
A Comparative Analysis of Metaheuristic
Algorithms for Optimizing Tasks in

Serverless Frameworks for MapReduce
Applications

MSc Research Project

Cloud Computing

Vaishnavi Sarjerao Waghmare
Student ID: 21172846

School of Computing

National College of Ireland

Supervisor: Prof. Shivani Jaswal



2

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Vaishnavi Sarjearo Waghmare

Student ID: 21172846

Programme: MSc in Cloud Computing

Year: 2024

Module: MSc Cloud Research Project

Supervisor: Prof. Shivani Jaswal

Submission Due Date: 14/01/2024

Project Title: A Comparative Analysis of Metaheuristic Algorithms for Op-
timizing Tasks in Serverless Frameworks for MapReduce Ap-
plications

Word Count: 6718

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Vaishnavi Sarjerao Waghmare

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



A Comparative Analysis of Metaheuristic Algorithms
for Optimizing Tasks in Serverless Frameworks for

MapReduce Applications

Vaishnavi Sarjerao Waghmare
21172846

Abstract

In this research, we have proposed a task optimization process for enhancing
the performance of MapReduce applications within a serverless framework. The
investigation is a comparison of the artificial bee colony algorithm and the Cuckoo
Search algorithm in terms of job execution time, CPU resource utilization, and
scalability. This analysis utilized the Terasort Hadoop Benchmarking dataset on
an AWS EMR instance. The study found that Cuckoo Search Optimization had
superior performance compared to ABC in terms of task completion time and CPU
Utilization. And when comparing scalability, ABC outperforms Cuckoo Search Op-
timization Algorithm. These findings demonstrate the effectiveness of the Cuckoo
Search Optimization algorithm in reducing task execution times, improving resource
utilization, and enhancing adaptability within serverless MapReduce applications.
Thus, the paper’s novelty illuminates on the potential of nature-inspired algorithms
to overcome intrinsic challenges and enhance the efficiency of MapReduce applica-
tions. It provides useful insights for the emerging field of Serverless computing.

1 Introduction

Cloud computing is a recent advancement in the IT sector. Cloud computing offers im-
mediate access to extensive pools of scalable computing resources. Due to the increasing
number of cloud service providers and improvements in cloud technology, consumers now
have access to high-quality services at inexpensive prices. Many firms are transitioning
their operations to the cloud due to its adaptable pay-as-you-go pricing model and lack
of upfront hardware costs. The regular utilization of such technology results in a sub-
stantial accumulation of data. Due to the large amount of data generated by cloud users,
a centralized data center consisting of storage devices is necessary. Data management is
a crucial operation within the cloud computing environment. Therefore, employing ef-
fective job scheduling algorithms has the potential to enhance the velocity and scalability
of cloud computing. Thus here we get a narrowed view upon the Serverless Frameworks.
MapReduce is a popular programming model used in distributed computing systems such
as Hadoop, which divides work into map tasks (to analyze data) and reduce tasks (to
consolidate findings). This allows for the processing and generation of massive data-
sets in parallel. In MapReduce, the term ”Serverless” refers to the abstraction of server
management, freeing developers from having to worry about managing or providing in-
frastructure and allowing them to concentrate only on writing code. It is significant

1



because it simplifies operations, allowing for cost-effective resource allocation and on-
demand MapReduce task execution without the need to manage underlying servers. In
a serverless MapReduce framework, task optimization is important since it directly af-
fects cost effectiveness and resource consumption. In the dynamically allocated serverless
environment, fine-tuning tasks guarantees the best possible allocation of computational
demands, lowering execution time and optimizing resource efficiency. In a serverless ar-
chitecture, this enhancement improves the overall performance, cost-effectiveness, and
scalability of MapReduce programs.
The development of distributed computing has led to ground breaking paradigm shift
and among them, serverless structures have arisen as a progressive way to deal with
application improvement and sending. Serverless computing stands out in this dynamic
environment, where agility and scalability are crucial, by removing the complexity of infra-
structure management and allowing developers to concentrate solely on writing code, says
Balasubramaniam (2017). Therefore this research, focuses on a comprehensive investig-
ation of how MapReduce applications can be integrated into serverless environments,
highlighting obstacles and offering suggestions for improving performance. Furthermore,
the study compares the use of Artificial Bee Colony and Cuckoo Search optimization
algorithm to optimize the sorting process in MapReduce applications.
Problems with Optimizing MapReduce tasks in Serverless despite its promise, integration
of serverless environments and MapReduce applications face challenges. The advance-
ment of undertakings experiences difficulties like CPU Resource Usage, cold start issue
and Scalability. Exploring these issues requires resourceful solutions for the successful ex-
ecution of MapReduce applications in serverless systems. The three core problems have
been explicitly explained in the further segments of this study. Thus, research tries to
establish conjunction identifying the core issues of a serverless architecture and objects
to compare the process of task scheduling by comparing the Meta heuristic algorithms
utilizing the Hadoop Terasort Benchmark dataset.

Figure 1: The Serverless Architecture

1.1 Overview of Serverless Frameworks

Serverless architectures, as demonstrated by platforms such as AWS Lambda and Google
Cloud functions, fundamentally transform the way applications are designed and run.
The essence of serverless computing rests in the event-driven, stateless execution of func-
tions triggered by explicit events. Serverless computing is an attractive option for a wide
range of applications due to its planned flexibility, reduced operational overhead, and

2



cost-effectiveness.
The primary advantage of a serverless architecture lies in the programming flexibility
it offers. Unlike traditional or conditional architectures that need programmers to be
concerned about backend upkeep, such as handling high workloads, serverless comput-
ing may automatically scale in response to incoming requests,says the author Camacho
and Alves-Souza (2018). This feature offers a robust scalability capacity to serverless
programs, allowing for dynamic resource allocation, hence enhancing flexibility and effi-
ciency.
Furthermore, serverless computing does not imply the absence of servers, but rather the
management of servers by service providers like AWS or Google Cloud. This approach
is highly efficient for cloud architects, since it enables them to deploy stateless programs
and leverage their capabilities. The serverless program has unlimited capabilities, as long
as the appropriate resources are carefully selected, allowing the programs to operate until
they are entirely executed. Moreover, this capacity to execute actions without storing
any information can be implemented in a distributed environment, allowing for parallel
processing of the operations. Therefore, a serverless deployment has the ability to adjust
to partial failures, allowing the complete application to continue running even if certain
components are stopped, is mentioned by the author Nazari et al. (2021).Therefore, by
disregarding the program’s permanent states, programmers can focus on developing mod-
ular and reusable routines to optimize the overall process and improve its efficiency.
However, the extensive adoption of serverless frameworks is mostly driven by their cost-
effectiveness, since customers have the option to only pay for the actual computing time
utilized by the application during its execution. Clients need not be concerned about the
servers’ idle time during periods of non-use. Furthermore, there is no need for concern
regarding the upkeep of these servers, which makes the serverless design highly cost-
effective. This on-demand payment mechanism fulfills the most challenging client needs
in their modern business environment, where clients prioritize cost-effectiveness.
The author explains Li et al. (2021) Serverless computing enables the efficient sharing
of computing resources among several users in the Cloud by utilizing containers. Every
time a function is called, it executes in its own separate container. If a user function does
not have an existing container, a new container must be built for it. Nevertheless, the
extended duration required for a container to initialize leads to a significant delay in the
response time of the operation. Our analysis reveals that the software packages used in
the containers for some user operations are largely identical. If an operation necessitating
a new container can ”borrow” a comparable heated container from earlier actions, it can
eliminate the lengthy process of starting from a cold state. Given the aforementioned
discovery, we suggest the implementation of Pagurus, a real-time container management
system designed to eliminate the issue of cold starting in serverless computing. Pagurus
consists of an inter-activity container scheduler and an intra-action container scheduler
for each action. The container scheduler facilitates the scheduling of shared containers
across different tasks. The intra-action container scheduler is responsible for managing
the lifespan of containers. The trial results demonstrate that Pagurus efficiently erad-
icates the time-consuming process of container cold startup. Pagurus may initiate an
action within a few 10 milliseconds, even in the absence of a heated container.

Here, the paper Pu et al. (2019) explains Serverless computing is on the verge of
delivering the long-awaited benefits of seamless scalability and price that is calculated in
milliseconds. In order to accomplish this objective, service providers enforce a detailed

3



computational model in which each function is assigned a specific maximum time, a pre-
determined amount of memory, and no persistent local storage. The precise elasticity
of serverless computing is crucial for achieving optimal utilization in general computa-
tional tasks, such as analytics workloads. However, the presence of resource limits poses
a challenge in implementing applications that require the movement of substantial data
between non-overlapping functions. This paper introduces Locus, a serverless analytics
system that strategically integrates cost-effective yet slow storage with high-performance
yet expensive storage, in order to achieve optimal performance while maintaining cost-
efficiency. Locus utilizes a performance model to assist users in determining the appro-
priate type and quantity of storage needed to achieve the desired balance between cost
and performance. We assess the performance of Locus on various analytics applications
such as TPC-DS, CloudSort, and Big Data Benchmark. Our evaluation demonstrates
that Locus effectively manages the balance between cost and performance, resulting in
significant performance enhancements of 4×-500× compared to a baseline system that
only uses slow storage. Additionally, Locus reduces resource consumption by up to 59%
while achieving similar performance on a cluster of virtual machines. It is worth noting
that Locus is 1.99× slower compared to Redshift.

1.2 MapReduce Applications in Serverless Environments

Following its first introduction by Google, the MapReduce programming approach has
shown to be highly effective at managing large datasets. These programs are typically
used to interface with larger system programs such as Apache Hadoop in order to provide
innovative viewpoints. These configurations of serverless programs offer opportunities for
efficient and flexible handling and processing of large amounts of data.
MapReduce operates based on the principle of mapping and reducing complex serverless
applications. It allows for the mapping and subsequent reduction of multiple processes,
enabling the management of intricate tasks through smaller and more manageable sub-
functions. The spreading of information among the several distributed hubs combines to
produce important results. The mapping and reduction strategy has proven to be highly
effective in managing large or intricate datasets where using a single compute machine
becomes impractical or restricted is stated by the author Daw et al. (2020). In addition,
MapReduce enhances the efficiency of managing and analyzing vast quantities of data by
successfully utilizing parallelization to handle complicated processing tasks and optimize
computational resources.
Programmers utilize MapReduce in system contexts where dedicated serverless clusters
are controlled by frameworks like Apache Hadoop. Nevertheless, the integration of
MapReduce functions into a serverless architecture triggers a shift in the prevailing model,
creating new opportunities for managing and analyzing large volumes of data. (Kc and
Freeh (2014)).
The serverless programs possess a flexible and responsive nature, enabling them to ef-
fectively handle data while seamlessly integrating with MapReduce processes. Serverless
refers to an AWS Lambda function that enhances programming efficiency in serverless
platforms like Amazon and Google. These large-scale suppliers offer extensive capabil-
ities to automate the process of allocating resources and enhance programming through
the use of MapReduce. The dynamic scaling feature is highly valuable when workloads
fluctuate, which is a common occurrence in big data processing.In addition, the server-
less paradigm complements the stateless aspect of MapReduce by allowing capabilities to

4



be run without restrictions due to explicit events. This aligns with the distributed and
parallel characteristics of MapReduce, facilitating the smooth integration of these two
potent paradigms. (Lloyd et al. (2018))

1.3 Challenges in Optimizing Tasks in Serverless for MapRe-
duce

Calibrating resource allocation to match the specific requirements of MapReduce jobs in
serverless platforms can be a difficult task. The diverse computing and storage demands
of different stages in a MapReduce operation make it challenging to effectively allocate
work among available resources.

The inherent decentralization, adaptability, and self-organization of these algorithms
make them particularly suitable for addressing the complex challenges of resource alloc-
ation, the problem of starting from scratch, and the fluctuation of dynamic workloads in
relation to MapReduce functions within a serverless architecture.

These methods will be used to repeatedly improve the allocation of assets, aiming to
achieve an optimal distribution of tasks across the serverless environment. This method
possesses the capacity to flexibly adjust to different workloads and enhance the dis-
tribution of computational resources by mimicking the collaborative and decentralized
decision-making process observed in bee colonies, specifically tailored to the specific re-
quirements of MapReduce applications.

1.4 Research Objective

Thus, considering the limitaions of the default tasks optimizations or the traditional
ways of optimizations for MapReduce particularly in relation with the meta-heuristic al-
gorithms of the Serverless Frameworks , this research delves into the tasks optimization
by considering few key metrics like Execution time, CPU resource utilization and Scalab-
ility. While we know there are various approaches to develop a custom algorithm, the
meta-heuristic approaches have emerged as the most commonly used algorithm in this
context, which brings us to our research question-
I would also like to specify about the novelty of the proposed research. As highlighted in
the related works many researchers have done task optimization using various platforms
like Cloud, Fog and Edge or let that be in Serverless, but here comes a point where I
understood the research gap in numerous papers which said, further the research could
be carried out to find the latencies, scalability or the resource usage time more precisely
using various optimization algorithms. Hence, which gave me a ray and directed to con-
duct this research in Serverless platform and using the ABC algorithms as none study
was yet found to be done specifically in Serverless using these two algorithm. Hence, we
come to our research question:

How does the performance and efficiency of optimizing tasks in Serverless
Frameworks for MapReduce applications improve when applying the meta-
heuristic algorithms, and how well does these algorithms compare in terms of
execution time, CPU utilization and scalability?

5



1.5 Structure and Outline

The remaining sections of this report are divided in few sections as mentioned below:

• Section 2 represents the related works that have been implemented related to the
topic Optimizing Tasks in Serverless and MapReduce in Serverless Frameworks.

• Section 3 of the paper gives us the details about the methodology followed.

• Section 4 gives a quick overview of the design and implementation of this work.

• Section 5 presents the experiments carried out and its results.

• Section 6 is the last section which provides us with the conclusion and future work.

2 Related Work

The presentation by Gu et al. (2014) provides an overview of the latest developments in
serverless computing. As per the author’s statement, serverless technology has eradicated
the necessity for developers to allocate and oversee servers. In order to attain the neces-
sary business logic, developers should prioritize functions over business logic. The author
delineates the disadvantages of utilizing serverless architecture for both consumers and
suppliers. FaaS models impose some constraints on consumers, such as the absence of the
most up-to-date versions of software libraries. Delivering services entails overseeing the
whole lifespan of a user’s operation, including its ability to handle increased demands and
its resilience to failures. Developers will have the ability to create applications that are
specifically tailored to the behavior of the platform. The author highlights many issues
for both providers and users, including cost, cold start, resource restrictions, security,
scaling, hybrid cloud, and legacy system challenges. In addition to lowering the cost of
resource utilization during job execution and idle periods, Serverless encounters a basic
difficulty related to pricing. In order to minimize expenses, it is necessary to implement
an efficient scaling mechanism that would completely eliminate the charge during peri-
ods of inactivity. In order to mitigate resource constraints, it is imperative to effectively
administer the platform during periods of increased demand and in the face of potential
cyber threats. Given that multi-user platforms perform numerous activities, it is imper-
ative for the provider to effectively adjust and segregate these functions. The supplier
must ensure that functions are both elastic and scalable as appropriate. Developers face
several issues while working with serverless architecture, including configuration, deploy-
ment, IDEs, concurrency, scalability, monitoring, and debugging.
The study asserts that a trade-off between memory and latency is essential in serverless
settings. The EMARS approach seeks to optimize this trade-off by allocating memory
according to the individual requirements of functions, hence improving efficiency in server-
less platforms.

The study by Saha and Jindal (2018)signifies a notable advancement in the effective
management of resources in serverless computing, particularly focusing on the difficulties
related to memory allocation. Moreover, it presents numerous opportunities for future
research, specifically in the integration of these solutions with established serverless plat-
forms and the optimization of these solutions according to practical workloads. This study

6



presents a mechanism that enables the monitoring of memory and workload in order to
accurately estimate future requirements. This code dynamically sets memory restric-
tions in our present implementation, which operates independently of OpenLambda. To
achieve an urgent objective, it is necessary to connect this dynamic update to memory
with OpenLambda in order to provide a comprehensive solution. The config generator
can be enhanced with intelligence to determine the most efficient memory limitations by
analyzing the logged information. In order to perform workload based modeling, it is
necessary to determine a threshold value based on additional testing. Furthermore, we
intend to enhance the assessment process by conducting tests using authentic workloads
and evaluating the performance on alternative serverless platforms that are open-source
and using different heuristic and metaheuristic algorithms, Another potential avenue for
future research is the utilization of machine learning methodologies to forecast the most
suitable memory needs.

The author Silambarasan et al. (2016) says, ensuring optimal usage and performance
isolation of basic hardware while managing resources at a large scale is a crucial challenge
for any cloud management software. In addition to the scalability problem, a cloud-level
resource management layer needs to address the heterogeneity of frameworks, compat-
ibility requirements between virtual machines and underlying hardware, the creation of
isolated resource islands due to storage and network connectivity, and the limited capa-
city of storage resources. In this study, we conducted an investigation in multiple fields
to explore potential opportunities for optimization. The main objective was to develop
an efficient topology to address resource allocation issues in the resource model. The
Artificial Bee Colony Algorithm (ABC) was chosen as the optimization algorithm for the
multi-objective problem. It has been found to provide the best optimized result and re-
quires less computation time to achieve the desired objective. The results of the proposed
topology have shown promising and effective outcomes, with reduced computational ef-
fort. This paper further says to increase the efficiency of the experiments conducted in
the Serverless platform.

In this paper the author Liu et al. (2014) focuses on the issue of efficient task schedul-
ing in cloud computing, which is crucial for maximizing resource usage and minimizing
execution time. The proposal introduces a new scheduling technique that synergistically
combines the advantages of Genetic Algorithms (GA) with Ant Colony Optimization
(ACO). This strategy utilizes the global search capability of GA to rapidly identify op-
timal solutions and the efficient convergence of ACO through strong positive feedback.
The approach commences by employing a Genetic approach (GA) to produce a collection
of optimal solutions. These solutions are subsequently utilized as the initial pheromones
for the Ant Colony Optimization (ACO) process. The objective of this hybrid approach
is to address the drawbacks of both GA (inefficiency in late-stage optimization) and ACO
(dependence on starting pheromone levels). The algorithm’s usefulness is demonstrated
through simulation studies, particularly in large-scale systems, as compared to employing
GA or ACO alone. The results indicate that the GA-ACO algorithm surpasses both GA
and ACO in terms of success rate and the amount of iterations needed to discover the
best solution. The research emphasizes the algorithm’s superior efficiency in cloud com-
puting environments, where the management of task scheduling and resource allocation
is intricate. The combination of Genetic Algorithm (GA) and Ant Colony Optimization
(ACO) shows advantageous for scheduling tasks in cloud computing, enhancing the al-
gorithm’s search efficiency. The research indicates the possibility of further investigation

7



and implementation of combination optimization strategies in cloud computing or server-
less systems, utilizing diverse optimizing algorithms.

In this paper the author Ustiugov et al. (2021) evaluated the latency of the cold start
for each capability and compared it to the latency of the warm capability. It is important
to note that when a warm instance is called, it stays in memory and does not encounter
any delay when starting up. In order to obtain a detailed breakdown of the latency ex-
perienced during the initial start of the system, their instrument invoked each capacity
many times. To simulate a cold latency, they clear the page caches of the host operating
system after each test. Figure 2 illustrates the latency for both the cold and warm serving
of each function. A function instance exhibits little request latency when it remains in
a warm state, meaning it is stored in memory, as anticipated. In contrast, the authors
discovered that initiating a process from a starting point that lacks prior information
takes one to two considerably longer periods of time compared to initiating it from a
point where prior information is available. This finding illustrates that despite the use
of advanced snapshotting techniques, delays in cold starts remain a significant issue for
these functions.

Figure 2: Cold Start latency versus chain length of the function Ustiugov et al. (2021)

In the research the author Lee et al. (2018) explains, Serverless computing offers
a compact runtime environment for executing code without the need for infrastructure
administration. It is similar to Platform as a Service (PaaS), but operates at a more
granular level. Amazon introduced Lambda functions, an event-driven compute service,
in 2014 with a restriction of 25 concurrent invocations. However, it now allows for a
minimum of one thousand concurrent invocations to handle event messages created by
various resources such as databases, storage, and system logs. Google, Microsoft, and
IBM, among other providers, offer a dynamic scaling manager to efficiently handle simul-
taneous requests for stateless operations. This involves installing extra containers on new
computing nodes for distribution. Functions are commonly designed for microservices and

8



lightweight workloads, and they are closely linked to distributed data processing through
concurrent invocations. This paper explains that the existing serverless computing en-
vironments are capable of concurrently executing dynamic applications, provided that a
partitioned job may be executed on a tiny function instance. This paper provides the
findings of the study on the performance of concurrent invocations, specifically in terms of
throughput, network bandwidth, file I/O, and computation performance and implemen-
ted a set of distributed data processing functions to handle scalability, and subsequently
compared the cost effectiveness and resource consumption of serverless computing and
virtual machines. Serverless computing presently employs containers with limited com-
puting resources for temporary workloads. However, the paper anticipates that in the
future, there will be a wider range of computing resources available with fewer limitations
on configurations. This will enable the handling of intricate workloads by optimizing and
applying various algorithms.

In this paper, the author Giménez-Alventosa et al. (2019) explains, MapReduce is a
highly popular programming paradigm utilized for analyzing vast datasets, sometimes
referred to as Big Data. Serverless computing, specifically Functions as a Service (FaaS),
has become increasingly popular as an execution model. It eliminates the need for users
to directly manage servers, such as virtual machines. Contrarily, the Cloud provider
assigns resources to function invocations in a flexible manner and implements detailed
pricing based on the duration of execution and allocated memory, as demonstrated by
AWS Lambda. This article presents the development of a very efficient serverless archi-
tecture for running MapReduce tasks on AWS Lambda, with Amazon S3 serving as the
storage backend. Furthermore, a comprehensive evaluation has been conducted to exam-
ine the appropriateness of AWS Lambda as a platform for executing High Throughput
Computing tasks. The findings suggest that AWS Lambda offers a user-friendly com-
puting platform for versatile applications that meet the service’s limitations (maximum
execution time of 15 minutes, 3008 MB of RAM, and 512 MB of disk space). However,
it displays inconsistent performance patterns that could hinder its acceptance for closely
interconnected computing tasks. In future the challenges in this paper could be took into
broad spectrum considerations by incorporating various optimization algorithms.

In this study by Kazimov (n.d.), Cloud computing is a framework that allows for wide-
spread, convenient, and instant access to a shared collection of customizable computing
resources (such as networks, servers, storage, applications, and services). These resources
can be quickly allocated and released with minimal effort or involvement from the service
provider. Functions as a Service, also known as Serverless computing, is a recently an-
nounced idea by Amazon in 2015. It is an execution model in which the cloud provider
is responsible for running a specific piece of code by dynamically allocating the necessary
resources. This study presents a comprehensive analysis of the constraints associated
with the serverless cloud computing concept. Initially, the problem encountered during
the initial execution of the task required more time compared to the typical execution
time. This situation led to the realization that instead of delivering the data individually,
it would be more efficient to combine the data beforehand.

Here, the author Suresh et al. (2020) says there is a pressing issue in the realm of
serverless computing is the increasing expense of the infrastructure required to manage
the expanding volume of traffic at a large scale. This paper introduces ENSURE, a sched-

9



uler and resource manager that operates at the function level. Its purpose is to minimize
the price of resources for providers while still achieving the performance requirements
of customers. ENSURE operates by categorizing incoming function requests during ex-
ecution and effectively managing the allocation of resources for colocated functions on
each invoker. ENSURE is designed to dynamically adjust its capacity based on workload
traffic, utilizing principles from operations research, in order to eliminate cold starts.
This allows for efficient scaling to meet changing demands. Ultimately, the goal is to
optimize the scheduling of requests by focusing the workload on a sufficient number of
invokers. This approach promotes the reuse of active hosts, hence minimizing the occur-
rence of cold starts. Additionally, it enables unnecessary capacity to be efficiently and
smoothly terminated when it is no longer needed. We apply the ENSURE technique to
Apache OpenWhisk and demonstrate that it substantially enhances resource efficiency,
up to 52%, when compared to previous benchmarks. Moreover, it maintains acceptable
application latency. The author of this study also discusses the potential future deploy-
ment of utilizing diverse optimization strategies across multiple platforms.

3 Methodology

This section outlines the assessment plan for exploring the optimization of MapReduce
capabilities in serverless systems. The thought process incorporates the certainty of
serverless architectures, the deployment of MapReduce applications, and the overall ap-
proach to handling experimentation and analysis.

3.1 MapReduce Application Design

The incorporation of MapReduce applications for trial and error is an essential component
of the exploration strategy. This involves creating delegate MapReduce jobs that exem-
plify changing computational and storage requirements. The applications will be designed
to replicate real-life scenarios, including issues such as data volume, algorithm complex-
ity, and dynamic workload variations. Special attention will be devoted to addressing
challenges associated with statelessness, cold start latency, and dynamic workload fluc-
tuations within the context of serverless architectures.

The method focused on optimizing the algorithms ABC and Cuckoo Search by meas-
uring their performance on EMR instances as core Hadoop jobs. The optimization was
varied, and the optimized result was multiplied by 3X to further enhance the optimiz-
ation. The study aims to measure job completion durations, compare the scalability of
algorithms, and analyze resource utilization. To achieve this, the study suggests utilizing
the widely used ”Rosenbrock function” for work scheduling and benchmarking purposes.

10



3.2 Data-set

3.2.1 Benchmarking Hadoop MapReduce using TeraSort

Hadoop TeraSort is a renowned benchmark dataset designed to efficiently sort 1 TB of
data using Hadoop MapReduce. The TeraSort benchmark rigorously tests all components
of the Hadoop MapReduce framework and the HDFS filesystem, making it an excellent
option for optimizing the design of a Hadoop cluster.

The initial TeraSort benchmark dataset arranges 10 million records, each consisting
of 100 bytes, resulting in a total data size of 1 terabyte (TB). Nevertheless, we have
the capability to designate the quantity of records, enabling us to customize the overall
magnitude of data. 1

4 Design Specification

This section will cover the Meta-heuristic algorithms used, their general working and
why we have chosen these algorithms for our implementation. Also we shall discuss the
architecture diagram proposed for this research and the Rosenbrock function used for
scalability.

4.1 Architecture Diagram

Figure 3: System architecture for MapReduce

The architecture diagram, Figure 5 illustrates a sophisticated Amazon Web Services
(AWS) system designed for work control and scheduling. The system utilizes many AWS
services like as EC2, EMR instances, Lambda, S3 bucketss, IAM jobs, and methodologies.
The Job Controller, situated on an EC2 instance, serves as the principal component.
EC2 (Elastic Compute Cloud) provides the ability to adjust the capacity of computing
resources in the cloud, allowing users to operate virtual servers.

1: Benchmarking Hadoop MapReduce using TeraSorthttps://subscription.packtpub.com/book/
data/9781783285471/1/ch01lvl1sec18/benchmarking-hadoop-mapreduce-using-terasort

11

https://subscription.packtpub.com/book/data/9781783285471/1/ch01lvl1sec18/benchmarking-hadoop-mapreduce-using-terasort
https://subscription.packtpub.com/book/data/9781783285471/1/ch01lvl1sec18/benchmarking-hadoop-mapreduce-using-terasort


The Job Controller is linked to an Amazon Linux Server and an S3 buckets. The
Amazon Linux Server is a proven enterprise-grade platform that offers robust security and
extensive support for a wide range of applications. The S3 bucket is employed for storing
and retrieving any quantity of data at any time; it functions as a global file system. IAM
jobs are closely linked to the Job Controller. IAM enables secure management of access to
AWS services and resources for users. The IAM jobs are associated with approaches that
define permissions to determine the actions that can be executed on specific resources.

On the right side of the chart, Lambda is employed for task scheduling. AWS Lambda
enables serverless execution of code, eliminating the need for server installation and man-
agement. It automatically scales applications by executing code in response to each
trigger. The EMR clusters are displayed as being linked to both the Job Controller and
Lambda. EMR is a managed cluster platform designed to facilitate the execution of big
data frameworks such as Apache Hadoop and Apache Spark on Amazon Web Services
(AWS). It enables the processing of large volumes of data by utilizing resizable clusters
of Amazon EC2 instances.

We have created two Lambda functions for task scheduling. The jobs are scheduled
using two algorithms inside these two lambda functions. The dataset is stored in one
of the S3 bucket and the other stores jobs logs. The bottom right corner of the design
displays the segregation of duties or specific responsibilities, allowing for the autonomous
handling of charging-related roles from other types of positions to ensure efficiency and
security.

This architecture utilizes various AWS services. EC2 instances serve as Job Control-
lers to ensure efficient administration. S3 buckets provide flexible storage solutions. IAM
roles ensure secure access management governed by combined policies. Lambda enables
automated task scheduling without manual intervention. EMR clusters offer powerful
platforms for processing large-scale data. Each component plays a crucial role in en-
suring efficient project planning, effective job control, and adherence to optimal security
protocols through IAM roles and policies, ensuring seamless yet secure operations inside
this cloud-based environment.

4.2 Meta-heuristic Algorithms

Metaheuristic algorithms play a major role in optimization by effectively exploring solu-
tion spaces to discover solutions that are almost optimal. Applications of these techniques
extend beyond classic NP-complete problems, encompassing areas such as optimization,
scheduling, and routing. These algorithms imitate processes such as evolution, swarm
behavior, and other intelligent systems. Some examples of optimization techniques are
colony optimization, simulated annealing, genetic algorithms, and particle swarm op-
timization. Metaheuristic algorithms are adept at addressing problems by successfully
managing the trade-off between exploration and exploitation. This makes them especially
valuable in situations that are ambiguous or computationally demanding. Metaheuristic
algorithms are beneficial for large-scale operations as they support multi-objective optim-
ization and produce optimal, if not accurate, solutions. Utilizing metaheuristic techniques
can effectively address the distinct objectives of minimizing latency and maximizing util-
ization. This study aims to compare two metaheuristic algorithms.

12



4.3 Artificial Bee Colony

The Artificial Bee Colony algorithm is an optimization technique inspired by the foraging
behavior of bumble bee colonies. Introduced by Karaboga (2010), ABC is significant
for the broader category of population-based algorithms, deriving inspiration from the
collective behavior observed in social insect states, particularly bumble bee colonies. The
ABC algorithm represents the iterative process of a honey bee colony searching for the
optimal food source to produce honey, which is then applied to a specific problem. The
algorithm consists of three main components: scout bees, employed bees, and observer
bees. Each of these honey bee species plays a distinct role in the pursuit of optimal
solutions.

Figure 4: Flowchart of ABC algorithm working

4.4 Cuckoo Search Algorithm

The Cuckoo Search technique (CSA) is an optimization technique inspired by the repro-
ductive behavior of cuckoo birds. The technique, introduced by Yang and Deb (2014),
aims to address optimization problems by simulating the obligate brood parasitism be-
havior observed in certain cuckoo species. These avian species deposit their eggs in the
nests of other bird species, relying on the hosts to incubate and rear their offspring.The
fundamental concept underlying the Cuckoo Search method is to treat potential solutions
to an optimization problem as eggs in a nest. Each egg corresponds to a solution, and
the quality of a solution is evaluated based on the optimization function. During the
optimization process, nests with enhanced configurations are considered more attractive,
analogous to how a cuckoo would prefer a nest with eggs that had a higher likelihood of

13



survival. The Cuckoo Search algorithm has been utilized in a wide range of optimization
applications, such as engineering design, parameter tweaking, and machine learning. It is
renowned for its straightforwardness, straightforwardness of execution, and optimal bal-
ance between exploration and exploitation. Nevertheless, the performance of the system
can fluctuate based on the specific attributes of the optimization problem.

Figure 5: Flowchart of Cuckoo Search algorithm working

4.5 Discussion on Algorithms:

The ABC algorithm has demonstrated effective use in several optimization issues, such as
function optimization, machine learning, and software design. The popularity of compu-
tational intelligence is attributed to its simplicity, flexibility, and ability to handle both
continuous and discrete optimization problems.

The Cuckoo Search algorithm is renowned for its efficacy in identifying superior solu-
tions to diverse optimization problems due to its straightforwardness and user-friendliness.
The intriguing and innate behavior of cuckoo birds serves as a compelling and organic
approach to innovation, offering an alternative tool for experts and practitioners in in-
dustries such as engineering, finance, and machine learning.

4.6 Rosenbrock Function

The Rosenbrock functions, also called the Rosenbrock’s valley or banana functions are
a normally involved numerical functions for testing optimization problems. It is many

14



times utilized as a benchmark function because of its characteristic valley curve. The
Rosenbrock function for two factors (n=2) is

f(x, y) = (a− x)2 + b ∗ (y − x2)2

It has global minimum at (a, a2) where, a is regularly set to 1, and b is set to 100. The
capability represents a test to improvement calculations in light of the fact that the global
minimum is inside a long, narrow, parabolic formed flat valley curve. Efficient optimiz-
ation requires crossing this valley transversely. These functions are used as benchmark
for calculating and evaluating the performance of two algorithms namely Artificial Bee
Colony and Cuckoo Search.

5 Implementation

In this section we shall see the implementation of ABC and Cuckoo Search and the
lambda functions created for both the algorithms.

5.1 Artificial Bee Colony Optimization Algorithm Implement-
ation

A crucial aspect of this study involves implementing the Artificial Bee Colony (ABC) Al-
gorithm to enhance the efficiency of MapReduce workloads within serverless frameworks.
The subsequent sections delineate the fundamental processes and concerns of the ABC
Algorithm specifically tailored for the serverless context. The ABC algorithm is designed
to accommodate the unique characteristics of serverless deployment by anticipating vari-
ations. To do this, it is necessary to synchronize the various elements of the algorithm
with stateless serverless functions in an event-driven manner. The ABC Algorithm will
be adapted to address resource allocation and cold start challenges specific to MapReduce
operations in serverless infrastructures.

The enhanced ABC algorithm will be seamlessly integrated into selected serverless
systems, ensuring compatibility with their respective APIs and event triggers. Each
serverless capacity will operate as a prospective candidate within the ABC algorithm,
with the algorithm coordinating the analysis and detection of these candidates to increase
the MapReduce function. The combination will involve leveraging serverless platform
features for automated scalability and efficient resource management.

An essential aspect of the ABC algorithm implementation is the distinct allocation
of resources based on various MapReduce tasks. The method will efficiently distribute
jobs among the serverless functions, considering their current workload and computing
capacity. The objective of this dynamic resource allocation is to effectively adjust to
the evolving requirements of MapReduce applications while optimizing the execution
efficiency of functions.

Solving the cold start problem is crucial for the performance of the ABC algorithm
in serverless environments. Techniques such as capability pre-warming or intelligent de-
ployment features will be implemented to reduce the latency associated with cold starts.
The ABC Algorithm will integrate these strategies into its decision-making process to
ensure timely and efficient execution of MapReduce workloads.

The steps for the implementation are as follows-

15



Figure 6: ABC Optimization function

Firstly, we choose and create an EC2 instance by choosing the kernel and instance
type, next followed by creating a secure key pair and then launching the instance and
accessing the SSH via the powershell, then configuring the EMR instance through putty
and benchmarking and lastly configure the Figure 6 ABC lambda function for comparison
and the further steps for Cuckoo Search are mentioned in the next section.

5.2 Cuckoo Search Optimization Algorithm Implementation

The implementation of the Cuckoo Bird Optimization technique to enhance MapRe-
duce capabilities within serverless designs is a crucial and precise process. This section
provides a comprehensive depiction of the coordination and application of the Cuckoo
Bird Algorithm for task optimization. The primary phase involves integrating the Cuckoo
Bird optimization algorithm into selected serverless frameworks such as AWS Lambda.
This integration necessitates modifying the algorithm to align with the event-driven and
stateless characteristics of serverless computing. The integration of the Cuckoo Bird Al-
gorithm into the MapReduce application architecture will enable it to efficiently allocate
resources and tasks based on real-time events. The execution of the Cuckoo Bird al-
gorithm focuses on efficient resource allocation, which is a vital aspect of adapting to
the changing demands of MapReduce capabilities. The algorithm consistently assesses
the storage and computational capacities and progressively adjusts resource allocation to
enhance execution. The serverless environment can effectively allocate resources based
on dynamic computational demands, thanks to its flexibility.

Now, we choose and create an EC2 instance by choosing the kernel and instance type,
next followed by creating a secure key pair and then launching the instance and accessing
the SSH via the powershell, then configuring the EMR instance through putty and bench-
marking after configuring the ABC Lambda function for comparison, likewise we have to
configure the Cuckoo Search Lambda function as shown in Figure 7 for comparison. All
the required screenshots are presented well in the configuration manual.

16



Figure 7: Cuckoo Search Optimization function

6 Evaluation

The evaluation of results conducted will be explained in this section. The experiment has
been conducted initially and finally on both the algorithms, which means the initial one
is done with the default Rosenbrock function and the results got are then multiplied 3X
times to find scalability. Along with that a comparative analysis of both the algorithms
with reference to Execution time, CPU resource utilization and Scalability have been
conducted.

6.1 Execution Time

Figure 8 depicts the execution time comparison of two algorithms namely Artificial Bee
Colony(ABC) and Cuckoo Search Optimization. The x-axis denotes different algorithms
and y-axis denotes time taken in seconds. These algorithms are compared on the basis
of six parameters.

• Cold Start: It refers to time taken by a serverless function to initialize and start
executing in response to an event.

• Optimization Time: The time and effort spent in optimizing the performance of
the MapReduce job.

• TeraGen Time: It refers to a benchmark in Hadoop system to generate a large
amount of synthetic data.

• TeraSort Time: Time taken to sort generated data using MapReduce function.

• TeraValidate Time: Benchmark designed to validate the sorted order of data.

• Total time: The total execution time taken.

17



Figure 8: Execution time of ABC vs. Cuckoo Search Optimization Algorithm

Note: In all the above different parameters low is better.
From Figure 8, it can be seen that Cuckoo Search algorithm has no cold start and

optimization time as compared to ABC algorithm. TeraGen time for cuckoo algorithm
increases from 1x to 3x(3s to 4s approx) and for ABC algorithm it is constant at 4s.
TeraSort time decreases from 4s to 3s approx for Cuckoo algorithm when testing from
1x to 3x. And for ABC algorithm it is constant 3seconds. TeraValidate time of cuckoo
algorithm is 3 seconds which increases to 4 seconds when increasing from 1x to 3x. For
ABC algorithm, it is constant 4 seconds. Total execution time of Cuckoo search is less
than ABC algorithm by 3 seconds approximately.

6.2 CPU Resource Utilization

Figures 9 and 10 depicts 4 different graphs where x-axis denote Measurements and y-
axis denotes the percentage. The algorithms are compared on the basis of four different
parameteres.

• CPU Usage: Total percentage of the CPU utilized.

• System Space Utilization: Total percentage of system space utilized.

• Idle time: Percentage of CPU time in idle state.

• Borrowed time: CPU time taken for a VM.

Figure 9 shows the CPU Resource Utilization for ABC algorithm and figure 10 Shows
CPU Resource Utilization for Cuckoo Algorithm. Comparing all the four parameters of
these two algorithms, it can be seen that out of all the parameters, Borrowed time of
these two algorithms differ with Cuckoo Algorithm having less percentage of borrowed
time than ABC algorithm.

18



Figure 9: CPU Resource Utilization for ABC Algorithm before and after fine tuning
optimization

Figure 10: CPU Resource Utilization for Cuckoo Algorithm before and after fine tuning
optimization

19



6.3 Scalability

In the Figure 11 demonstrates the scalability comparison of the two algorithms in which
the ABC algorithm performed better than the cuckoo algorithm as was observed to lower
the resource consumption upon fine tuning, while the cuckoo algorithm enhanced the
resource usage.

Figure 11 denotes Scalability comparison between ABC and Cuckoo Search Algorithms
on the basis of four parameters.

• User Time(us): Percentage of CPU Utilization time on executing user processes.

• System Time(sy): Percentage of CPU time on executing system level(kernel)

• Idle Time(id): CPU percentage in idle state.

• Steal Time(st): Percentage of time taken from virtual machine by hypervisor.

From Figure 11, it can be clearly seen that in both test (Initially and Finally), ABC
algorithm performs better than Cuckoo Algorithm. From the graph of Initial Scalability
Analysis, it can be seen that ABC algorithm is 10 percent efficient than Cuckoo Search
with respect to User time and Cuckoo Search Algorithm has more idle time than ABC
algorithm. And approximate same difference of 10 percent approximate can be observed
with respect to idle time.

Figure 11: Scalability comparison of ABC and Cuckoo Search algorithms

6.4 Discussion

In this section, lets discuss the evaluation of these experiments

• Figure 8 shows that the Cuckoo Search Algorithm takes approximately 23% less
total time to execute than ABC algorithm. In the case of Cuckoo(1x) is the lowest
as compared to ABC(1x) and ABC(3x) by 10 percent approximately which indicates
that Cuckoo Search Algorithm performs better than ABC Algorithm with respect
to execution time.

• From Figures 9 & 10, it can be seen that both algorithms perform in a similar man-
ner with an exception with respect to borrowed time. When comparing borrowed
time, Cuckoo Search Algorithm has lowest borrow time than ABC algorithm which
is preferred. Thus in CPU utilization Cuckoo Algorithm performs the same as ABC
Algorithm but is slightly better in certain conditions.

20



• From Figure 11, it can be seen that during initial Scalability test ABC algorithm
has the least user processes execution time(us) than Cuckoo Algorithm with a 10
percent less utilization. And in the Final Scalability graph, both algorithm performs
in a similar manner with ABC algorithm outperforming Cuckoo Search Algorithm
slightly. Thus ABC algorithm is preferred over Cuckoo Search Algorithm with
respect to Scalability.

7 Conclusion and Future Work

In this paper, a comparative analysis between two meta-heuristic algorithms namely
Artificial Bee Colony Algorithm and Cuckoo Search Optimization Algorithm with respect
to MapReduce Applications in serverless platform has been performed successfully. The
recommended Cuckoo Search Optimization Algorithm performs better than Artificial
Bee Colony Algorithm with respect to execution time but when scaling up it can be
observed that ABC algorithm performs better than Cuckoo Search algorithm. And when
comparing CPU utilization with respect to MapReduce applications, both algorithms
perform in a similar manner with Cuckoo Search being slightly more optimized than
ABC algorithm. These experiments were conducted on AWS Lambda i.e., a serverless
platform, the future works inlude:

• Refining the current algorithms and investigating hybrid methodologies that con-
solidate various streamlining procedures.

• Considering other factors to improve task enhancement in Serverless MapReduce
applications.

• Analyzing and comparing different algorithms other than meta-heuristic to optimize
task in MapReduce applications.

References

Balasubramaniam, K. V. (2017). System and Analysis for Low Latency Video Processing
using Microservices, University of California, San Diego.

Camacho, L. A. G. and Alves-Souza, S. N. (2018). Social network data to alleviate
cold-start in recommender system: A systematic review, Information Processing &
Management 54(4): 529–544.

Daw, N., Bellur, U. and Kulkarni, P. (2020). Xanadu: Mitigating cascading cold starts in
serverless function chain deployments, Proceedings of the 21st International Middleware
Conference, pp. 356–370.

Giménez-Alventosa, V., Moltó, G. and Caballer, M. (2019). A framework and a perform-
ance assessment for serverless mapreduce on aws lambda, Future Generation Computer
Systems 97: 259–274.

Gu, R., Yang, X., Yan, J., Sun, Y., Wang, B., Yuan, C. and Huang, Y. (2014). Shadoop:
Improving mapreduce performance by optimizing job execution mechanism in hadoop
clusters, Journal of parallel and distributed computing 74(3): 2166–2179.

21



Karaboga, D. (2010). Artificial bee colony algorithm, scholarpedia 5(3): 6915.

Kazimov, S. (n.d.). Limitations of serverless computing.

Kc, K. and Freeh, V. W. (2014). Dynamic performance tuning of hadoop, Technical
Report, North Carolina State University .

Lee, H., Satyam, K. and Fox, G. (2018). Evaluation of production serverless computing
environments, pp. 442–450.

Li, Z., Chen, Q. and Guo, M. (2021). Pagurus: Eliminating cold startup in serverless
computing with inter-action container sharing, arXiv preprint arXiv:2108.11240 .

Liu, C.-Y., Zou, C.-M. and Wu, P. (2014). A task scheduling algorithm based on genetic
algorithm and ant colony optimization in cloud computing, 2014 13th International
Symposium on Distributed Computing and Applications to Business, Engineering and
Science, IEEE, pp. 68–72.

Lloyd, W., Vu, M., Zhang, B., David, O. and Leavesley, G. (2018). Improving applica-
tion migration to serverless computing platforms: Latency mitigation with keep-alive
workloads, 2018 IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), IEEE, pp. 195–200.

Nazari, M., Goodarzy, S., Keller, E., Rozner, E. and Mishra, S. (2021). Optimizing
and extending serverless platforms: A survey, 2021 Eighth International Conference
on Software Defined Systems (SDS), IEEE, pp. 1–8.

Pu, Q., Venkataraman, S. and Stoica, I. (2019). Shuffling, fast and slow: Scalable analyt-
ics on serverless infrastructure, 16th USENIX symposium on networked systems design
and implementation (NSDI 19), pp. 193–206.

Saha, A. and Jindal, S. (2018). Emars: efficient management and allocation of resources
in serverless, 2018 IEEE 11th international conference on cloud computing (CLOUD),
IEEE, pp. 827–830.

Silambarasan, K., Ambareesh, S. and Koteeswaran, S. (2016). Artificial bee colony with
map reducing technique for solving resource problems in clouds, Indian Journal of
Science and Technology 9(3): 1–6.

Suresh, A., Somashekar, G., Varadarajan, A., Kakarla, V. R., Upadhyay, H. and Gandhi,
A. (2020). Ensure: Efficient scheduling and autonomous resource management in
serverless environments, 2020 IEEE International Conference on Autonomic Comput-
ing and Self-Organizing Systems (ACSOS), IEEE, pp. 1–10.

Ustiugov, D., Petrov, P., Kogias, M., Bugnion, E. and Grot, B. (2021). Benchmarking,
analysis, and optimization of serverless function snapshots, Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 559–572.

Yang, X.-S. and Deb, S. (2014). Cuckoo search: recent advances and applications, Neural
Computing and applications 24: 169–174.

22


	Introduction
	Overview of Serverless Frameworks
	MapReduce Applications in Serverless Environments
	Challenges in Optimizing Tasks in Serverless for MapReduce
	Research Objective
	 Structure and Outline

	Related Work
	Methodology
	MapReduce Application Design
	Data-set
	Benchmarking Hadoop MapReduce using TeraSort


	Design Specification
	Architecture Diagram
	Meta-heuristic Algorithms
	Artificial Bee Colony
	Cuckoo Search Algorithm
	Discussion on Algorithms:
	Rosenbrock Function

	Implementation
	Artificial Bee Colony Optimization Algorithm Implementation
	Cuckoo Search Optimization Algorithm Implementation

	Evaluation
	Execution Time
	CPU Resource Utilization
	Scalability
	Discussion

	Conclusion and Future Work

