

2. To Enhance Accuracy and Timeliness of Anomaly Detection

3. To Optimize Resource Utilization and Scalability

4. To Evaluate Serverless Computing’s Impact on Anomaly Detection

5. To Explore the Fusion of Multiple Data Sources

1.4 Research Questions

In this study, I provide a set of essential research issues in order to investigate novel
ways and methodologies for advancing anomaly detection for IoT devices in a serverless



cloud context. These questions cover a wide range of topics, including anomaly detec-
tion, serverless computing, and the specific issues given by IoT devices, with the goal of
propelling the area ahead and introducing innovative insights and solutions.

1. How can anomaly detection techniques be tailored to suit the characteristics and
constraints of IoT devices within a serverless cloud environment?

2. What novel machine learning and artificial intelligence models can be developed to
enhance anomaly detection for IoT devices within a serverless cloud environment?

3. How does serverless computing affect the scalability and real-time processing cap-
abilities necessary for anomaly detection in IoT devices?

4. What role does data fusion from diverse IoT sources play in enhancing anomaly
detection accuracy and early threat identification?

2 Literature Review

This section will discuss a literature review on various algorithms of anomaly detection
of Machine Learning (ML) and Deep Learning (DL) techniques for IoT.

2.1 Research Gaps

In identifying research gaps within the domain of anomaly detection for IoT devices in
a serverless cloud environment, our aim is to shed light on areas that require further
exploration and innovation. These gaps represent opportunities for developing novel
methodologies, enhancing existing approaches, and fostering a deeper understanding of
the unique challenges posed by this context. The following are some of the research gaps:

1. Integration of IoT-Specific Characteristics into Anomaly Detection

2. Optimization of Anomaly Detection for Scalability of Edge Computing
3. Real-time Anomaly Detection and Response

4. Incorporation of Edge Computing for Anomaly Detection

5. Privacy-Preserving Anomaly Detection in IoT

Identifying these research gaps provides a roadmap for future studies to focus on novel
approaches, methodologies, and frameworks. Bridging these gaps will lead to the devel-
opment of more efficient and effective anomaly detection systems tailored for IoT devices
within serverless cloud environments, ultimately fostering a more secure and resilient IoT
ecosystem.

2.2 Anomaly Detection ML Techniques for IoT

In recent years, academics have been on the edge of addressing significant global health
hazards, focusing on fall detection, which is a critical concern, especially for wheelchair
users. |Yousuf and Kadri (2023) introduced a ground-breaking architecture that employs a
novel way to monitor wheelchair falls through the use of sensor data. Their architecture, a



hybrid of Isolation Forest (IF) and a threshold-based approach (TBM), greatly improved
fall anomaly detection accuracy. The MPU-6050 tri-axial orthogonal accelerometer and
gyroscope sensor were used to acquire the necessary data. The hybrid solution utilizing
IF and threshold achieved an astounding g-mean score accuracy of roughly 97.1 per-
cent, demonstrating the possibility of combining machine learning techniques to improve
anomaly detection and decrease major health hazards connected with falls. Innovative
solutions to common problems have been sprouting in the quickly evolving landscape of
technologies such as System on Chip (SoC), Internet of Things (IoT), cloud computing,
and artificial intelligence.

Li and Zou (2021) investigated automated anomaly detection in loT sensor data, an
important step toward improving smart home security systems. Their research smoothly
linked Raspberry Pis, [oT sensors and Amazon Web Services (AWS), applying a variety
of machine-learning approaches to detect anomalous instances. Despite obstacles in prop-
erly integrating numerous technologies and providing real-time anomaly detection, their
study indicated significant improvement. It demonstrated the power of an automated
data engineering pipeline by making major advances in anomaly detection for IoT sensor
data in smart home security systems. [Poojara et al| (2022) made a similar contribu-
tion to the field of IoT applications with their Puhatu Monitoring (PM) system, which
was designed to monitor water level fluctuations in the Puhatu Nature Protection Area
(NPA) in North West Estonia. The use of IoT devices enabled accurate environmental
monitoring. Outliers in the acquired data caused challenges that were resolved using un-
supervised machine learning methods, assuring data accuracy. They built separate data
facilities as virtual functions using the Serverless (FaaS) concept, enabling event-driven
computation on data streams. The evaluation of performance showed useful insights, not-
ably in streamlining data processing and outlier identification, and provided a template
for properly monitoring environmental factors.

Luckow et al.| (2021]) have shed light on the growing requirement for effective data pro-
cessing throughout the edge-to-cloud spectrum in various IoT applications. Recognizing
the necessity for holistic factors such as productivity, reliability, cost, and security, they
suggested 7 Pilot-Edge” as a key metaphor for managing resources uniformly throughout
this continuum. This abstraction enabled applications to enclose basic functions into
high-level activities that could be effortlessly configured and deployed across the edge-
to-cloud continuum. They demonstrated how Pilot-Edge expertly controlled dispersed
resources, allowing applications to analyze job allocation based on a variety of para-
meters, setting the groundwork for enhancing IoT application performance while solving
multifarious difficulties. Whereas Ramesh et al.| (2022) stressed the vital importance of
distribution systems in power networks and future smart grids in a similar arena. Due to a
variety of circumstances, transformer failures represent a substantial danger to customers
with rising dynamic service demands. The authors suggested an Internet of Things sys-
tem for legitimate distribution transformer monitoring and anomaly identification, with
the goal of improving reliability and lifetime. Their system demonstrated the ability to
drastically cut maintenance costs and simplify predictive fault diagnosis by efficiently
utilizing IoT, cloud computing, and anomaly detection methods such as Isolation Forest.
This complete IoT-based solution addressed significant difficulties in transformer monit-
oring, offering a unique and practical way to improve distribution transformer reliability
and lifetime in changing power distribution systems and smart grids.

Recent work goes extensively into solving this need by concentrating on the identi-
fication of anomalous incidences within the cloud Limprasert et al| (2022). The study



investigates several approaches such as API scanning, internal system error messages, and
timeouts, all of which may indicate a possible threat such as a Slowloris attack. They use
machine learning-based anomaly detection methods such as Local Outlier Factor (LOF),
Isolation Forest, and Elliptic Envelope. These methods are used to discover the most
successful ways for real-time event identification, which make use of stream processing
technologies such as Kafka and message ingression. It also emphasizes Isolation Forest’s
supremacy in circumstances when log messages contain previously unknown terms that
require preparation via hashing whereas Belhadi et al.| (2021) introduce MASAD, a revolu-
tionary framework that builds on this achievement in anomaly detection (Multi-Agent
System for Anomaly Detection).

2.3 Anomaly Detection DL Techniques for IoT

[oT is a cornerstone of innovation in the ever-changing environment of technology, linking
gadgets and enabling a smooth flow of information. This connectivity, however, poses
distinct difficulties that necessitate creative solutions to assure efficiency, security, and
maximum performance. Singh et al| (2022) acknowledge the need to optimize computing
strategies for compute-intensive and hardware IoT applications. Their study delves into
a complete performance evaluation benchmark that incorporates Cloud, Fog, Edge, and
Serverless computing. |Jauro et al.|(2020) expand on this story by underlining the limits
of traditional cloud computing models. The explosion of data created by developing cloud
computing architectures has driven the incorporation of deep learning algorithms capable
of handling large datasets.

In a parallel endeavor, |Jayaraman et al.| (2021)) shifted the focus to IoT-generated
time-series data and the complex interrelationships among sensors and subsystems. An-
omaly detection within industrial data is a computationally intensive task, especially
when dealing with a high number of sensors. The authors propose leveraging Server-
less Computing for parallelization, effectively addressing performance complexities and
achieving a significant speed-up. This innovation in computational efficiency holds prom-
ise for anomaly detection in industrial IoT data. Meanwhile, Lu et al. (2023)) shed light on
the potential of edge computing, an emerging paradigm set to revolutionize computation
efficiency and data processing within the [oT framework. Intrusion detection within the
[oT domain is a critical concern addressed by Belhadi et al.| (2023). They present a novel
framework integrating deep learning and decomposition techniques, proving superior to
existing approaches. Their approach holds promise for enhanced accuracy and efficacy in
identifying intrusion groups, contributing significantly to IoT-based intrusion detection.

Lastly, |Alotaibi and Barnawi (2023)) delve into the interplay between IoT and the up-
coming sixth-generation (6G) networks, emphasizing the necessity for fortified security in
massive [oT networks. They advocate for innovative architectures leveraging intelligence,
softwarization, and infrastructure virtualization to enhance security within the ambit of
6G. Now, let’s delve into the literature concerning autoencoders. In recent years, a tech-
nological revolution has unfolded, shaping our world and industries. Researchers and
innovators, like Fic et al. (2023), have been at the forefront, devising ingenious solutions
to tackle real-world challenges using cutting-edge technologies. Fic et al.| (2023) provide
us with a glimpse into an anomaly detection system tailored for hydraulic power units,
employing the power of the Internet of Things (IoT). This system, intricately designed
and executed, showcases the potential of integrating [oT into the domain of hydraulic
power units, shedding light on its practicality and viability within business constraints.



Similarly, Kannammal et al. (2023) delve into predictive maintenance, an indispens-
able process for industries, especially focusing on oil rod pumps critical in the realm of
oil extraction. Their work takes us into the world of predictive modeling and anomaly
detection, presenting an approach that allows preemptive actions to prevent machinery
failure. By leveraging IoT and deep learning, they highlight the potential of remote pre-
dictive maintenance, promising cost and time savings for companies. Researchers such
as [Becker et al. (2021) realize the critical need for effective anomaly detection in the
broad terrain of IoT, particularly in Edge and Fog settings, Smart Cities, and Industry
4.0. They provide Local-Optimistic Scheduling (LOS), a novel approach for offloading
machine learning model training to optimise resource usage while guaranteeing closeness
to data sources. Their technique demonstrates the value of decentralized and collaborat-
ive solutions, dramatically boosting resource efficiency and opening the path for effective
real-time anomaly detection.

Furthermore, Aurangzaib et al. (2022)) address the issue of real-time data stream pro-
cessing, which is crucial in the era of widespread IoT implementation. Their study demon-
strates an innovative scalable pipeline built to efficiently handle enormous data volumes.
They demonstrate the promise of their technique in increasing real-time anomaly detec-
tion in IoT data by dynamically managing resources and employing containerization to
improve throughput and dramatically reduce latency. Lastly, |Adhikari et al.| (2023) shed
light on the dynamic landscape of real-time Industrial IoT applications. They emphasize
the necessity of computational intelligence techniques to process data efficiently in this
ever-evolving domain. Their proposed approach integrates IoT technologies and compu-
tational intelligence, highlighting the importance of energy-efficient communication and
computation in [oT applications.

3 Research Methodology

3.1 Methodology

The research methodology for Anomaly Detection of IoT Devices in a Serverless Cloud
Environment follows the Cross-Industry Standard Process for Data Mining (CRISP-DM)
framework, a well-established and widely recognized approach for data mining projects.
The workflow is shown in Figure [2] This methodology involves the following steps:

1. Business Understanding;:

e Begin by comprehensively understanding the business context and goals for
implementing anomaly detection in [oT devices within a serverless cloud en-
vironment.

e Define objectives, identify data sources, and understand the impact of anomaly
detection on the IoT ecosystem.

2. Data Understanding:

e Explore and familiarize with the available data sources.

e Understand the structure, format, and potential variables relevant to anomaly
detection.
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Figure 2: CRISP-DM Methodology ; 2007))

o Identify the IoT devices, their attributes, and the parameters critical for de-
tecting anomalies.

3. Data Preparation:
e Prepare the data for further analysis by addressing missing values, handling

outliers, and performing necessary transformations.

e Integrate data from various sources to create a consolidated dataset suitable
for training and evaluation.

e (Cleanse and preprocess the data to enhance its quality and relevance.
4. Modeling:
e Select appropriate anomaly detection algorithms suitable for IoT devices in a

serverless cloud environment.

e Experiment with various models, considering the unique characteristics of the
data and the specific requirements of the application.

e Evaluate models based on their accuracy, sensitivity, specificity, and other
relevant metrics.
5. Evaluation:
e Evaluate the performance of the chosen anomaly detection models using ap-
propriate evaluation metrics.

e Validate the models on test datasets and fine-tune parameters to achieve op-
timal results.

e Compare and contrast different models to identify the most effective approach
for anomaly detection.

6. Deployment:

e Implement the selected anomaly detection model in a real-world serverless
cloud environment.



e Integrate the model seamlessly to monitor IoT devices and detect anomalies
in real time.

e Ensure that the deployment aligns with the serverless architecture and effect-
ively utilizes cloud resources.

3.2 List of Models

A wide range of machine learning and deep learning models were used to generate suc-
cessful results in the context of anomaly detection for IoT devices in a Serverless cloud
environment. The study employs the following models:

Machine Learning Models:

1. Logistic Regression: Utilized to model the probability of a binary outcome,
essential in binary classification tasks for anomaly detection in IoT device data.

2. Decision Tree Classifier: Employed for hierarchical decision-making, effectively
identifying anomalies based on specific features within the IoT data.

3. Random Forest Classifier: Utilized for ensemble learning, offering robustness
and accuracy in anomaly detection by aggregating outputs from multiple decision
trees.

Deep Learning Models:

1. CNN with LSTM (Convolutional Neural Network with Long Short-Term
Memory): Integrated CNN to effectively extract features from sequential IoT data,
further leveraging LSTM for capturing long-term dependencies crucial in anomaly
detection.

2. CNN with BiLSTM (Convolutional Neural Network with Bidirectional
Long Short-Term Memory): Combined CNN and Bidirectional LSTM to en-
hance feature extraction and information flow bidirectionally, leading to improved
anomaly detection capabilities for IoT device data.

These models were specifically chosen and tailored to suit the unique challenges and
requirements posed by anomaly detection within the Serverless cloud environment for
[oT devices. Each model’s strengths and capabilities were harnessed to effectively discern
anomalies and contribute to the overall security and efficiency of IoT applications.

4 Design Specification

The design specification section describes the entire architecture and technical specifica-
tions of the IoT network anomaly detection system. The system architecture is modular
in nature, with numerous components combined to enable efficient and precise anomaly
detection. Data preparation, model selection, and deployment methodologies designed
particularly for IoT contexts are the major components. Starting with data preprocessing,
the system employs robust approaches to manage a wide range of IoT network traffic.
It includes approaches for data cleaning, normalization, and feature extraction that are



tailored to the specific properties of IoT data streams. Additionally, in this phase, un-
even class distributions are addressed using oversampling techniques such as SMOTE to
provide a balanced dataset for model training.

The system implements a detailed assessment procedure of machine learning and deep
learning models throughout the model selection phase. Logistic Regression, Decision
Tree Classifier, Random Forest Classifier, CNN with LSTM, and CNN with BiLSTM
are all evaluated. The selected CNN with BiLSTM model outperforms the competition,
obtaining an accuracy of 83% because of its ability to capture both temporal and spatial
correlations in IoT device activity, which is critical for anomaly identification.

Furthermore, the deployment technique is intended to aid in the detection of anom-
alies in IoT networks in real time. Given the resource limits inherent in IoT devices, the
system takes a flexible and scalable approach. This entails optimizing model size and
computational complexity in order to enable efficient inference at the edge without sacri-
ficing detection accuracy. The design specification of the system also includes systems for
continual monitoring and model retraining. It uses feedback loops to adapt to changing
[oT network behaviours and new threats. This iterative method enables the system’s
adaptation and robustness in IoT contexts against new and emerging abnormalities.

4.1 Dataset Description

The [0T-23 dataset is a useful collection of network traffic statistics from IoT devices. It
contains a total of 23 grabs, which are divided between 20 malware captures conducted in
[oT devices and 3 benign [oT device traffic captures. The dataset captures ware obtained
at the Stratosphere Laboratory, AIC group, FEL, CTU University, Czech Republic, and
were initially introduced in January 2020. The major goal of this dataset is to provide a
large and labeled archive of genuine IoT malware infections and benign traffic to the aca-
demic community, hence encouraging the development of machine learning techniques.
The dataset is structured into 23 captures, referred to as scenarios, showcasing diverse
IoT network traffic. These scenarios are further categorized into 20 network captures
(pcap files) from infected IoT devices. This environment provides a comprehensive un-
derstanding of network behaviours and characteristics. The dataset includes detailed
information about the network data and protocols found in each scenario, offering an in-
valuable resource for researchers and practitioners delving into [oT security and malware
analysis.

4.2 Data Visualization

The data visualization section presents key insights using graphical representations. Fig-
ure |3| and Figures 4| illustrate class distribution and duration analysis, revealing data
imbalance and feature relationships. Figure [6] a correlation matrix, unveils feature in-
terdependencies. These visualizations aid in understanding data patterns, guiding sub-
sequent analysis and decision-making processes. The count plot (Figures [3)) showcases
class distribution, emphasizing the need for data balancing. The funnel chart (Figure
provides insights into the top durations by label. The correlation matrix (Figure [6)
illuminates feature relationships, essential for feature selection and model building.
Figure |3| illustrates a bar chart representing the count of each target class. The labels
on the x-axis consist of "benign,” ” PartOfAHorizontalPortScan,” ”C&C,” and ” attack.”
The y-axis displays the count, ranging from 0 to 25,000. The visualization clearly in-
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Figure 3: Count Plot of Target Class

dicates an imbalance in the data distribution among the target classes, emphasizing the
need for data-balancing techniques to address this disparity effectively.

top 2 max duration by each label

W Benign
W cic

Figure 4: Top Two Maximum Durations by Label in Funnel Chart

In Figure [ a funnel chart is depicted, showcasing the top two maximum durations
for each label. The label "benign” is represented in blue, constituting 61.7% of the data,
while the label ”C&C” is highlighted in red, making up the remaining 38.3%. The funnel
chart provides a visual comparison of the durations associated with the top two instances
in each label category.

Figure [5| presents a correlation matrix illustrating the relationships between various
features. The correlation values range from -0.5 to 1.0, signifying the strength and dir-
ection of the associations between the features. A correlation value of -0.5 indicates a
negative correlation, suggesting that as one feature increases, the other tends to decrease
proportionally. On the other hand, a value of 1.0 represents a perfect positive correlation,
signifying that the features move in perfect harmony, increasing together.
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Figure 5: Correlation Matrix of Features

5 Implementation

The Implementation section is a pivotal stage in translating the conceptual framework
into tangible reality, where a rich repertoire of tools and libraries converge to materialize
the proposed models. In this section, the focus was on the robust implementation of
the proposed solution, culminating in the final stages of this process. Python, alongside
an array of essential libraries, played a fundamental role in driving the implementation
forward. Leveraging the collaborative cloud-based platform Colab, we efficiently executed
the implementation tasks.

The implementation primarily involved utilizing scikit-learn for machine learning
tasks, employing pandas for streamlined data manipulation, and tapping into plotly,
numpy, and matplotlib for generating insightful visualizations aiding in data understand-
ing. TensorFlow and Keras, being pivotal deep learning frameworks, were instrumental in
constructing and training intricate neural network models. The final stage witnessed the
development and fine-tuning of these models, focusing on achieving optimal performance
in anomaly detection for [oT devices within a Serverless cloud environment. A significant
aspect of the final stage was transforming the raw data into a format suitable for model
training and evaluation.

Data preprocessing techniques were employed to handle missing values, normalize
features, and ensure the data was appropriately structured for input into the models.
This transformed data formed the basis for subsequent steps, ensuring that the models
were fed with quality data conducive to effective learning. Subsequently, code was written
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Figure 6: Workflow of the proposed system

to instantiate, configure, and train the machine learning and deep learning models.

For the machine learning models, logistic regression, decision tree classifier, and ran-
dom forest classifier were implemented and fine-tuned using appropriate parameters to
attain optimal results. On the other hand, for the deep learning models, CNN with LSTM
and CNN with BiLSTM architectures were defined and trained to harness the power of
neural networks in anomaly detection for IoT devices. The execution of the code and
model training led to the creation of trained models, each tailored to its specific approach.
These models were then assessed using evaluation metrics such as accuracy, precision, re-
call, and F1-score to gauge their effectiveness in anomaly detection. The outcome of this
stage was a comprehensive understanding of how well each model performed and which
approach showed the most promising results.

In summary, the final stage of implementation showcased the transformation of raw
data into refined, model-ready input, the development of machine learning and deep
learning models, and the evaluation of these models to discern their effectiveness in
anomaly detection for IoT devices within a Serverless cloud environment. The utilization
of a plethora of tools and libraries was integral in achieving this successful implementation,
contributing to the advancement of IoT security in the specified context.

5.1 Logistic Regression Model

Logistic Regression is an important component in the model selection phase of this re-
search study on IoT anomaly detection. Logistic Regression is used to create a baseline
performance and to compare it to more complicated models. Despite its simplicity in
comparison to deep learning architectures, Logistic Regression plays an important role in
[oT network traffic monitoring by offering insights into the initial prediction power of a
linear classifier.
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5.2 Decision Tree Classifier Model

Within the IoT network traffic dataset, the Decision Tree Classifier supports in the ex-
ploration of non-linear correlations and feature significance.
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Figure 8: Decision Tree Classifier Architecture (Deshpande et al.f 2021)

5.3 Random Forest Classifier Model

The Random Forest Classifier is an ensemble approach that combines numerous decision
trees to improve prediction capacity while retaining interpretability. It uses an ensemble
of trees to capture complicated relationships inside the IoT network traffic information,
providing a more robust method than single Decision Trees.

5.4 CNN with LSTM

The CNN with LSTM model is an advanced deep learning architecture designed for se-
quential data processing in IoT network traffic. Its integration entails using convolutional
layers for spatial feature extraction and LSTM layers for temporal relationships, allowing
it to understand the sequential nature of IoT device activity. Figure presents the
architecture of CNN with BiLSTM.

5.5 CNN with BiLSTM

The CNN with BiLSTM emerged as the most effective deep learning architecture. This
model stands out for its ability to capture both past and future context, exploiting
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Figure 10: CNN with LSTM architecture (Zhou et al.; 2019)

the BiLSTM layer’s bidirectional flow of information to fully comprehend the sequen-
tial nature of IoT device activity.

6 Evaluation

6.1 Classification Performance of Machine Learning Models

In the evaluation of this study, three key classifiers were employed: Logistic Regression,
Decision Tree Classifier, and Random Forest Classifier. Figure present their ROC
curve for class 1 (benign).

In terms of accuracy, Logistic Regression achieved an accuracy score of approximately
0.53, indicating a moderate level of accuracy in classifying the data. The Decision Tree
(Classifier demonstrated an accuracy of about 0.69, which exceeds Logistic Regression’s
baseline accuracy, the Decision Tree Classifier provides insights into how various factors
contribute to identifying abnormalities in IoT network activity. And the Random Forest
(Classifier exhibited an accuracy score of around 0.61, which exceeds the accuracy of
Logistic Regression while falling short of the performance of the Decision Tree Classifier,
the Random Forest Classifier excels in capturing feature relevance and interactions within
the data.

Table 1| presents the comparison of classification metrics for anomaly detection models
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Figure 12: ROC Curves for ML models

in IoT devices.

Table 1: Model Performance Metrics

Model Accuracy

Logistic Regression 0.53
Decision Tree Classifier 0.69
Random Forest Classifier | 0.61

6.2 Classification Performance of DL Models

In evaluating the performance of deep learning models for anomaly detection in IToT
devices within a Serverless cloud environment, two prominent architectures were em-
ployed: CNN with LSTM and CNN with BiLSTM. Figure [13] presents their ROC curve
for class 1 (benign).

The CNN with LSTM model achieved an accuracy of approximately 0.66, demon-
strating a strong precision for class 0 (1.00) but comparatively lower recall for classes
1, 2, and 3. Although it achieves an accuracy of 0.66, exhibiting competency in learn-
ing temporal patterns, it falls short of the CNN with BiLSTM model. The use of the
CNN with LSTM model aids in understanding the significance of temporal relationships
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Figure 13: ROC Curves for DL models

within IoT network traffic, laying the groundwork for comparisons with more advanced
architectures such as CNN with BiLSTM, which ultimately outperformed it in accurately
capturing the complexities of IoT device behaviour for effective anomaly detection in this
research.

On the other hand, the CNN with BiLSTM model showcased an improved accuracy
of approximately 0.83, excelling in precision and recall for various classes. Specifically,
it demonstrated exceptional recall for class 2 (0.98) and high precision for class 3 (0.98),
contributing to an overall higher F1 score. The improved performance of the CNN with
BiLSTM indicates its ability to grasp complicated temporal patterns in IoT network
traffic, demonstrating a stronger knowledge of sequential data.

In direct comparison, the CNN with BiLSTM outperformed the CNN with LSTM
with a notable accuracy advantage of 17%. These results emphasize the significance
of employing advanced deep learning models, particularly CNN with BiLSTM, in IoT
anomaly detection, with the CNN with BiLSTM model being the most effective in this
context.

Table [2| presents the comparison of classification metrics for CNN with LSTM and
CNN with BiLSTM models in anomaly detection for IoT devices.

Table 2: Classification Metrics

Model Accuracy

CNN with LSTM 0.66
CNN with BiLSTM | 0.83

6.3 Discussion

The discussion revolves around a comprehensive analysis of the findings obtained from
all experiments and results, encompassing an in-depth exploration of the models’ per-
formances, their strengths, weaknesses, and potential implications for anomaly detection
in ToT devices within a Serverless cloud environment. Firstly, the Logistic Regression
model displayed moderate accuracy, achieving approximately 53%. The precision, recall,
and F1 scores for class 1 were notably imbalanced, indicating a challenge in identifying
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anomalies. This model’s simplicity and efficiency make it a viable initial approach, but
its limited ability to capture complex patterns might hinder its performance in intric-
ate IoT anomaly detection scenarios. The Decision Tree Classifier, despite achieving a
higher accuracy of around 69%, exhibited imbalanced precision and recall for class 1,
highlighting a challenge in identifying anomalies accurately. However, its interpretability
and ease of understanding the decision-making process make it valuable for initial in-
sights into anomaly detection. The Random Forest Classifier, with an accuracy of about
61%, showcased a balanced precision-recall trade-off for class 1. This ensemble model
outperformed the single Decision Tree Classifier, indicating the advantage of combining
multiple decision trees for improved accuracy and precision in anomaly detection.

The CNN with LSTM model demonstrated an accuracy of approximately 66%, in-
dicating its effectiveness in capturing spatial features within IoT data. However, the
precision and recall for class 1 were imbalanced, emphasizing the model’s struggle to
identify anomalies effectively. In contrast, the CNN with BiLSTM model achieved a sig-
nificantly higher accuracy of around 83%, displaying improved precision and recall for
class 1. The bidirectional aspect of BiLSTM enhanced the model’s ability to capture
intricate temporal patterns, contributing to its superior performance. Comparing the
two deep learning models, CNN with BiLSTM emerged as the most effective, surpassing
CNN with LSTM in accuracy by 17%.

7 Conclusion and Future Work

In conclusion, this study aimed to address the critical issue of anomaly detection in ToT
devices. The research question revolved around identifying the most effective model for
this purpose. The objectives included exploring and implementing various models, as-
sessing their performance, and providing valuable insights to enhance anomaly detection.

The research successfully achieved its objectives by comprehensively examining and
implementing Logistic Regression, Decision Tree Classifier, Random Forest Classifier,
CNN with LSTM, and CNN with BiLSTM models. The key findings revealed that while
traditional machine learning models demonstrated moderate performance, deep learning
models, particularly CNN with BiLSTM, displayed significantly superior accuracy and
efficiency in identifying anomalies in IoT data. The implications of this research are
substantial, highlighting the importance of leveraging advanced deep learning architec-
tures for anomaly detection in IoT applications. The superior performance of CNN with
BiLSTM emphasizes its potential for enhancing IoT security and reliability. However,
limitations were observed, notably in the imbalanced datasets affecting model perform-
ance and the need for significant computational resources for training complex models.

In terms of future work, focusing on addressing the data imbalance issue through ad-
vanced sampling techniques or novel loss functions can significantly improve model per-
formance. Additionally, incorporating more real-world data and conducting experiments
in diverse IoT environments will enhance the generalizability of the models. Exploring
edge Al applications and optimizing models for resource-constrained IoT devices is an-
other promising avenue for future research, contributing to the broader domain of IoT
anomaly detection.

Finally, exploring potential commercialization opportunities, integrating the proposed
models into real-time IoT applications, and offering them as robust anomaly detection
solutions in the market would be a meaningful step toward practical implementation and
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societal impact.
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