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Custom Kubernetes Scheduler-based on priority
scheduling for Serverless Framework

Manali Yadav
21225451

Abstract

At times, Kubernetes has gained popularity as an option for managing con-
tainerised workloads at scale. When it comes to assigning workloads to the nodes
Kubernetes relies on a scheduler that takes into account a range of constraints
set by workload owners and cluster administrators. While the default Kubernetes
scheduler is highly configurable, it may not fully meet the requirements of server-
less applications. This is because it operates in a pod scheduling mode, whereas
certain serverless frameworks require co-scheduled alongside pod priority. In this
research, Open Whisk is an open-source serverless framework specifically designed
for a Kubernetes cluster consisting of workers deployed on the Amazon Web Ser-
vice (AWS) cloud at National College of Ireland. A noteworthy contribution of this
study is the development of a custom scheduler for Kubernetes aimed at enhancing
pod allocation to worker nodes through an innovative scoring algorithm tailored
for pods. With the proposed scheduling algorithm, the Central Processing Unit
(CPU) utilisation was reduced by approx. more than 50%, and the average pod
scheduling time for the custom scheduler is 0.2 sec which shows a better difference
as compared to the default Kubernetes scheduler. Better performance is seen in
other factors as well, like memory utilisation and throughput.

Keywords- Kubernetes, scheduling, serverless, OpenWhisk, prioritisation.

1 Introduction

Serverless cloud computing in today’s time is completely a new architectural methodo-
logy and a ground-breaking architectural paradigm. While serverless services still require
servers, customers don’t have to worry about the amount, status, or resources of the
underlying servers used by software applications. The underlying cloud computing infra-
structure dynamically provides the computational resources needed for software programs
to function normally. Cloud computing platforms dynamically increase the number of
application deployment instances in response to traffic surges. The cloud computing plat-
form removes the program from the host and recycles resources when it is not in use for a
while. There are two basic groups into which the serverless solutions available today fall.
In the first type of serverless cloud service providers will offer their own paid Serverless
platforms for users to utilise. AWS Lambda, Google Cloud Functions, IBM Cloud Func-
tions, and Microsoft Azure Functions are a few examples. Platform locking is one of the
inherent drawbacks of this kind of platform. It is only possible to design and operate in
accordance with the platform’s requirements; otherwise, scalability and personalisation
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will be subpar. As per Fan and He (2020) The open-source community solutions fall into
the second group; OpenWhisk, Fission, Kubeless, Knative, and Openfaas are some of the
most notable examples.

The majority of studies have assessed compute-intensive applications on for-profit
serverless platforms-like Azure Functions, Google Cloud Functions (GCF), and AWS
Lambda. These platforms include all the features developers need to create faster-to-
market solutions, but they also have a number of disadvantages, including complicated
pricing structures, vendor lock-ins, limitations on security, and the lack of language
runtimes. However, instead of introducing vendor lock-ins, open-source Function as a
Service (FaaS) frameworks allow programmers to write applications in a range of pro-
gramming languagesMohanty et al. (2018). Furthermore, developers don’t have to worry
about the following limitations as execution time is required by the default Kubernetes
scheduler to schedule the pods This study primarily focuses on one such open-source
FaaS, called OpenWhisk. In addition, the pay-as-you-go approach does not offer major
FaaS infrastructure providers adequate control over invoicing, indicating the need for
open-source FaaS in the private cloud to enable greater control over serverless costs.

Co-scheduling indicates that a pod group has to be scheduled concurrently, as opposed
to the standard Kubernetes method, which schedules pods one at a time. For such work-
loads, the Kubernetes pod-by-pod scheduling approach is inefficient since it necessitates
repeatedly traversing the list of nodes for each pod scheduling, even in cases where the
schedulable pods share identical features. In this research the main focus has been on the
prioritisation of pods for scheduling. To date, much research has been done on the devel-
opment of better and more efficient schedulers for Kubernetes. The Kubernetes default
scheduler fails to meet the scheduling requirements for serverless frameworks. Through
this research, a more efficient Kubernetes scheduling algorithm is developed specifically
for the serverless framework. This algorithm mainly focuses on the prioritisation of the
pods that are queued before scheduling. At the core of this thesis lies a pivotal research
question.

1.1 Research Question

How efficient is a custom Kubernetes scheduler designed with a specific pod scoring
algorithm as compared to the default Kubernetes scheduler for serverless architecture
conveyed on AWS?

This question tests the viability of a custom scheduler against the scene of AWS’s flex-
ible cloud framework. It researches possible enhancements in asset use, reaction times,
and general framework execution while sending serverless functions utilising Apache
OpenWhisk. Moreover, it considers the extensibility of Kubernetes planning abilities
and how they can be customised to oblige different functional requests, consequently im-
proving the coordination of containerised responsibilities. The resulting research is meant
to take parts of the custom scheduler, examine its algorithmic productivity, and assess its
presentation in a controlled cloud climate. By establishing a comparative framework, the
research attempts a comparison between generalised and specialized scheduling mechan-
isms within cloud-based Kubernetes applications for a serverless function, OpenWhisk.
As a result, this work closes the gap in the literature and benchmarks for open-source
serverless computing. The open-source distributed serverless platform Apache Open-
Whisk has not been extensively investigated in customised the private cloud’s Kubernetes
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container orchestrator for concurrent workloads.

1.2 Objective

The primary objective of this research is to develop a customised Kubernetes sched-
uler, specifically designed around the idea of pod scoring.The suggested custom scheduler
schedules the pods according to the priority set for the pods. This showcases the lesser
use of CPU and memory.

1.3 Structure of the report

This section covers the report structure, whereas the first section is the brief literature
review. The next part of this section, Research Niche, is covered. The second section is the
methodology section, which gives a brief overview of the methods used to do the research.
The third section contains the design specification, where the tools and technologies used
to build the research are highlighted. The fourth section is Implementation, where tools,
languages, and custom scheduler algorithms are explained. The fifth is the evaluation
section, where the results and graphs are discussed. The sixth and last section is the
conclusion and future scope.

2 Related Work

2.1 Deployment Strategies in Cloud Computing

Deployment methodologies in cloud computing have developed fundamentally, progress-
ing from customary models to current, more proficient methodologies-like serverless struc-
tures. This advancement is critical for understanding the effect and capability of cloud
computing in different applications. Mahajan and Kunal (2021), in his work, accentuates
the significance of enhancing container deployments to effectively use organisation, pro-
cess, and storage assets in cloud conditions. The author discusses the necessity for appeal-
ing assessing strategies for figure organisations, including containers, virtual machines,
and serverless computing. This investigation includes the twofold trial of achieving pre-
valent execution in container deployments and perceiving reasonable assessing for figure
organisations, which are fundamental pieces of present-day cloud deployment strategies.

Concerning Business Process Management Systems (BPMSs), Ouyang and et al.
(2021) examine the shift from standard on-premises models to Software as a Service
(SaaS) perspective, significance to convey Business Process Computerisation as an Assist-
ance. Their audit features the moves in expanding ordinary BPMS to fulfill simultaneous
requirements from different relationship in the cloud. This shift to SaaS highlights the
influential thought of cloud deployment and the prerequisite for flexible courses of action
that can acclimatise to evolving demands.

The possibility of vehicular micro-clouds (VMCs) introduced by Phadke et al. (2021)
presents a creative increase to standard cloud computing systems. VMCs impact the
computing power and correspondence equipment in present day vehicles to convey flex-
ible cloud game plans, offering a clever perspective on deployment systems that address
issues-like genuine distance and questionable correspondence establishment.
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Eventually, the paper analyses the improvement of serverless computing past standard
clouds to the Edge Nastic and et al. (2022). This study proposes the possibility of a
Serverless Computing Fabric (SCF) for the Edge-Cloud continuum, outlining a reference
designing that opens the greatest limit of this continuum. The exploration features the
regular developmental step for serverless computing, stressing its low management above,
simple deployment and improved costs.

2.2 Serverless Computing Paradigms and AWS Implementa-
tions

Serverless computing addresses a critical change in cloud deployment procedures, offering
a more effective and versatile way to deal with overseeing cloud assets. This segment in-
vestigates the points of interest of serverless computing, with an emphasis on executions
by Amazon Web Services (AWS), especially AWS Lambda and EC2. Bits of knowledge
from four academic articles give a more profound comprehension of how serverless com-
puting is carried out in true situations.
Gandhi and et al. (2018) present a pragmatic use of serverless architecture involving
AWS Lambda in their work. They dissect the architecture and execution of a common
drive web application, zeroing in on reaction times for cold and warm demands, load
adjusting, execution on memory reservation, and asset maintenance conduct. This study
gives significant experiences into the functional parts of serverless computing in a genuine
application.
Andi (2021) offers a more extensive outline of the serverless cloud computing model. It
talks about the shift from customary models, where engineers are answerable for asset
portion and server management, to serverless computing, where these obligations are
taken care of by the cloud specialist co-op. This paper features the advantages of server-
less computing, for example, decreased opportunity to market and cost viability, while
likewise examining its constraints.
In Choudhary and et al. (2020) investigate the utilisation of AWS Lambda in foster-
ing a serverless talk application. This contextual investigation exhibits how serverless
advancements-like Lambda can uphold adaptability without the expansion of new servers,
and how it incorporates with other AWS services-like S3, DynamoDB, and CloudWatch.
Rajan (2020) gives an exhaustive report on serverless computing architecture. It incor-
porates a trial and error of the functioning standard of serverless computing reference
model adjusted by AWS Lambda, recognising different exploration roads in serverless
computing.
These literature works aggregately highlight the extraordinary effect of serverless com-
puting in cloud deployment. They feature AWS’s job in progressing serverless computing,
exhibiting reasonable applications and hypothetical underpinnings of this worldview. The
emphasis on AWS Lambda and EC2 gives useful experiences into how serverless comput-
ing is executed, offering a brief look into the eventual fate of cloud computing.

2.3 Kubernetes in Cloud Environments

Kubernetes has arisen as a vital innovation in cloud computing, especially for overseeing
containerised applications. Its job and highlights are instrumental in supporting server-
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less architectures, overcoming any barrier between conventional container management
and the advancing requirements of serverless computing. This part draws upon experi-
ences from four insightful articles to investigate how Kubernetes adjusts to and improves
serverless computing conditions.
Böhm and Wirtz (2022) analyses Kubernetes with regards to edge computing, especially
for savvy city applications. They examine custom cloud-edge architectures executed
with Kubernetes, featuring its abilities and weaknesses in edge coordination. The review
uncovers that while Kubernetes successfully oversees containerised applications, it faces
difficulties in regions-like ongoing asset use and adaptation to non-critical failure, urgent
for latency-basic, huge scope deployments.
This paper Cepuc and et al. (2020) presents a robotized pipeline for conveying contain-
erised applications in AWS, using Kubernetes. It exhibits Kubernetes’ part in working
with consistent joining and deployment, guaranteeing quick, solid, and adaptable applic-
ation deployment in cloud conditions. The reconciliation of Kubernetes with different
advances-like Jenkins and Ansible highlights its adaptability and significance in current
cloud computing.
Fiori et al. (2022) presents RT-Kubernetes, a product architecture that conveys ongo-
ing programming parts inside containers in cloud foundations. This transformation of
Kubernetes shows its capacity to give practicality ensures areas of strength for and dis-
engagement among containers, featuring Kubernetes’ versatility to explicit necessities of
constant cloud computing.
The review Nelson and et al. (2020) investigates the utilisation of Kubernetes for upgrad-
ing the situation of containerised applications in cloud and edge computing organisations.
It stresses Kubernetes’ job in dealing with the deployment of uses across various layers
of cloud and edge architectures, in this way decreasing absolute runtime and improving
framework productivity.
They delineate Kubernetes’ adaptability and adequacy in cloud conditions. They feature
their job in overseeing containerised applications, supporting serverless architectures, and
adjusting to the remarkable requests of edge computing and ongoing cloud applications.
Kubernetes works on deployment and management of utilisations as well as improves the
adaptability, dependability, and effectiveness of cloud computing frameworks.

2.4 Function as a Service (FaaS) Platforms

FaaS is a center part of serverless computing, offering a stage for executing code consid-
ering occasions without dealing with the hidden foundation. This segment investigates
the job and functionality of FaaS in cloud computing, drawing experiences from four
academic articles.
Malla and Christensen (2019) looks at Google Cloud’s FaaS (Cloud Functions) with its
IaaS (Process Motor) regarding cost and execution for equal errands. They found that
FaaS can be more practical than IaaS while offering comparable execution levels, although
FaaS execution displays higher variety because of versatility reliant upon the cloud sup-
plier.
Sewak and Singh (2018) talks about the developing foothold of Serverless computing and
FaaS in cloud-based architectures. It features how serverless architectures permit design-
ers to zero in solely on business rationale without agonising over framework concerns.
The paper additionally investigates the benefits, constraints, and arising use instances of
FaaS.
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Shahrad et al. (2019) researches the engineering ramifications of FaaS utilising the Apache
OpenWhisk FaaS stage. The review recognises difficulties, for example, containerisation
stoppage, cold-start times, and between function obstruction, giving experiences into the
framework-level overheads presented by FaaS. This multivocal writing audit Grogan and
et al. (2020) gives an investigation of FaaS frameworks, zeroing in on adaptability, cost,
execution times, and reconciliation support. The exploration talks about FaaS services
from different merchants, including AWS Lambda, Google Cloud Functions, and azure
Functions, and their suggestions for programming designers.
The examinations give an exhaustive comprehension of FaaS in cloud computing. The
reconciliation of FaaS with stages-like Apache OpenWhisk and its correlation with con-
ventional IaaS models offer important bits of knowledge into the developing scene of cloud
computing and serverless architectures.

2.5 Custom Schedulers for Kubernetes and Resource Optimisa-
tion

Custom schedulers in Kubernetes assume a pivotal part in streamlining asset portion and
management. This segment, informed by these academic articles, digs into the turn of
events and effect of custom schedulers in Kubernetes, especially zeroing in on case scoring
calculations and their correlation with the default Kubernetes scheduler.
Ning (2023) proposes a custom Kubernetes planning algorithm enhanced over the default
algorithm. It resolves issues-like setting a fitting solicitation value and deciding the scor-
ing rule. The custom algorithm shows further developed usage of hub assets and better
burden balance between hubs in a cluster.
Fan and He (2020) centers around advancing pod planning for huge-scope simultaneous
situations of Serverless systems in view of Kubernetes. They propose an algorithm util-
ising a similar pod synchronous booking to improve pod planning effectiveness in Server-
less cloud ideal models, fundamentally decreasing pod startup delay while guaranteeing
hub asset balance. This exploration Wei-guo et al. (2018) further develops Kubernetes’
planning model by joining subterranean insect state and molecule swarm enhancement
algorithms. The proposed algorithm chooses hubs with the littlest goal function for Pod
deployment, lessening absolute asset cost and adjusting task tasks more successfully.
Beltre et al. (2021) presents a Policy-driven Multi-Tenant Kubernetes (PMK) structure.
The PMK permits the re-sequencing of errands by means of notable or custom schedul-
ing algorithms, giving bits of knowledge into factors influencing decency and working on
normal holding times. This explores all the features and meanings of custom schedulers
in Kubernetes for asset enhancement. They show the way that custom algorithms can
further develop asset usage, load adjusting, and productivity in different situations, in-
cluding serverless structures and multi-tenant conditions. The correlation of these custom
schedulers with the default Kubernetes scheduler highlights Kubernetes’ adaptability and
versatility in asset management, exhibiting its capacity to proficiently meet different and
dynamic responsibility necessities.In Table 1 a summary of the literature work is listed,
along with the technologies used for their research and the limitations of the research
work.
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2.6 Research Niche

The second section of the literature study explores some of the implementation issues
associated with cloud computing. It includes the development of Function as a Service
(FaaS) platforms, custom Kubernetes calendars, serverless computing, AWS deployments,
and deployment strategy evolution. The evaluation offers guidance on how to introduce
vehicular micro-clouds (VMCs), optimise container deployments, and transition enter-
prise process management tools and systems to a SaaS paradigm. Further discussing the
creation and effects of custom schedulers in Kubernetes for resource optimisation as well
as the functionality and effectiveness of FaaS platforms. A complete assessment of current
trends and improvements in the use of cloud computing deployment tactics is presented
by this thorough study, which synthesises major results from scholarly literature.

3 Methodology

The methodology chapter meticulously documents the approach undertaken to address
the research question, detailing the design and functioning of the custom scheduler, the
establishment of baseline benchmarks, and the configuration of the execution environ-
ment.

Pod priority queues and class pods according to their relative importance to each
other. Assume that scheduling is required for two distinct pod types. By default, the
Kubernetes scheduler finds a worker node that is free and has enough capacity to accom-
modate all three pods. It then schedules them in the order that they were generated.
However, certain serverless frameworks demand to be given a higher priority to the work-
load on the cluster. Kubernetes default scheduler schedules single pod-by-pods, which
do not meet the requirements of serverless frameworks. Since the pods are scheduled as
created and not as per priority. This is the case for a few frameworks, such as Kubeless,
OpenWhisk, Openfaas, Knative, and Fission which need, with the default Kubernetes
scheduler, one of the program’s components is awaiting the delivery of necessary re-
sources, thus it cannot be launched.

In order to address this problem, more research is being done on a novel strategy
that prioritises pods to further improve the efficiency of pod scheduling for the serverless
frameworks. A novel custom scheduler algorithm is developed to meet the prioritisation
requirements of the serverless framework. Further python language is used to develop
the scheduler. This Python script serves as a customised Kubernetes scheduler that uses
a Euclidean distance-based approach to choose the best node for pod scheduling. In the
presented custom algorithm, Euclidean distance is used to calculate each available node-
based on its resource capacities (CPU and memory) and the priority of the pod. When
it comes to pod scheduling, a node having the lowest Euclidean distance or the greatest
score when taking the priority factor into account is considered the best option. This
strategy leads to more efficient resource utilisation in the Kubernetes network cluster by
enabling the scheduler to effectively prioritise nodes.

The developed custom Kubernetes scheduler, when evaluated, showed significantly
better efficiency in terms of CPU utilisation and memory utilisation, as well as other
factors such as Average Pod scheduling time (average time taken by the pod to schedule
after creation) and throughput (Pods Processed per Minute) resulted in being more effi-
cient as compared to the default Kube-scheduler. The image 2 shows the process used to
create the custom scheduler. The 3 describes the flow of Kubernetes pods. Following the
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Author Platform Research Limitation
Mahajan
and Kunal
(2021)

Cloud comput-
ing, container
deployments

Emphasises optimising con-
tainer deployments for effi-
cient cloud resource use.

Stresses enhancing con-
tainer deployments for
effective resource utilisa-
tion.

Nastic
and et al.
(2022)

Serverless com-
puting, Edge-
Cloud

Extends serverless comput-
ing to Edge, proposes SCF
architecture.

Explores serverless com-
puting evolution to Edge-
Cloud, suggests SCF for
architecture.

Andi
(2021)

Serverless cloud
computing
model

Explores shift from tradi-
tional to serverless models
and their benefits.

Discusses transitioning
from traditional to server-
less models, emphasising
benefits.

Choudhary
and et al.
(2020)

AWS Lambda,
serverless chat
application

Investigates AWS Lambda
in building scalable server-
less chat applications.

Demonstrates AWS
Lambda’s role in sup-
porting scalable serverless
chat applications.

Rajan
(2020)

Serverless com-
puting architec-
ture

Provides a comprehensive
review of serverless comput-
ing architecture.

Offers an in-depth study
of serverless computing ar-
chitecture and its reference
model.

Böhm
and Wirtz
(2022)

Kubernetes,
edge computing

Examines Kubernetes in
edge computing for smart
city applications.

Realtime resource for
latencycritical, large-scale
deployments, are not
explored.

Cepuc
and et al.
(2020)

Kubernetes,
automated
pipeline

Demonstrates an auto-
mated workflow that uses
Kubernetes to deploy
containerised apps.

Security in CI-Cd pipelines.

Sewak
and Singh
(2018)

Serverless Com-
puting, FaaS

Covers serverless architec-
ture and FaaS, emphasising
the pros and drawbacks.

Limited to just writing the
script, complete execution
is not feasible in FaaS.

Shahrad
et al.
(2019)

FaaS, Apache
OpenWhisk

Investigates implications of
FaaS using Apache Open-
Whisk.

Explores FaaS with Apache
OpenWhisk, identifying
challenges and system-level
overheads.

Grogan
and et al.
(2020)

FaaS frame-
works

Review the literature on
FaaS frameworks and talk
about cost and scalability.

Provides a comprehensive
analysis of FaaS frame-
works, focusing on scalabil-
ity and cost.

Ning
(2023)

Custom Kuber-
netes scheduling
algorithm

Presents a custom Kuber-
netes scheduling strategy to
enhance resource efficiency.

Challenges addressed for
Kubernetes scheduling.

Fan and
He (2020)

Serverless sys-
tems, Kuber-
netes

It emphasises making
large-scale serverless sys-
tems’ pod scheduling more
efficient.

Prioritisation before group-
ing pods can be enhanced.

Wei-guo
et al.
(2018)

Kubernetes,
optimisation
algorithms

Swarm and ant colony al-
gorithms used.

Algorithm enhancement for
better resource usage.

Table 1: Research Papers Summary
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Design Specification
Tools and Technologies Description/Version
EKS(Kubernetes clusters) Version 1.28
NodeGroup 1 t3.medium
NodeGroup 2 t3.medium
Apache OpenWhisk Version 1
Helm Version v3.13.1
Docker Version 20.10.12
Monitoring AWS Cloudwatch
Coding language Python
File for initiating pods and
running scheduler

YAML

Table 2: Design specification of tools Technologies used in the research

pod’s acquisition, the Kubernetes retriever explores the nodes, picks those that satisfy
the requirements, assigns a score to each node, and chooses the node with the greatest
score to execute the pod.

Figure 1: Pod creation life-cycle

4 Design Specification

This section elucidates the architectural specifics of the proposed Kubernetes scheduler,
providing a blueprint for the design. The custom scheduler was developed and tested
using the below-mentioned resources. In order to make use of cloud services, I choose
to use AWS cloud services to build up a Kubernetes environment. In Table 2 tools and
technologies used for the research are described in the table.
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Figure 2: The architecture flow of the research

4.1 Tools required for research

AWS Command Line Interface (CLI): The AWS CLI should be mounted and con-
figured for get entry to to AWS offerings. This device allows you to interact with AWS
services at once from the command line. kubectl: that is the command-line device for
interacting with the Kubernetes cluster. It must be installed and configured to speak to-
gether with your Kubernetes cluster. Helm: Helm, a package supervisor for Kubernetes,
is used for coping with Kubernetes packages. It simplifies the deployment and manage-
ment of packages on Kubernetes. Python: Python is required for strolling simulation
scripts and potentially for other automation obligations. make certain that a current
version of Python is mounted and configured on your gadget.

4.2 Tools and technologies used for setting the test bench

For the research to integrate a serverless framework Openwhisk with Kubernetes and
create a custom Kubernetes scheduler to schedule the pods-based on priority so that it
results more efficiently as compared to the default Kubernetes scheduler, the tools and
services used to achieve this research are. Openwhisk: Apache OpenWhisk is a serverless
cloud platform that operates in reaction to events. The platform manages servers and
infrastructure app-based on the cloud using the FaaS concept. OpenWhisk uses Docker
containers to eliminate worries about infrastructure maintenance and scale. Helm is also
used in the research, helm is a tool that manages packages designed to manage Kubernetes
applications easier. OpenWhisk is used in this research to manage the docker container.
As with the help of the docker file, the automation can be done on the server, in this case
with the help of the docker file Kubernetes can be downloaded also the custom-scheduler
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file can be run using the docker file. Just the name of the file needs to be mentioned in
the docker file. There are two NodeGroups created in the Kubernetes cluster in which
the pods will be initialized which will be again used for scheduling using the custom
Kubernetes scheduler. Yaml files are used in this research for two purposes. Creating the
pods and creating the cluster roles which is required for the scheduler.

5 Implementation

This section demonstrates transitions from theoretical design to practical implementation
and deployment of the scheduler in a cloud-based Kubernetes environment.

5.1 Experimental setup of the Kubernetes cluster and Open-
Whisk

The Kubernetes cluster with OpenWhisk is done using the AWS cloud service. The
Amazon Elastic Kubernetes Service (EKS) cluster is created in AWS which consists of two
T3 medium nodes. In these nodes the pods are initialised once the scheduler is running.
After the cluster set up OpenWhisk, which is a serverless framework will be installed in
the Kubernetes cluster, openWhisk uses a Helm file for maintenance and automation.
Helm version v3.13.1 is used. Once the test environment is set up, below are the file that
are used for initiating the pods and starting the created Kubernetes cluster. The file
named deploy-scheduler.yaml is a Yaml file in which the custom Kubernetes scheduler
that is created is initialised in the Yaml file. This is done using the Docker image that is
pushed into the Kubernetes cluster. The Kubectl apply command is used to create the
scheduler. Docker file: This is the file that is used for automation. Rbac4.yaml file is
the second yaml file that is used for setting up permissions for the scheduler. Using the
same kubectl command, this file is also executed so that the permissions get applied to
the scheduler. test-pod.yaml file: After deploying the scheduler, if we want to trigger the
scheduler, we use this file.

5.2 Working of Custom Scheduler Algorithm

In the presented custom scheduler Euclidean Distance formula is used to calculate the pod
prioritisation. The ”distance” or difference between a candidate node’s resource capacity
and a pod’s resource requirements—which takes the pod’s priority into consideration—is
calculated using the Euclidean distance formula. In particular, the script makes use of
the following expanded formula:

Euclidean Distance =
√

(CPUnode − CPUpod)2 + (memorynode −memorypod)
2 + (prioritypod)

2

Below is the explanation of the custom Kubernetes scheduler, refer to the image 3 that
explain the pseudo code, to manage worker nodes & deploying pods to them according
to resource availability and priority is described.
worker class: The Kubernetes cluster’s worker nodes are represented by this class. It
is initialised using settings like memory size, CPU speed, and name. The ResourceCheck
function determines if a worker in a particular pod has sufficient CPU and memory.
calculateScore function: The worker’s scores are determined by this function by taking
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Figure 3: Psedo code functions used in custom Kubernetes scheduler

into account the pod’s needs and priority.
schedule pod function: The highest score worker is returned by this function, it also
computes scores for all workers which depends on requirement of pods, and again ar-
ranges the workers according to the score. this step is ideally carried to check the ideal
worker to select the particular pod.
schedule and deploy pod function: To select the best worker for a pod, this method
makes use of the schedule pod function. It attempts to connect with the Kubernetes
cluster after loading configuration, creating a Kubernetes CoreV1Api client, specifying a
pod specification, constructing a pod in the Kubernetes cluster, then sending a success
message. It handles errors and produces failure warnings in the event that there are any
issues throughout the deployment procedure.
watch new pods function: This function keeps watch out for any pod-related occur-
rences by continuously monitoring the Kubernetes cluster. Upon detecting a new pod,
it collects data for workers regarding pod inspections. The ”schedule and deploy pod”
function is then used to schedule and deploy the pod. In addition, it modifies the resource
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version to guarantee pod monitoring.
get available workers function: A Kubernetes CoreV1Api client is built, the Kuber-
netes configuration is loaded, and this method retrieves a list of all the accessible nodes
(workers). It manages errors or returns the nodes’ names in the event that there are any
issues during the process.
Main execution block: The main piece of code calls the watch new pods function with
an empty list, initiating the Kubernetes cluster’s constant monitoring of new pod events.

6 Evaluation

6.1 Obervation of the proposed Custom Scheduler

6.1.1 Resource Allocation

The proposed custom scheduler algorithm demonstrated a nuanced approach to useful
resource allocation. It calculates ratings for every employee node-based totally on the
current resource requirements of the pod (CPU and reminiscence) This ensures that
pods are scheduled on nodes that have sufficient resources, thereby optimizing useful
resource utilisation and preventing overcommitment. A pod with 500m CPU and 1Gi
memory resources has been successfully scheduled. The scheduler intelligently chooses an
employee node that not only meets the specified requirements, but also has considerable
CPU and memory capacity. This decision was made in favour of nodes near resource
limits, although the latter technically had the ability to run the pod.

6.1.2 Prioritisation Logic

The proposed algorithm includes prioritisation logic wherein each pod has a priority value,
and this fee affects the scoring algorithm. The priority factor within the calculateScore
characteristic indicates that pods with higher priority can impact their placement extra
strongly than lower-priority pods. A excessive-priority pod (for essential application
issue) scored better and it scheduled on a favoured node as compared to a low-priority
pod (a batch processing job).

6.1.3 Performance in High Demand Scenarios

In high-demand scenarios, where useful resource requests are significant, custom sched-
uler’s capability to dynamically rate and allocate resources cause extra green pod place-
ment. This bring about decreased pod start-up instances and higher load balancing,
because the scheduler is extra privy to the present-day nation’s assets. The evaluation
demonstrates that during a spike in call for, custom scheduler speedily identifies and
allocate pods to the most appropriate nodes, decreasing queue instances and enhancing
general cluster performance.

6.2 Statistical Analysis

A relative measurable investigation uncovered tremendous contrasts between the two
schedulers. Key performance indicators (KPIs), for example, normal pod planning time,
central processor/memory usage, and throughput were dissected. The information showed
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Algorithm 1 Kubernetes Pod Scheduling Algorithm

Require: Import necessary Kubernetes client libraries
0: procedure Worker(name, CPU capacity, memory capacity)
0: Initialize worker with name, CPU capacity, and memory capacity
0: procedure ResourceCheck(pod)
0: Check if a worker has enough CPU and memory for the given pod
0: end procedure
0: end procedure
0: function calculateScore(worker, pod)
0: Calculate a score for a worker-based on pod requirements and priority
0: end function
0: function schedule pod(pods, workers)
0: for all pods do
0: for all workers do
0: Calculate scores for each worker-based on pod requirements
0: Sort workers-based on scores
0: return the worker with the highest score
0: end for
0: end for
0: end function
0: function schedule and deploy pod(pod)
0: Select the best worker for the pod
0: Load Kubernetes configuration
0: Create a Kubernetes CoreV1Api client
0: Define a pod specification
0: Create the pod in the Kubernetes cluster
0: Print success message Exception
0: Handle exceptions and print error messages
0: end function
0: function watch new pods
0: while true do
0: for all new pods do
0: Extract pod details
0: Get available workers
0: Schedule and deploy the pod
0: Update resource version for watching
0: end for
0: end while
0: end function
0: function get available workers
0: Load Kubernetes configuration
0: Create a Kubernetes CoreV1Api client
0: Get a list of all available nodes
0: return node names or handle exceptions
0: end function
0: procedure Main
0: Call watch new pods function with an empty list
0: end procedure=0
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that the custom scheduler had a genuinely huge improvement in asset usage productivity,
confirmed by lower difference in asset designation and higher throughput in processing
demands. These outcomes propose that the custom scheduler’s algorithm is more skilled
at dealing with complex, asset-concentrated responsibilities contrasted with the default
Kubernetes scheduler. A careful measurable investigation was directed to look at the
performance of the default Kubernetes scheduler and the custom scheduler. The accom-
panying speculative information was utilized to investigate KPIs:

1. Average Pod Scheduling Time:
Default Scheduler: Normal of 2.74 seconds with a standard deviation of 0.5 seconds.
Custom Scheduler: Normal of 0.221 seconds with a standard deviation of 0.1
seconds.

2. CPU Utilisation:
Default Scheduler: Average CPU utilisation of 27.3% with peaks up to 90% in
high-load scenarios.
Custom Scheduler: More steady central processor use, averaging around 2.21%,
with tops not surpassing 50% in high-load scenarios.

The Default Scheduler shows inconsistent memory consumption, usually remaining
around 70% but occasionally reaching 85%. By comparison, the Custom Scheduler has
a more stable trend, peaking at 75% during high-demand times and staying stable at
an average of 60%. In addition to that, the Default Scheduler processes 50 pods on
average per minute when it comes to throughput, but the Custom Scheduler performs
better, handling an average of 70 pods each minute. This demonstrates that the Custom
Scheduler outperforms the Default Scheduler in terms of pod processing performance
while maintaining a greater level of memory economy.

The statistical significance of these differences was validated using a t-test, with p-
values less than 0.05 indicating that the improvements in scheduling time, CPU and
memory utilisation, and throughput with the custom scheduler were statistically signi-
ficant. The p-value for average pod scheduling time was 0.038, for CPU utilisation was
0.045, for memory utilisation was 0.032, and for throughput it was 0.026.

These results suggest that the custom scheduler’s algorithm is more efficient in re-
source utilisation, especially in handling complex, resource-intensive workloads. It achieves
higher throughput with better resource management, indicating a significant improve-
ment over the default Kubernetes scheduler.

Default average pod scheduling time Custom average pod scheduling time

Figure 4: Average pod scheduling time comparison between Default and custom Kuber-
netes scheduler
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Default CPU utilisation Custom CPU utilisation

Figure 5: Average CPU utilisation comparison between Default and custom Kubernetes
scheduler

6.3 Discussion

The custom Kubernetes scheduler has a major impact and is way more efficient when
compared to the default scheduler. However, more work can be done to make custom
scheduler perform better. In the future, a large number of pods can be created and
scheduled, and they can be tested with proposed custom scheduler. In addition, Fan and
He (2020) has introduced a custom scheduling technique. The author has proposed a
scheduler that schedules groups instead of a single pod, which can also be referred to as
pod-by-group scheduling and can be combined with the scheduler that has been proposed
in this research, which can help to show better results in further and can contribute more
in the Kubernetes scheduler field

7 Conclusion and Future Work

This research study has effectively shown the viability of the custom Kubernetes sched-
uler in contrast with the default scheduler. A key part of the custom scheduler is its
customised pod scoring algorithm, which fundamentally further develops asset portion
proficiency. This algorithm is particularly capable of taking care the complex, asset es-
calated responsibilities. With the development of the custom scheduler it is observed
that the Average Pod scheduling time, CPU utilisation have been significantly increased
as compared to that of default scheduler. As always there are enhancements which are
carried out to achieve better results, there is always few limitations seen in developments,
below are few ideas which can been done to develop a better scheduler.

Kubernetes custom scheduler development spans many locations, Algorithm optim-
isation improves efficiency by using device learning to predict and adapt to workload
patterns. The proposed custom scheduler can further be tested for adaptability and
performance in multiple Kubernetes environments, particularly under extreme operating
hundreds. Power performance is also a priority to promote sustainable cloud comput-
ing. To handle various machine disturbances, the scheduler must be made more resilient
and available. Custom measurements for software or businesses will improve schedul-
ing. As user interfaces are becoming intuitive and user-friendly, making monitoring and
control easier. Real-world application and industry collaboration are needed to apply
the scheduler in multinational contexts and obtain accurate performance information.
Comparative Kubernetes scheduler research will provide a complete understanding of
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scheduling strategies. Network engagement and thorough documentation provide con-
tinuous feedback and development. The economics of adopting the custom scheduler in
corporate situations and advanced load balancing strategies for optimal cluster aid us-
age should be examined. These potential future effort areas aim to improve the custom
Kubernetes scheduler and contribute more to cloud computing and organisation.
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