

Configuration Manual

MSc Research Project MSc in Cloud Computing

Venkateshwarlu vanga Student ID: x22158952

School of Computing National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Venkateshwarlu vanga
Student ID:	x22158952
Programme:	MSc in Cloud Computing
Year:	2023
Module:	MSc Research Project
Supervisor:	Shaguna Gupta
Submission Due Date:	14/12/2023
Project Title:	Configuration Manual
Word Count:	1320
Page Count:	14

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Venkateshwarlu Vanga
Date:	14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Venkateshwarlu vanga x22158952

1 Introduction

This document aims to provide a detailed guide for setting up and managing the project efficiently. It covers system architecture, installation steps, configuration choices, execution process, and analysing the results. It also provides an overview of the research project's development for "Securing Cloud Environments Through Real-Time Network Monitoring System for Detecting Network Attacks using Advanced Deep Learning Methods" It's crucial to review this document thoroughly before deploying the project.

2 Prerequisites

This document is for people who are familiar with Ubuntu, Python, basic Deep Learning concepts, and Python Flask. Knowing these things will help you understand and use the information in this document more effectively.

3 Environment Setup

For setting up the environment, I utilized Anaconda for running Jupyter notebook, the same can see at Figure 1.

• • •		Anaconda Navigator		
O ANACON	DA.NAVIGATOR			Connect V
🛧 Home	All applications	base (root) Channels		Ċ
The Environments				^
Learning	•	÷	*	
Community	Jupyter			
	Notebook	Qt Console	Spyder	
	6.5.4	5.4.2	5.4.3	
Anaconda Toolbox Superchargeda	Web-based, interactive computing notebook environment. Edit and run human-readable docs while describing the data analysis.	PyQt GUI that supports inline figures, proper multiline editing with syntax highlighting, graphical calltips, and more.	Scientific PYthon Development EnviRonment. Powerful Python IDE with advanced editing, interactive testing, debugging and introspection features	
Click the Toolbox tile to Install.	Launch	Launch	Launch	

Figure 1: Anaconda Navigator

All necessary libraries, such as Pandas and Numpy, were installed. These libraries played a crucial role in reading, mapping, and visualizing the dataset. Additionally, the

Sklearn library (Scikit-learn) was employed for data analysis and modeling, offering various algorithms for classification. To develop deep learning models, I utilized Tensorflow and Keras. Figure 2.

💭 jupyte	ANAMOLY_DETECTION_FINAL1 Last Checkpoint: Last Thursday at 12:16 PM (autosaved)		Logout
File Edit	View Insert Cell Kernel Widgets Help	Trusted	Python 3 (ipykernel) O
8 + %	2 🖪 🛧 🔸 🕨 Run 🔳 C 🇰 Markdown 🗡 🖾		
	Importing Important Libraries		
In [<pre>6]: port numpy as np # importing numpy for numerical, array manipulation port pandas as pd # importing pandas for data manipulation port pandas as pd # importing sys library port plotly.graph_objects as go # importing different visualisation libraries port plotly.oraph_objects as go # importing different visualisation libraries port plotly.oraph_objects as go # importing different visualisation libraries port plotly.oraph_objects as go # importing preprocessing from sklearn morting visualization of the preprocessing form sklearn morting visualization reduction m sklearn.decomposition import PCA # importing PCA for dimension reduction m sklearn.metrics import on fusion_matrix m sklearn.preprocessing import MinMaxScaler # importing min max scalar for data anorn m sklearn.preprocessing import LabelEncoder, OneHotEncoder # importing encoders for data or m collections import Conter # importing counter library for counting purp set_option('display.max_columns', 500) port varnings 'intervarnings('ignore') atplotlib inline m plotly.orfline import init_notebook_mode, iplot # Importing offline plugin of plotly intorebook_mode(conneted-True) importing libraries for model building port tensorflow.keras.layers importing tensorflow m tensorflow.keras.layers import Bensorflow m tensorflow.keras.layers import Densorflow m tensorflow.keras.layers import Densorflow m tensorflow.keras.layers import bensorflow m tensorflow.keras.models import Model m stlearn.preprocessing import STM, Bidirectional.GRU m tensorflow.keras.models import Model m tensorflow.keras.layers import Model m tensorflow.keras.models import Model m tensorflow.keras.layers import Model m tensorflow.keras.models import Model m tensorflow.keras.layers import Model m tensorflow.keras.layers import Model m tensorflow.keras.layers import Model m tensorflow.keras.layers import Model m tensorflow.keras.layers</pre>	nalisation nccoding nose rom keras i ted	and tensorflow

Figure 2: Libraries List

For implementation, AWS Cloud was used, and an EC2 Instance with the latest version of Ubuntu was configured Figure 3. The project primarily leverages the Python programming language, and we ensured the use of the latest version, which can be verified and downloaded from https://www.python.org/downloads/.

aws	Services	Q Search		[Option+S]	Ireland MSCCLOUD/x22158952@student.ncirl.ie				
EC2	Dashboard Global View	×	Details Status and alarms New Mor	nitoring Security Networking S	Storage Tags				
Even	its		▼ Instance details Info						
Liten			Platform	AMI ID	Monitoring				
▼ Insta	inces		🗇 Ubuntu (Inferred)	ami-0694d931cee176e7d	disabled				
Insta	inces		Platform details	AMI name	Termination protection				
Insta	ince Types		Linux/UNIX	ubuntu/images/hvm-ssd/ubuntu-jammy-	Disabled				
Laun	ich Templates			22.04-amd64-server-20230919					
Spot	Requests		Stop protection	Launch time	AMI location				
Savir	ngs Plans		Disabled	Wed Dec 06 2023 11:59:54 GMT+0000 (Crosswitch Mean Time) (7 days)	amazon/ubuntu/images/hvm-				
Rese	rved Instances			(Greenwich Mean Time) (7 days)	20230919				
Dedi	cated Hosts		testes and a second	1. Consulta	Charach the second as had as a feature of the				
Capa	city Reservation	5 New	Default	normal	Disabled				
▼ Imag	jes		AMI Launch index	Key pair assigned at launch	State transition reason				
AMIs	;		0	vanga02ndFeb	-				
AMI	Catalog		Credit specification	Kernel ID	State transition message				
▼ Elast	tic Block Store		standard	-	-				
Volu	mes		Usage operation	RAM disk ID	Owner				
Snar	shots		L RunInstances	-	Di 250738637992				
Lifor	uelo Managor		Enclaves Support	Boot mode	Current instance boot mode				
LITEC	ycte maildger		-	-	🗇 legacy-bios				

Figure 3: AWS EC2 instance

Multiple libraries, including TensorFlow, Matplotlib, and Scikit-learn, were incorporated into the project using the pip command as shown below. Along with Python Flask.

ubushi®in-127-31-23-26-25 sudn ant undete & sudn ant ungende
Hitil http://eu-west-liec2.archive.ubuntu.com/ubuntu.iommy.ToRelease
Get:2 http://eu-west-1.ec2.archive.ubuntu.com/ubuntu_iommy-undates_InRelease_E119_k8]
Hit3 http://eu-west-1.ec2.archive.ubustu.com/ubustu.immy-backmosts_IDRelease
Get-4 http://security.ubuntu.com/ubuntu.iommy-security_InRelease [110 kR]
Get:5 http://eu-west-1.ec2.archive.ubuntu.com/ubuntu.jamuv-undates/nain.and64 Packages [1269 k8]
Get:6 http://eu-west-1.ec2.archive.ubuntu.com/ubuntu_jammy-updates/main_Translation-en_[259 kB]
Get:7 http://eu-west-1.ec2.archive.ubuntu.com/ubuntu.jommy-undates/restricted.amd64.Packages_[1246.kB]
Get: 8 http://eu-west-1.ec2.archive.ubuntu.com/ubuntu.jamuv-undates/restricted Translation-en [203 kB]
Get:9 http://eu-west-1.ec2.archive.ubuntu.com/ubuntu_jammy-updates/universe_and64 Packages [10]8 kB]
Get:10 http://security.ubuntu.com/ubuntu_iammy-security/main_amd64_Packages_[1047_k8]
Get:11 http://security.ubuntu.com/ubuntu_jammy-security/main_Translation-en_[198_k8]
Get:12 http://security.ubuntu.com/ubuntu_jammy-security/restricted_amd64_Packages_[1222_k8]
Get:13 http://security.ubuntu.com/ubuntu_jammy-security/restricted Translation-en [199 kB]
Fetched 6882 k8 in 2s (2993 k8/s)
Reading package lists Done
Building dependency tree Done
Reading state information Done
36 packages can be upgraded. Run 'apt listupgradable' to see them.
Reading package lists Done
Building dependency tree Done
Reading state information Done
Calculating upgrade Done
The following NEW packages will be installed:
ubuntu-pro-client-l10n
The following packages have been kept back:
cryptsetup cryptsetup-bin cryptsetup-initramfs libcryptsetup12
The following packages will be upgraded:
apparmor apt apt-utils bind9-dnsutils bind9-host bind9-libs cloud-init distro-info-data ec2-hibinit-agent irqbalance kpartx libapparmor1 libapt-pkg6.0 libnetplan0 libnss-systemd libpam-systemd
libsgutils2-2 libsystemd0 libudev1 multipath-tools netplan.io python3-software-properties python3-update-manager sg3-utils sg3-utils-udev software-properties-common sosreport systemd systemd-sysv
ubuntu-advantage-tools udev update-manager-core
32 unaraded 1 newly installed 0 to remove and 4 not unaraded

Figure 4: sudo apt update and upgrade

Figure 5: sudo apt install python3-pip

Figure 6: pip install scikit-learn tensorflow matplot

Figure 7: Installing Python Flask

4 Implementation

Our project model contains different components, which can be seen below.

4.1 Dataset collect

The UNSW-NB15 dataset was created by the University of New South Wales for use in the 2015 International Knowledge Discovery and Data Mining Tools Competition. Like the older KDD Cup 1999 dataset, the UNSW-NB15 dataset is intended to help develop effective network intrusion detection systems. The goal of the dataset is to enable the creation of models that can accurately differentiate between malicious and benign network traffic. A key strength of the UNSW-NB15 dataset is that it contains a wide variety of simulated attack types within a modeled university network environment. The audit-friendly data provides rich details on diverse intrusion scenarios. Overall, the UNSW-NB15 dataset represents a valuable research resource to drive continued progress on cybersecurity data analysis and predictive modeling for intrusion detection.

4.2 Data Preprocessing

In this stage first we are looking at the raw data from dataset. To accommodate the large dataset, we divided it into four separate CSV files named UNSW-NB15-1.csv, UNSW-NB15-2.csv, UNSW-NB15-3.csv, and UNSW-NB15-4.csv. These files are defined as df1, df2, df3, and df4, as shown in the Figure 8.

Figure 8: Raw Data

We printed all the features from the features.csv file Figure 9 and displayed sample data from the first CSV file, df1, using the head and tail commands please refer to the Figure 10 for details.

n [48]:	prin fear	nt('Fe tures	eatures for t	a is:') # printing different f						
	Features for this data is:									
48]:		No.	Name	Туре	Description					
	0	1	srcip	nominal	Source IP address					
	1	2	sport	integer	Source port number					
	2	3	dstip	nominal	Destination IP address					
	3	3 4 dspc		integer	Destination port number					
	4	5	proto	nominal	Transaction protocol					
	5	6	state	nominal	Indicates to the state and its dependent proto					
	6	7	dur	Float	Record total duration					
	7	8	sbytes	Integer	Source to destination transaction bytes					
	8	9	dbytes	Integer	Destination to source transaction bytes					
	9	10	sttl	Integer	Source to destination time to live value					
	10	11	dttl	Integer	Destination to source time to live value					

Figure 9: Printing all the Features

In [49]:	: print('shape of datal is:', dfl.shape)																								
	sha sha sha sha	peofo peofo peofo peofo	data1 data2 data3 data4	is: is: is: is:	700000 700000 700000 440043	, 49 , 49 , 49 , 49																			
In [50]:	df1	.head())	#	t visua	lisng	the	firs	t fi	/e rows	of d	ata	fro	n f	irst	fil	e to d	understand 1	he	raw	dat	а			
Out[50]:																									
	1	59.166.0.0) 139	D 149. ⁻	171.126.6	53	udp	CON	0.0010	55 132	164 3	1 29	0	0.1	dns	500	473.937	621800.9375	2	2.1 (0.2	0.3 (0.4 0	.5	66 82
	0	59.166.0.0	3366	1 149.	171.126.9	1024	udp	CON	0.0361	33 528	304 3	1 29	0	0	-	876	76.0859	50480.17188	4	4	0	0	0	0 1	32 76
	1	59.166.0.6	6 146	4 149.1	171.126.7	53	udp	CON	0.0011	19 146	178 3	1 29	0	0	dns	5218	94.5313	636282.37500	2	2	0	0	0	0	73 89
	2	59.166.0.5	359	3 149.	171.126.5	53	udp	CON	0.0012	09 132	164 3	1 29	0	0	dns	4367	24.5625	542597.18750	2	2	0	0	0	0	66 82
	3	59.166.0.3	4966	4 149.	171.126.0	53	udp	CON	0.0011	69 146	178 3	1 29	0	0	dns	4995	72.2500	609067.56250	2	2	0	0	0	0	73 89
	4	59.166.0.0	32119	9 149.	171.126.9	111	udp	CON	0.0783	39 568	312 3	1 29	0	0	-	435	03.2343	3 23896.14258	4	4	0	0	0	0 1	42 78
In [51]:	df1	.tail())	# vi	sualis	na ti	ne la	st fi	ve ro	ows of a	data	from	fi	rst	fil	e to	unde	stand the i	aw	data					
Out[51]:																									
		59.1	66.0.0	1390	149.171.	126.6	53	udp	CON	0.001055	132		164	31	29	0 0).1 dns	500473.9375	6	21800.9	375	2	2.1	0.2	0.3
	699	995 59.1	66.0.8	12520	149.171.	126.6	31010	tcp	FIN	0.020383	320	1	1874	31	29	1	2 -	1.047932e+05	6.4	36736e	+05	6	8	255	255
	699	996 59.1	66.0.0	18895	149.171.	126.9	80	tcp	FIN	1.402957	19410	108	37890	31	29	2 3	70 http	1.103783e+05	6.1	95098e	+06	364	746	255	255
	699	997 59.1	66.0.0	30103	149.171.	126.5	5190	tcp	FIN	0.007108	2158		2464	31	29	6	6 -	2.328644e+06	2.6	i58413e	+06	24	24	255	255
	699	998 59.1	66.0.6	30388	149.171.	126.5	111	udp	CON	0.004435	568		304	31	29	0	0 -	7.684329e+05	4.1	12740e	+05	4	4	0	0
	699	999 59.1	66.0.0	6055	149.171.	126.5	54145	tcp	FIN	0.072974	4238		60788	31	29	7	30 -	4.582454e+05	6.5	71546e	+06	72	72	255	255

Figure 10: head and tail of the data

As the above data lacks headers, we added headers to all four CSV files, combined the data, and printed a sample with headers. Additionally, we provided an overview of the data, including the number of columns and rows. Furthermore, we printed the "label" data along with the count of 0's and 1's can be seen at Figure 11

In [53]:	df.	_f = pd.	concat	([df1, df2	, df3,	df4]	, axi	s=0)	# co	ncatin	g th	e ai	ll da	ta					
In [54]:	df_f.head() # visualising the data after conc								ncating to assure the correct concatination										
Out[54]:																			
		srcip	sport	dstip	dsport	proto	state	dur	sbytes	dbytes	stti	dttl	sloss	dloss	service	Sload	Dload	Spkts	Dpkts
	0	59.166.0.0	33661	149.171.126.9	1024	udp	CON	0.036133	528	304	31	29	0	0	-	87676.08594	50480.17188	4	4
	1	59.166.0.6	1464	149.171.126.7	53	udp	CON	0.001119	146	178	31	29	0	0	dns	521894.53130	636282.37500	2	2
	2	59.166.0.5	3593	149.171.126.5	53	udp	CON	0.001209	132	164	31	29	0	0	dns	436724.56250	542597.18750	2	2
	3	59.166.0.3	49664	149.171.126.0	53	udp	CON	0.001169	146	178	31	29	0	0	dns	499572.25000	609067.56250	2	2
	4	59.166.0.0	32119	149.171.126.9	111	udp	CON	0.078339	568	312	31	29	0	0	-	43503.23438	23896.14258	4	4
In [55]:	df_	_f.shape	#	shape of a	all da	ta													
Out[55]:	(2	540043,	49)																
In [56]:	df.	_f['Labe	l'].va	lue_counts	()	# va	lue c	ounts o	f each	class	in	targ	get va	ariabi	le				
Out[56]:	0 1 Na	22187 3212 me: Labe	60 83 l, dty	pe: int64															

Figure 11: Concating the all data

Next, we printed the first and last 5 lines of the final data and checked the data types of each column. Following this, we examined numerical and categorical features, and duplicates were removed. Figure 12

In [62]:	final_	_df.describe	e()	# checki	ng statisti	cs of the fa	inal dataset					
Out[62]:		dur	chuton	dhutoo	otti		alaaa	diasa	Sload	Diood	Sokto	
		700000 000000	7.000000 . 05	7.00000005	700000 000000	700000 000000	700000 000000	700000 000000	7.000000a - 05	7.000000 - 05	700000 000000	
	count	0.700000	4.0007280.02	7.000000e+05	120 201127	26 506070	4 106023	10.004602	F 054094e+03	1 5195040+05	24.091077	
	etd	15 250/16	1.0602440+05	1.4590010+05	109 700427	60 196049	40.402227	50 160741	1 2640410+09	2 5252510:06	05 492510	
	min	0.000000	0.0000000.00	0.00000000000	0.000000	0.000000	0.000000	0.000000	0.0000000.00	0.0000000+00	0.000000	
	25%	0.000000	1 1400000000000000000000000000000000000	0.0000000000000000000000000000000000000	21.000000	0.000000	0.000000	0.000000	2 79/21/01/05	0.0000000000000000000000000000000000000	2,000000	
	20%	0.001102	2.6400000+02	1.78000000000000000000000000000000000000	60.000000	29.000000	0.000000	0.000000	1.4790060+06	9.4079590:02	2.000000	
	75%	0.114749	2.04000000000	2 28000000000	254.000000	29.000000	6.000000	6.000000	6.51/2960+00	6 7792420+05	22.000000	
	1378	0.114743	1 405577++07	1 405750- 07	254.000000	25.000000	5210.000000	5507.000000	5.00000000	4.90700707	10646.000000	
	max	6/00.//030/	1.4355778+07	1.4057550+07	255.000000	254.000000	5319.000000	5507.000000	2.900000e+09	4.0072070+07	10646.000000	
In [63]:	<pre>3]: # dropping duplicate from the data final_df = final_df.drop_duplicates() print('Dimension of data after dropping duplicates: ',final_df.shape) # getting dimension of data after dropping</pre>											
	Dimens	sion of data	a after dro	pping dupli	Lcates: (45	3771, 49)						
In [19]:	<pre>[19]: merical_features=[features for features in final_df.columns if final_df[features].dtypes !="0"] # getting numerical regorical_features=[features for features in final_df.columns if final_df[features].dtypes =="0"] # getting categor. -int("Numerical_Features int(numerical_features))) -int(numerical_features) -int(categorical_Features Count {}".format(len(categorical_features))) -int(categorical_features)</pre>											
	Numeri ['dur 'stcpb	ical Feature ', 'sbytes', o', 'dtcpb',	es Count 40 , 'dbytes', , 'smeansz'	'sttl', 'd , 'dmeansz'	lttl', 'slos , 'trans_de	s', 'dloss' pth', 'res_l	, 'Sload', ' bdy_len', 'S	'Dload', 'Sp Sjit', 'Djit	kts', 'Dpk ', 'Stime'	ts', 'swin' , 'Ltime',	, 'dwin', 'Sintpkt',	

Figure 12: Removing Duplicate data

We replaced missing values in the 'attack-cat' column with 'normal', substituted '-' with 'none', performed a fundamental transformation of IP addresses to decimal, and checked for null values. Figure 13

Figure 13: Checking null values

4.3 Data analysis and visualisation

After that we provided a comprehensive view of Source-to-Destination (S/D) and Destinationto-Source (D/S) transaction bytes, highlighting their majority. Additionally, we visualized the data structure using bar plots Figure 14 and displayed different attack categories with respect to labels, using both bubble scatter plots and histogram plots Figure 15

Figure 14: Bar Plot

Figure 15: Bubble Scatter Plots and Histogram Plots

4.4 Feature Engineering

Feature engineering is a crucial step in optimizing the dataset for deep learning applications. Categorical columns in the dataset were transformed into numerical values using 'Label Encoding' to achieve both balanced Figure 16 and imbalanced Figure 17 representation. Please refer to the image for more details.

Figure 16: Imbalanced Class in Label Column

Figure 17: Balanced Class in Label Class After Sampling

To manage resources effectively and mitigate the risk of overfitting, Principal Component Analysis (PCA) was used to reduce the dimensionality of the data Figure 18

Figure 18: Principal Component Analysis

Since the 18 components capture 98 percent of the information, this not only makes computations faster but also assists the model in handling new data. This refined data is then used for training and evaluating the model, where we split it into training and test datasets. Figure 19

In [50]:	<pre>pca_comp = PCA(n_components = 18) # 18 components are capturing 98% of Info from the data pca_scaled_data = pca_comp.fit_transform(scaled_data) # indicates the varience of each component print(np.sum(pca_comp.explained_variance_ratio_))</pre>											
	0.9800545654248592											
In [51]:	<pre>pca_scaled_data.shape # shape of data after PCA implementation</pre>											
Out[51]:	(199292, 18)											
In [52]:	<pre>train and test split of data rom sklearn.model_selection import train_test_split # importing train test split libraray _train, X_test, y_train, y_test = train_test_split(pca_scaled_data,new_labels, test_size =0.3,random_state = 1,sh</pre>	uff										
In [53]:	print(X_train.shape) # shape of training data print(X_test.shape) # shaping of test data											
	(139504, 18) (59788, 18)											

Figure 19: Splitting data into training and test datasets

4.5 Model Training

Here we are using 3 machine learning models Recurrent Neural Networks (RNN), Autoencoder, and Graph Neural Networks (GNN) algorithms. The training data was reshaped to maintain temporal relationships, utilizing binary cross-entropy loss and the Adam optimizer over 10 epochs with 512-sample batches to underlying patterns in the data. Figure 20 RNN Figure 21 Autoencoder Figure 22 GNN

	Recurrent Neural Network (RNN) Model:					
In [57]:	<pre>modell=Sequential()</pre>					
10 [58]:	historyi=mode(i.tit(x_train, y_train, validation_data=(x_test, y_test), batch_size= 512, epochs= 10) # training					
	Epoch 1/10					
	273/273 [====================================					
	ccuracy: 0.9698					
	Epoch 2/10 272/272 [
	couracy: 0.9896					
	Epoch 3/10					
	273/273 [====================================					
	ccuracy: 0.9904					
	Epoch 4/10					
	2/3/2/3 [====================================					
	Conacy: 0.9900					
	273/273 [
	ccuracy: 0.9912					
	Epoch 6/10					
	273/273 [
	couracy: 0.9915					
	273/273 [
	ccuracy: 0.9917					
	Epoch 8/10					
	273/273 [====================================					
	ccuracy: 0.9918					
	Epoch 9/10					
	2/3/2/3 [====================================					
	Contracy: 0.9910					
	273/273 [
	, 111,111, 00000 decardey, 01510 tac_cost 010001 tac					

Figure 20: Recurrent Neural Network (RNN)

	AutoEncoder Model						
In [64]:	Adustoronder emolel2 model2 = Sequential() model2 = Sequential() model2 = Sequential() model2.add(fr.keras_layer: model2.add(fr.keras_layer.cov:D(filters=_features+4, kernel_size=1, activation='relu')) # creater (sport 2) model2.add(fr.keras_layer.cov:D(filters=_features+2, kernel_size=1, activation='relu')) # creater (sport 2) model2.add(fr.geore 2) model2.add(fr.geore 2) model2.add(fr.geore 2) # creater (sport 2						
	<pre>model2.add(Dropout(0.1)) # Dart[MovG, layers.BatchNormalization()) model2.dd(ff.Kerss.layers.Flatten()) model2.add(ff.Kerss.layers.Flatten()) model2.add(ff.Kerss.layers.Reshape((In_features), activation='relu')) model2.add(ff.Kerss.layers.Reshape((In_features))</pre>						
	A Decider Louis 1						
[65]: -	model2.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size= 512, epochs= 10) # training autoenco						
	9907/1/10 9907/1/10 9007/10 9007/1						
	sturiaty 0.9999 jpoch 5/10 273/273 [====================================						
	accuracy: 0.0000						
	Epoch 6/10 27/273 [====================================						
	Each file "Jac "Jac "Jac "Jac "Jac "Jac "Jac "Jac						

Figure 21: AutoEncoder

In

	Graph Neural Network (GNN) Model:								
In [70]:	from keras.models import Model from keras.layers import Input, Dense, Flatten, Concatenate import numpy as np								
	# Reshaping the data to remove the unnecessary singleton dimension x_train2 = x_train:reshape(x_train.shape[0], x_train.shape[2]) x_trai2 = x_test:reshape(x_test.shape[0], x_test.shape[2])								
	<pre>num_nodes = x_train2.shape[1] adjacency_matrix = np.ones((num_nodes, num_nodes))</pre>								
	<pre># Converting adjacency matrix to edge List edges = np.colum_stack(no,where(adjacency_matrix == 1)) graph_input = Input(shape=(num_nodes, num_nodes,)) feature_input = Input(shape=(x_trainz.shape[1],))</pre>								
	# dense layers for node feature processing densel = Dense(128, activation='relu')(feature_input) dense2 = Dense(64, activation='relu')(dense1) dense3 = Dense(132, activation='relu')(dense2)								
Epo 348	ch 1/10 38/3488 [
L_a Epo 348	iccuracy: 0.996/ jch //10 88/3488 [===================================								
Epo 348	ncuracy; 0.5515 38/3488 [===================================								
Epo 348 1_a	rch 4/10 38/3488 [===========================] – 13s 4ms/step – loss: 0.0035 – accuracy: 0.9989 – val_loss: 0.0029 – va accuracy: 0.9992								
Epo 348 1_a	rch 5/10 18/3488 [===================================								
Epo 348 1_a	ich 6/10 18/3488 [========================] – 10s 3ms/step – loss: 0.0025 – accuracy: 0.9992 – val_loss: 0.0028 – va accuracy: 0.9993								
248 _ac	ich //10 18/3488 [===================================								
348 - V Epo	NG/0740 18/3488 [===================================								
348 1_a Epo	18/3488 [===================================								
348 1_a	18/3488 [

Figure 22: Graph Neural Network (GNN)

4.6 Model Evaluation and Results

For model evaluation, we assessed performance using metrics such as accuracy, sensitivity, false positive rate, and specificity, offering nuanced insights into the model's ability to distinguish between normal and anomalous instances in the test data. The evaluation also included the use of the ROC-AUC curve, and based on the results, the Autoencoder demonstrated good performance Figure 24.

The 'Autoencoder ROC-AUC curve' can be seen at Figure 23. And similar execution for RNN and GNN models.

Figure 23: Autoencoder ROC-AUC curve

Figure 24: ROC-AUC-Score Comparison

4.7 Web-UI Implementation And Execution

Monitoring the cloud environment in real-time is a crucial task for timely detection and response to anomalies or attacks. We developed a web interface for live network monitoring and alerting users, employing a server-client model. The web application, developed in 'Visual Studio code' in Python Flask Figure 25 Flask is a lightweight and efficient Python web framework, and it will utilizes our 'Autoencoder' model to predict the cloud network traffic sent by the client.

Figure 25: Visual Studio

Python socket programming was used to enable real-time data communication between the client and server, as shown in the image. The application utilizes our final model to analyze network data and provides real-time predictions of network anomalies, classifying them as 'Normal' or 'Anomalous'. Please refer to the below images for reference. Now, follow the below steps.

1. Connect to ec2 instance via command line or putty or RDP. We need two terminals, one is to run the Client script and another is to run the application.

ssh -i "key.pem" ec2-user@ec2.aws.com

2. Copy all the files related to our Web application from 'Visual Studio' to ec2 intance and extract them Figure 26

3. In one terminal run the 'UNSW-client.py' client script Figure 29

3. In second terminal run the application file i.e 'app.py'. It will ask us to connect to the URL "http://x.x.x.:5000" to access the application Figure 30.

4. The Client sends the packets one after the other Figure 29

5. Our Deep Learning model predicts the incoming packets. And show's a "Green Color"

31 for "Normal" and "RED Color" 32 for "Anomalous"

Figure 26 Shows the list of flies in the web application

Figure 27 Shows the 'app.py' file, it has the best performing model i.e 'AUTOEN-CODER.h5' that will predict the incoming packets.

Figure 28 Shows the 'UNSW-client.py' client script, it will use the test data "UNSW-test.csv"

Figure 29 We are running the Client script and we can see it sending the packets to the server

Figure 30 Shows the Server receiving a response from a client

Figure: 31 32 shows the UI that we are accessing at "http://ip.address:5000" the public IP of our EC2 instance followed by port number.

ubuntu@ip-172-31-23-76:~/vv\$			
total 31700			
-rw-rw-r 1 ubuntu ubuntu	253320 Nov	26 18:23	AUTOENCODER.h5
-rw-rw-r 1 ubuntu ubuntu	1310 Dec	6 02:20	UNSW_client.py
-rw-rw-r 1 ubuntu ubuntu	1202 Dec	6 02:15	UNSW_server.py
-rw-rw-r 1 ubuntu ubuntu 2	21975600 Dec	5 17:51	UNSW_test.csv
-rw-rr 1 ubuntu ubuntu 1	L0192476 Dec	6 12:03	
-rw-rw-r 1 ubuntu ubuntu	1500 Dec	6 13:00	app.py
-rw-rr 1 ubuntu ubuntu	3868 Dec	11 12:54	index.html
-rw-rw-r 1 ubuntu ubuntu	515 Dec	6 03:12	instructions.txt
drwxrwxr-x 5 ubuntu ubuntu	4096 Dec	6 12:04	
drwxrwxr-x 2 ubuntu ubuntu	4096 Dec	11 15:31	
drwxrwxr-x 2 ubuntu ubuntu	4096 Dec	11 15:24	
ubuntu@ip-172-31-23-76:~/vv\$	5		

Figure 26: list of flies - ls -l

Figure 27: vi app.py

import socket						
import time						
import pandas as pd						
def main():						
try:						
# Load the test data from CSV						
test_data = pd.read_csv("UNSW_test.csv")						
except Exception as e:						
print("Failed to load data:", e)						
return						
host = socket gethostname()						
port = 8000						
s = socket.socket()						
s.bind((host, port))						
s.listen(5)						
<pre>print(f"Server is listening on {host}:{port}")</pre>						
try:						
while True:						
print("Waiting for a client connection")						
c, addr = s.accept()						
print('Got connection from', addr)						
idx = 0						
try:						
while True:						
<pre>row_data = " ".join(test_data.iloc[idx].values.astype("str"))</pre>						
c.sendall(row_data.encode('utf-8'))						
<pre>print(f"Sent Network Packet {idx + 1}")</pre>						
$idx = (idx + 1) \%$ len (test_data)						
time.sleep(10)						
except socket.error as e:						
print("Socket error:", e)						
print("Client disconnected, waiting for a new connection.")						
Tinally:						
except KeyboardTherrupt						
print("Server is shutting down ")						
finally:						
s.close()						
print("Socket closed.")						
ifname "main":						
mainC						

Figure 28: vi UNSW-client.py

ubuntu@ip-1/2-31-23-76:~/VV\$ Vi dpp.py					
ubuntu@ip-172-31-23-76:~/vv\$ python3 UNSW_client.py					
Server is listening on ip-172-31-23-76:8000					
Waiting for a client connection					
Got connection from ('172.31.23.76', 34746)					
Sent Network Packet 1					
Sent Network Packet 2					
Sent Network Packet 3					
Sent Network Packet 4					
Sent Network Packet 5					
Sent Network Packet 6					
Sent Network Packet 7					
Sent Network Packet 8					
Sent Network Packet 9					

Figure 29: python3 UNSW-client.py

ubuntu@ip-172-31-23-76:~/vv\$ python3 app.py
2023-12-13 14:39:45.374003: E external/local_xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to r
stered
2023-12-13 14:39:45.374204: E external/local_xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to re
tered
2023-12-13 14:39:45.375944: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to
egistered
2023-12-13 14:39:45.384339: I tensorflow/core/platform/cpu_feature_quard.cc:182] This Tensorflow binary is optimized to use available CPU ins
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-12-13 14:39:46.588695: W tensorflow/compiler/tf2tensorrt/utils/pv_utils.cc:38] TF-TRT Warning: Could not find TensorRT
* Serving Flask app 'app'
* Debug mode: on
WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead,
* Running on all addresses (0.0.0.0)
* Bunning on http://127.0.0.1:5000
* Bunning on http://172.31.23.76:5800
Press CTRL+C to guit
1/1 [] - 05 294ms/step
199.78.128.131 F13/Dec/2023 14:40:017 "GET / HTTP/1.1" 200 -
1/1 [] 05 20ms/step
109.78.128.131 F13/Dec/2023.14:40:101 "SET / HTTP/1.1" 200 -
109 78 128 131 [13/Dec/2023 14:40:10] "GET /static/css/main css HTTP/1 1" 304 -
109 78 128 131 [13/Dec/2023 14:40:101 "GET /static/is/scripts is HTTP/1 1" 304 -
109.78.128.131 [13/Dec/2023 14:40:11] "GET /static/assets/favicon.ico.HTTP/1.1" 304 -
1/1 [] 05 18ms/ston
109 78 128 131 F13/Dec/2023 14:40:201 "GET / HTTP/1 1" 200 -
109.78.128.131 [13/Dec/2023 14:40:20] "GET /static/css/mgin.css HTTP/1.1" 304 -
109 78 128 131 F13/Dec/2023 14:40:201 "GET /static/is/scripts is HTTP/1 1" 304 -
109.78.128.131 [13/Dec/2023.14:40:21] "GET /static/assets/favicon.ico.HTTP/1.1" 304 -
1/1 [
109.78.128.131 - F13/Dec/2023 14:40:301 "GET / HTTP/1.1" 200 -
109.78.128.131 [13/Dec/2023.14:40:30] "GET /static/css/main.css.HTTP/1.1" 304 -
199.78.128.131 - [13/Dec/2023 14:40:30] "GET /static/is/scripts.is HTTP/1.1" 304 -
109 78 128 131 F13/Dec/2023 14:40:311 "GET /static/assets/fav/con ico HTTP/1 1" 304 -
1/1 [] - 05 18ms/step

Figure 30: python3 app.py

Figure 31: Networking Monitoring System Predicting Normal Traffic

Figure 32: Network Monitoring System Predicting Anomalous Traffic