

MSc Research Project

MSc Cloud Computing

Manali Yadav

Student ID: 21225451

School of Computing

National College of Ireland

Supervisor: Rejwanul Haque

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Manali Amarnath Yadav

………

Student ID:

21225451
………..……

Programme:

MSc in Cloud Computing

………………………………………………………………

Year:

2023-2024

…………………………..

Module:

Research Project

…….………

Lecturer:

Rejwanul Haque

…….………

Submission
Due Date:

31/01/2024
…….………

Project Title:

Custom Kubernetes Scheduler based on priority scheduling for
Serverless Framework

…….………

Word Count:

2829………………………………….. Page Count: 10…………………………………………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Manali Yadav
……

Date:

30/01/2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Manali Yadav

Student ID: 21225451

The config manual contains prerequisites and steps required to configure or implement the

research technical work, long with the steps and detailed procedures.

1 Prerequisites
Before embarking on the setup and deployment of the custom Kubernetes Scheduler answer,
it's far essential to ensure that positive prerequisites are met. those stipulations are foundational

to a success implementation and operation of the scheduler in a Kubernetes environment,

especially within AWS. beneath is a detailed breakdown of these necessities:

1.1 AWS Account Requirements

• Active AWS Account: access to an Amazon net offerings (AWS) account is obligatory. if

you do no longer have an account, you can sign on for one on the AWS website.

• Appropriate Permissions: make certain that your AWS account has the necessary

permissions to create and manage EC2 instances, EKS clusters, and other applicable AWS

resources. This normally entails having administrative get entry to or specific IAM roles

configured.

• Billing Considerations: Be aware of the AWS pricing model, as putting in EC2 times and

EKS clusters may incur charges.

1.2 Basic Kubernetes knowledge

• Kubernetes Concepts: Familiarity with fundamental Kubernetes standards which includes

pods, nodes, clusters, deployments, and services is essential. knowledge how these

components have interaction within a Kubernetes atmosphere will aid within the powerful
use of the custom scheduler.

• Kubernetes architecture: simple information of Kubernetes structure, along with the

manage aircraft and worker nodes, is beneficial.

1.3 Technical skills in Cloud Computing, Containerisation, and Serverless

Architectures

• Cloud Computing basics: A solid know-how of cloud computing standards, which include

scalability, elasticity, and cloud aid management.

• Containerisation: understanding of containerisation concepts and container orchestration.

Familiarity with Docker or comparable container technologies is wonderful.

• Serverless Computing: understanding serverless architectures and their function in present

day cloud environments. This includes information of ways serverless function’s and are
controlled.

2

1.4 Required tools

• AWS CLI: 1The AWS Command Line Interface (CLI) should be mounted and configured

for get entry to to AWS offerings. This device allows you to interact with AWS services at
once from the command line.

• kubectl: that is the command-line device for interacting with the Kubernetes cluster. It must

be installed and configured to speak together with your Kubernetes cluster.

• Helm: Helm, a package supervisor for Kubernetes, is used for coping with Kubernetes

packages. It simplifies the deployment and management of packages on Kubernetes.

• Python: Python is required for strolling simulation scripts and potentially for other

automation obligations. make certain that a current version of Python is mounted and

configured on your gadget.

2 Tools Installation
Here are concise step-with the aid of-step commands for putting in the necessary equipment:
AWS CLI, kubectl, Helm, and Python. Following those steps will make sure you have the

desired tools to control and set up your Kubernetes scheduler.

2.1 AWS CLI set up.

• Download: Visit the AWS CLI legit page and download the right version on your running

device.

• Installation: Run the downloaded installer and comply with the on-screen commands.

• Configure: Open a terminal or command prompt and run aws configure to set up your AWS

credentials (access Key identity, secret get admission to Key) and default location.

2.2 kubectl set up

• Download: observe the commands on the Kubernetes official documentation to download

kubectl to the running machine.

• Installation: Execute the installation instructions as per the commands for your precise
platform.

• Verify: Run kubectl version --customer to make certain it's hooked up efficaciously.

2.3 Helm set up

• Download: go to the Helm releases web page and download the modern-day launch in your

working machine.

• Set up: Unpack the downloaded report and pass the helm binary to a listing to your

machine's route.

• Verify: Run helm version to test the installation.

2.4 Python set up

• Download: go to the Python legit internet site and download the ultra-modern version to

your running system.

• Install: Run the installer and comply with the setup commands. make certain you pick out

the choice to feature Python to your course.

• Verify: Open a terminal or command set off and kind python --version to verify the set up.

1 https://www.knowledgehut.com/blog/cloud-computing/aws-cli

3

2.5 Verification of successful set up

To affirm that all tools are established effectively, run the subsequent commands on your
terminal or command prompt:

• aws --version

• kubectl version --client

• helm version

• python --version

Those steps will equip you with the vital tools to continue with configuring and deploying your
custom Kubernetes scheduler in AWS surroundings.

3 Setting up the Kubernetes Environment on AWS

3.1 Create EC2 Instances

• Log in to AWS Console: access your AWS account and navigate to the EC2 Dashboard.

• Launch Instances: click on 'launch instances' to begin the setup method.

• Select AMI: select an Amazon system photograph (AMI) appropriate for your Kubernetes

cluster.

• Select instance type: pick out the instance sorts (e.g., m4.big, t2.micro) as consistent with

your requirements.

• Configure example info: set up community and subnet settings and configure other example

settings as needed.

• Add storage: connect additional storage if required.

• Configure Security group: set up protection businesses with appropriate policies for

inbound and outbound visitors.

• Review and Launch: evaluation your configurations and click 'launch'. choose a key pair

or create a new one for SSH get right of entry to to the instances.
After creating the instances, we can see the running instances in the instances dashboard as

shown below.

3.2 Configure EKS Cluster

• 2Access EKS Service: inside the AWS Console, visit the EKS carrier.

• Create Cluster: click on 'Create Cluster'. name your cluster and choose the Kubernetes

model.

• Cluster Configuration: pick out the VPC and subnets to your cluster. Configure different

settings-like IAM roles and logging as wanted (Berman, 2023).

• Create: evaluate your settings and create the cluster.

2 https://logz.io/blog/amazon-eks-cluster/

4

Here we created an EKS Cluster named EKSCluster in the AWS which acts as the Master Node

as shown below.

3.3 Create Node Groups

• Access Cluster: within the EKS Dashboard, pick out your cluster.

• Create Node Group: click on 'add Node organisation'. call your node institution and set

node IAM position.

• Configure Nodes: pick the instance kind on your nodes and set the favored scaling

parameters.

• Networking: pick the subnets to your nodes.

• Launch: overview and create the node group.

Here we created one Node Group called NodeGroup1 which acts as a Worker Node Inside the

EKS Cluster as shown below.

4 Deploying Apache OpenWhisk

4.1 Install Helm

• 3Download Helm: go to the Helm releases web page and download the proper version for

your device.

• Install: observe the set-up instructions-specific to your operating machine.

• Initialise Helm: Run helm init to installation Helm for your gadget.

Ensure Helm is properly configured and ready to use in your cluster by checking its status:

3 https://phoenixnap.com/kb/install-helm/

5

helm version

To list the available Helm repositories, run:

helm repo list

Deploy Applications Using Helm Charts

Steps:
1. Add Helm repositories for charts you want to use.

 Use -> helm repo adds command

2. Install applications using Helm charts. For example, to install a sample application.

helm install myapp stable/sample-chart

Monitor and manage your deployed applications with Helm. You can upgrade, rollback, and

delete releases, among other operations.

4.2 Upload OpenWhisk to Helm

• 4Add Repository: Run helm repo add openwhisk to add the OpenWhisk Helm chart

repository to your Helm configuration.

4.3 Configure OpenWhisk

• Create Configuration File: Create a myvalues.yaml document to specify custom
configurations for OpenWhisk.

• Edit Configuration: customise the settings in myvalues.yaml in line with your deployment

needs.

4.4 Install OpenWhisk

• Installation Chart: Use helm install my-openwhisk openwhisk/openwhisk -f

myvalues.yaml to deploy OpenWhisk to your Kubernetes cluster.

4 https://jamesthom.as/2018/01/starting-openwhisk-in-sixty-seconds/

6

After we can see the pods running using the command

kubectl get pods -n openwhisk

• Verify set up: check the status of the deployment the usage of kubectl get pods -n

openwhisk to ensure all components are walking correctly (Thomas, 2018).
The output looks like below.

We can see the services running using the command

kubectl get services -n openwhisk

The output looks like below.

5 Implementing the Custom Scheduler

5.1 Design the Scheduler

The design section of the custom scheduler is pivotal in tailoring Kubernetes scheduling to

unique desires. This entails:

1. Developing the Scheduler Algorithm:

• Recognition on developing a pod scoring set of rules that evaluates each pod-based

totally on elements-like CPU and reminiscence requirements, priority, and different

custom criteria.

• Make certain the set of rules aligns together with your Kubernetes environment's

operational goals, together with optimising aid usage or prioritising certain workloads.

2. Programming the Scheduler:

• Write the scheduler code in a language likeminded with the Kubernetes API, generally

pass or Python.

• Utilise Kubernetes patron libraries to interact with the cluster and control sources.

3. Testing the algorithm:

• Before deployment, very well look at the scheduler in managed surroundings.

7

• Simulate diverse scenarios to ensure the scheduler behaves as predicted below unique

conditions.

4. Documentation:

• Report the scheduler's layout, such as the logic at the back of the scoring set of rules

and commands for enhancing or extending its capability.

Scheduler.py

5.2 Deploy the Scheduler

Deploying the custom scheduler involves integrating it into your Kubernetes cluster:

1. Prepare the Deployment Configuration:

• Create a Kubernetes deployment configuration file for the scheduler. This file needs to

define the scheduler's deployment parameters, including aid requests and bounds,

environment variables, and other vital settings.

2. Set up Scheduler Permissions:

• Make sure the scheduler has the important permissions to engage with the Kubernetes

API. This typically involves setting up suitable RBAC (function-based access

manipulate) policies.

.

3. Deploy using kubectl:

• Use the kubectl apply -f [scheduler-config-file].yaml command to install the scheduler

for your Kubernetes cluster.

• Verify the deployment via che

cking the scheduler pod's popularity with kubectl get pods.

4. Integrate with the Kubernetes Cluster:

8

• Configure your Kubernetes cluster to apply the custom scheduler. this might contain

updating the pod specification to specify the custom scheduler or editing the cluster's

scheduler configuration.

5. Monitor and Validate:

• As soon as deployed, reveal the scheduler's performance to make certain it's functioning

as intended.

• Validate its effectiveness by watching how it allocates assets and schedules pods in

evaluation to the default scheduler.

6 Simulation and Testing

6.1 Develop Python Scripts

The improvement of Python scripts is a essential step in simulating and evaluating the

performance of the custom Kubernetes scheduler. those scripts will serve two number one

functions:

1. Workload Simulation:

• Write scripts to generate synthetic workloads that mimic real-world eventualities. these

workloads should vary in aid necessities (CPU, memory) and priorities to thoroughly

test the scheduler's skills.

• Make certain the scripts can create extraordinary types of pods, with various sizes and

configurations, to simulate diverse software wishes.

2. Performance Data Collection:

• Develop mechanisms inside the scripts to accumulate applicable performance metrics.

This consists of pod start-up times, aid utilisation, node allocation efficiency, and

greater.

• Put into effect logging or data aggregation capabilities to seize and keep performance

data for evaluation.

6.2 Run Simulations

Executing the simulations includes strolling the evolved Python scripts for your Kubernetes

surroundings:

1. Enviornment Setup:

• Put together your Kubernetes cluster for simulation. make certain all-important assets

and configurations are in vicinity.

• Deploy the custom scheduler within the cluster if no longer already strolling.

2. Execute Scripts:

• Run the Python scripts to initiate the workload simulation. screen the cluster to ensure

the workloads are being deployed as anticipated.

• Use Kubernetes tools like kubectl or the dashboard to look at the scheduler's conduct

in real-time.

3. Monitor Simulations:

• Continuously display the simulations for any unexpected conduct or errors.

• Alter the scripts or cluster configuration as needed to make sure accurate and effective

simulation.

9

6.3 Analyse Results

The very last step is to investigate the accrued information to assess the overall performance

of the custom scheduler:

1. Data Compilation:

• Accumulate all the performance information gathered for the duration of the

simulations.

• Arrange the data in a layout appropriate for evaluation, which includes spreadsheets or

charts.

2. Performance comparison:

• Examine the performance metrics of the custom scheduler towards the ones of the

default Kubernetes scheduler. consciousness on key regions-like aid allocation

performance, response to high-demand eventualities, and normal device balance.

• Use statistical methods or visualisation tools to highlight variations and developments.

3. Insights and Conclusions:

• Draw insights from the records evaluation. identify regions wherein the custom

scheduler excels or wishes development.

• Document your findings and conclusions, imparting a clear understanding of the

custom scheduler's overall performance in diverse scenarios.

7 Monitoring and Maintenance

7.1 Monitor Scheduler Performance

Ordinary monitoring is crucial to make certain the custom scheduler operates efficaciously and

effectively:

• Set up Monitoring tools: utilise Kubernetes monitoring equipment-like Prometheus and

Grafana to music the scheduler's overall performance metrics, which includes pod

scheduling times, aid utilisation, and node health.

• Regular Check: schedule recurring tests to study the scheduler's overall performance. pay

attention to any anomalies or performance dips.

• Resource Utilisation Analysis: preserve an eye fixed on how well the scheduler is making

use of cluster sources. look for patterns or trends that imply either efficient or inefficient

useful resource utilisation.

• Alerts and Notifications: Configure indicators for crucial occasions or thresholds to

proactively control capacity problems.

7.2 Update and Maintain

Non-stop improvement is prime to preserving an effective scheduler:

• Update Regularly: hold the scheduler up to date with the today's Kubernetes releases and

protection patches.

• Performance-based Improvements: Use the records collected from tracking and checking

out to refine and enhance the scheduler. implement enhancements to optimise its overall

performance.

• Documentation Updates: maintain the documentation of the scheduler, along with setup

and configuration publications, up to date with any modifications or improvements made.

8 Troubleshooting and FAQs
Common troubles and answers

Address common demanding situations users might stumble upon:

10

• Scheduler not Allocating Pods: provide solutions-like checking scheduler logs, verifying

configuration files, and ensuring accurate Kubernetes API integration.

• Resource Allocation issues: provide steerage on adjusting useful resource allocation

parameters or troubleshooting ability conflicts.

Frequently asked Questions

Assemble a listing of FAQs to assist users in understanding and using the custom scheduler

efficaciously:

1. How to customise the Scheduler's Scoring algorithm?

2. What to Do If the Scheduler Fails to start?

3. Best Practices for Scheduler maintenance and Updates.

9 conclusion
Summary of the Configuration manual

This manual has furnished a comprehensive guide for putting in place, deploying, and

managing a custom Kubernetes scheduler in an AWS environment. It blanketed the entirety

from initial device installation to advanced scheduler configuration, trying out, and upkeep.

Final remarks and additional resources

• Encouragement for remarks: encourage users to provide feedback on the scheduler's overall

performance and the manual's usefulness.

• Continuous gaining knowledge of: Remind users of the significance of staying up to date

with Kubernetes and cloud computing advancements.

• Additional resources: offer hyperlinks to further reading materials, community boards, and

assist channels for added assist and mastering.

	1 Prerequisites
	1.1 AWS Account Requirements
	1.2 Basic Kubernetes knowledge
	1.3 Technical skills in Cloud Computing, Containerisation, and Serverless Architectures
	1.4 Required tools

	2 Tools Installation
	2.1 AWS CLI set up.
	2.2 kubectl set up
	2.3 Helm set up
	2.4 Python set up
	2.5 Verification of successful set up

	3 Setting up the Kubernetes Environment on AWS
	3.1 Create EC2 Instances
	3.2 Configure EKS Cluster
	3.3 Create Node Groups

	4 Deploying Apache OpenWhisk
	4.1 Install Helm
	4.2 Upload OpenWhisk to Helm
	4.3 Configure OpenWhisk
	4.4 Install OpenWhisk

	5 Implementing the Custom Scheduler
	5.1 Design the Scheduler
	5.2 Deploy the Scheduler

	6 Simulation and Testing
	6.1 Develop Python Scripts
	6.2 Run Simulations
	6.3 Analyse Results

	7 Monitoring and Maintenance
	7.1 Monitor Scheduler Performance
	7.2 Update and Maintain

	8 Troubleshooting and FAQs
	9 conclusion

