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1 Introduction

This document aims to provide a detailed guide for setting up and managing the project
efficiently. It covers system architecture, installation steps, configuration choices, exe-
cution process, and analysing the results. It also provides an overview of the research
project’s development for ”Securing Cloud Environments Through Real-Time Network
Monitoring System for Detecting Network Attacks using Advanced Deep Learning Meth-
ods” It’s crucial to review this document thoroughly before deploying the project.

2 Prerequisites

This document is for people who are familiar with Ubuntu, Python, basic Deep Learning
concepts, and Python Flask. Knowing these things will help you understand and use the
information in this document more effectively.

3 Environment Setup

For setting up the environment, I utilized Anaconda for running Jupyter notebook, the
same can see at Figure [I]
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Figure 1: Anaconda Navigator

All necessary libraries, such as Pandas and Numpy, were installed. These libraries
played a crucial role in reading, mapping, and visualizing the dataset. Additionally, the



Sklearn library (Scikit-learn) was employed for data analysis and modeling, offering vari-
ous algorithms for classification. To develop deep learning models, I utilized Tensorflow
and Keras. Figure

Logout
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Importing Important Libraries

In [46]: port numpy as np # importing numpy for numerical, array manipulation

port pandas as pd # importing pandas for data manipulation

port sys # importing sys library

port plotly.graph_objects as go # importing different visualisation libraries
port plotly.io as pio # library for plotting graphs

port plotly.offline as pyo

port plotly.express as px

port matplotlib.pyplot as plt

om plotly.subplots import make_subplots

port seaborn as sns

om sklearn import preprocessing # importing preprocessing from sklearn

om sklearn.decomposition import PCA # importing PCA for dimension reduction

om sklearn.model_selection import train_test_split # importing library for data split

om sklearn.metrics import confusion_matrix

om sklearn.preprocessing import MinMaxScaler # importing min max scalar for data normalisation
om sklearn.preprocessing import LabelEncoder,OneHotEncoder # importing encoders for data encoding
om collections import Counter # importing counter library for counting purpose
.set_option('display.max_columns', 500)

port warnings # importing warnings

rnings.filterwarnings('ignore")

atplotlib inline

om plotly.offline import init_notebook_mode, iplot # Importing offline plugin of plotly
it_notebook_mode(connected=True)

importing libraries for model building

port tensorflow as tf # importing tensorflow

om tensorflow.keras.models import Sequential # importing different required modules from keras and tensorflow
om tensorflow.keras.layers import Dense, Dropout, Activation,Embedding,Flatten,TimeDistributed
om tensorflow.keras.layers import LSTM, Bidirectional,GRU

om keras.layers import SimpleRNN

om tensorflow.keras.models import load_model, save_model

om sklearn.metrics import roc_curve, auc

om tensorflow.keras.models import Model

om tensorflow.keras.layers import Embedding,Flatten,Conv1D,MaxPoolinglD

om sklearn.preprocessing import label_binarize

Figure 2: Libraries List

For implementation, AWS Cloud was used, and an EC2 Instance with the latest
version of Ubuntu was configured Figure [3. The project primarily leverages the Python
programming language, and we ensured the use of the latest version, which can be verified
and downloaded from https://www.python.org/downloads/ .
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Figure 3: AWS EC2 instance

Multiple libraries, including TensorFlow, Matplotlib, and Scikit-learn, were incorpor-
ated into the project using the pip command as shown below. Along with Python Flask.
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Figure 4: sudo apt update and upgrade

:-$ sudo apt in
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
python3-pip is already the newest version (22.0.2+dfsg-lubuntu
@ upgraded, @ newly installed, @ to remove and 36 not upgraded.

Figure 5: sudo apt install python3-pip

:-$ pip install scikit-learn tensorflow matplot

Defaulting to user installation because normal site-packages is not writeable
Collecting scikit-learn

Downloading scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB)
Requirement already satisfied: tensorflow in ./.local/ /python3. site-packages (2.15.0.postl)
Collecting matplot

Downloading matplot-0.1.9-py2.py3-none-any.whl (5.0 kB)
Requirement already satisfied: numpy<2.0,>=1.17.3 in local/1lib/python3.10/site-packages (from scikit-learn) (1.26.2)
Collecting scipy>=1.5.0 (from scikit-learn)

Downloading scipy-1.11.4-cp310-cp310-manylinux_2 x86_64.manylinux2014_x86_64.whl.metadata (60 kB)

_——— eta 0:0¢

Collecting joblib>=1.1.1 (from scikit-learn)

Downloading joblib-1.3.2-py3-none-any.whl.metadata (5.4 kB)
Collecting threadpoolctl .0.0 (from scikit-learn)

Downloading threadpoolctl-3.2.0-py3-none-any.whl.metadata (10.0 kB)

Figure 6: pip install scikit-learn tensorflow matplot

g $ pip3 install Flask
Defaulting to user installation because normal site-packages is not writeable
already satisfied: Flask in /home/ubunt / 3.10/site-packages
satisfied: Werkzeug>=3.0.0 in / .local/lib/python3.10/site-packag om Flask) (3.0.1)
satisfied 3 1.2 in / .local/lib/python3. 1 te (from Flask) (3.1.2
satisf S gerous L1, S ges (from Flask)
satisfied: d 5 in / /ubuntu/ . local/lib/pytho / packages (from Flask) (8.1.
satisfied inke ibuntu/.local/1i ython: D (from Flask) (1.
Requirement satisfied: r f 0 /home/ubunt: / / (from Jinja2>=3.
$ flask --vel
Python 3.10.
Flas

Werkzeug

Figure 7: Installing Python Flask

4 Implementation

Our project model contains different components, which can be seen below.



4.1 Dataset collect

The UNSW-NB15 dataset was created by the University of New South Wales for use
in the 2015 International Knowledge Discovery and Data Mining Tools Competition.
Like the older KDD Cup 1999 dataset, the UNSW-NB15 dataset is intended to help
develop effective network intrusion detection systems. The goal of the dataset is to
enable the creation of models that can accurately differentiate between malicious and
benign network traffic. A key strength of the UNSW-NB15 dataset is that it contains a
wide variety of simulated attack types within a modeled university network environment.
The audit-friendly data provides rich details on diverse intrusion scenarios. Overall, the
UNSW-NB15 dataset represents a valuable research resource to drive continued progress
on cybersecurity data analysis and predictive modeling for intrusion detection.

4.2 Data Preprocessing

In this stage first we are looking at the raw data from dataset. To accommodate the large
dataset, we divided it into four separate CSV files named UNSW-NB15-1.csv, UNSW-
NB15-2.csv, UNSW-NB15-3.csv, and UNSW-NB15-4.csv. These files are defined as dfl,
df2, df3, and df4, as shown in the Figure [

Reading Raw Data

Since this dataset is very large therefore chunked into 4 different csv files, Reading each file separately

In [47]: features = pd.read_csv('NUSW-NB15_features.csv',sep=",", encoding='cp1252') # Reading mapping file of the data
dfl = pd.read_csv('UNSW-NB15_1.csv') # reading first file of data
df2 = pd.read_csv('UNSW-NB15_2.csv' # reading second file of data
df3 = pd.read_csv('UNSW-NB15_3.csv') # reading third file of data
df4 = pd.read_csv('UNSW-NB15_4.csv') # reading fourth file of data

Figure 8: Raw Data

We printed all the features from the features.csv file Figure [0] and displayed sample
data from the first CSV file, dfl, using the head and tail commands please refer to the
Figure [10] for details.

In [48]: print('Features for this data is:') # printing different features in data along with their meaning
features

Features for this data is:

Out[48]:
No. Name Type Description

srcip  nominal Source IP address
sport  integer Source port number
dstip  nominal Destination IP address
dsport integer Destination port number
proto nominal Transaction protocol
state  nominal  Indicates to the state and its dependent proto...
dur Float Record total duration

sbytes  Integer Source to destination transaction bytes

© ® N o o & @ N =

dbytes Integer Destination to source transaction bytes

© ® N o 0 & © N = O

10 sttl Integer Source to destination time to live value

0 1 dttl Integer Destination to source time to live value

Figure 9: Printing all the Features



In [49]: print('shape of datal i # Reading shape of each data file
print('shape of data2 i
print('shape of data3 i

print('shape of data4 i

:', dfl.shape
, df2.shape
, df3.shape
:', df4.shape

shape of datal is: (700000, 49)
shape of data2 is: (700000, 49)
shape of data3 i (700000, 49)
shape of data4 is: (440043, 49)

In [50]: dfl.head() # visualisng the first five rows of data from first file to understand the raw data

Out[50]:
59.166.0.0 1390 149.171.126.6 53 udp CON 0.001055 132 164 31 29 0 0.1 dns 500473.9375 621800.9375 2 21 0.2 03 04 05 66 82

0 59.166.0.0 33661 149.171.1269 1024 udp CON 0036133 528 304 31 29 0 0 - B87676.08594 5048017188 4 4 0 0 0 0 132 7€
1 5916606 1464 149.171.1267 53 udp CON 0.001119 146 178 31 29 0 0 dns 521894.53130 636282.37500 2 2 0 0 O O 73 &
2 59.166.0.5 3593 149.171.1265 53 udp CON 0001209 132 164 31 29 0 0 dns 43672456250 542507.18750 2 2 0 O O 0O 66 8%
3 59.166.0.3 49664 149.171.1260 53 udp CON 0001169 146 178 31 29 0 0 dns 49957225000 609067.56250 2 2 0 O O 0O 73 8¢
4 59.166.0.0 32119 149.171.1269 111 udp CON 0078339 568 312 31 29 0 0 - 4350323438 2389614258 4 4 0 0 0 0 142 7¢
In [51]: dfl.tail() # visualisng the last five rows of data from first file to understand the raw data
Out[51]:
59.166.0.0 1390 149.171.1266 53 udp CON 0.001055 132 164 31 29 0 04 dns 5004739375 6218009375 2 21 02 03

1.047932e+05 6.436736e+05 6 8 255 255

o

699995 59.166.0.8 12520 149.171.126.6 31010 tcp FIN 0.020383 320 1874 31 29 1
699996 59.166.0.0 18895 149.171.126.9 80 tcp FIN 1402957 19410 1087890 31 29 2 370 http 1.103783e+05 6.195098e+06 364 746 255 255

699997 59.166.0.0 30103 149.171.126.5 5190 tcp FIN 0.007108 2158 2464 31 29 6 6 - 2.328644e+06 2.658413e+06 24 24 255 255
699998 59.166.0.6 30388 149.171.126.5 111 udp CON 0.004435 568 304 31 29 0 0 - 7.684329e+05 4.112740e+05 4 4 0 0
699999 59.166.0.0 6055 149.171.126.5 54145 tcp FIN 0.072974 4238 60788 31 29 7 30 - 4.582454e+05 6.571546e+06 72 72 255 255

Figure 10: head and tail of the data

As the above data lacks headers, we added headers to all four CSV files, combined the
data, and printed a sample with headers. Additionally, we provided an overview of the
data, including the number of columns and rows. Furthermore, we printed the ”label”
data along with the count of 0’s and 1’s can be seen at Figure

In [53]: df_f = pd.concat([df1l, df2, df3, df4], axis=0) # concating the all data

In [54]: df_f.head() # visualising the data after concating to assure the correct concatination

Out[54]:

srcip  sport dstip dsport proto state dur sbytes dbytes sttl dttl sloss dloss service Sload Dload Spkts Dpkts

0 59.166.0.0 33661 149.171.126.9 1024 udp CON 0036133 528 304 31 29 0 0 - 87676.08594 50480.17188 4 4
1 5916606 1464 149.171.126.7 53 udp CON 0001119 146 178 31 29 0 0 dns 521894.53130 636282.37500 2 2
2 59.166.0.5 3593 149.171.126.5 53 udp CON 0001209 132 164 31 29 0 0 dns 436724.56250 542597.18750 2 2
3 59.166.0.3 49664 149.171.126.0 53 udp CON 0001169 146 178 31 29 0 0 dns 499572.25000 609067.56250 2 2
4 59.166.0.0 32119 149.171.1269 111 udp CON 0078339 568 312 31 29 0 0 - 43503.23438  23896.14258 4 4

In [55]: df_f.shape # shape of all data

Out[55]: (2540043, 49)
In [56]: df_f['Label'].value_counts() # value counts of each class in target variable
Out[56]: @ 2218760

1 321283
Name: Label, dtype: int64

Figure 11: Concating the all data
Next, we printed the first and last 5 lines of the final data and checked the data types

of each column. Following this, we examined numerical and categorical features, and
duplicates were removed. Figure




In [62]: final_df.describe() # checking statistics of the final dataset

out[62]:
dur sbytes dbytes sttl dttl sloss dloss Sload Dload Spkts

count 700000.000000 7.000000e+05 7.000000e+05 700000.000000 700000.000000 700000.000000 700000.000000 7.000000e+05 7.000000e+05 700000.000000

mean 0.700324 4.923738e+03 2.425832e+04 130.291137 36.596279 4.196073 10.904693 5.954284e+07 1.518594e+06 24.081077
std 15.359416 1.060344e+05 1.458921e+05 108.700437 69.186048 40.402237 52162741 1.364941e+08 3.525351e+06 95.483510
min 0.000000 0.000000e+00 0.000000e+00 0.000000 0.000000 0.000000 0.000000 0.000000e+00 0.000000e+00 0.000000

25% 0.000008 1.140000e+02 0.000000e+00 31.000000 0.000000 0.000000 0.000000 2.784314e+05 0.000000e+00 2.000000
50% 0.001102 2.640000e+02 1.780000e+02 60.000000 29.000000 0.000000 0.000000 1.478006e+06 8.407858e+03 2.000000
75% 0.114749 2.334000e+03 3.380000e+03 254.000000 29.000000 6.000000 6.000000 6.514286e+07 6.778242e+05 22.000000

max 8760.776367 1.435577e+07 1.465753e+07 255.000000 254.000000 5319.000000 5507.000000 5.988000e+09 4.807207e+07  10646.000000

In [63]: # dropping duplicate from the data
final_df = final_df.drop_duplicates()
print('Dimension of data after dropping duplicates: ',final_df.shape) # getting dimension of data after dropping |

Dimension of data after dropping duplicates: (453771, 49)

In [19]: merical_features=[features for features in final_df.columns if final_df[features].dtypes !="0
itegorical_features=[features for features in final_df.columns if final_df[features].dtypes
-int("Numerical Features Count {}".format(len(numerical_features)))

“int(numerical_features)
int("Categorical Features Count {}".format(len(categorical_features)))
“int(categorical_features)

# getting numerica
0"] # getting categor.

Numerical Features Count 40
['dur', 'sbytes', 'dbytes', 'sttl', 'dttl', 'sloss', 'dloss', 'Sload', 'Dload', 'Spkts', 'Dpkts', 'swin', ‘'dwin',
f;tcpb', 'dtcpb’, 'smeansz', 'dmeansz'! 'trans_depth', 'res_bdy_len', 'Sjit', 'Di}t', 'Stime', 'Ltimg', :Sintpkt',

Figure 12: Removing Duplicate data

We replaced missing values in the ’attack-cat’ column with 'normal’; substituted -’

with 'none’, performed a fundamental transformation of IP addresses to decimal, and
checked for null values. Figure

In [28]: def ip_to_decimal(ip):
if isinstance(ip, int):
return ip # If already an integer, return it as is
octets = ip.split('.")
binary = '{0:08b}{1:08b}{2:08b}{3:08b}"'.format(xmap(int, octets))
decimal = int(binary, 2) # Convert binary to decimal
return decimal

final_df['srcip']
final_df['dstip']

final_df['srcip'].apply(ip_to_decimal)
final_df['dstip'].apply(ip_to_decimal)

In [29]: # checking null values in data
print('Null values in each column are:\n',final_df.isnull().sum())

Null values in each column are:
srcip

sport
dstip
dsport
proto
state
dur

Sooces
©

Figure 13: Checking null values

4.3 Data analysis and visualisation

After that we provided a comprehensive view of Source-to-Destination (S/D) and Destination-
to-Source (D/S) transaction bytes, highlighting their majority. Additionally, we visual-
ized the data structure using bar plots Figure |14 and displayed different attack categories
with respect to labels, using both bubble scatter plots and histogram plots Figure




In [35]: # bar plot of Different Service Count with respect to Label
# Set the figure size
plt.figure(figsize=(12, 8))

# Plot the countplot with customizable figure size and bar color
sns.countplot(x="'service', hue='Label', data=final_df, palette='Set2') # You can change 'Set2' to your preferred co

# Set title and show the plot
plt.title('Different Service Count with respect to Label')

plt.show()
Different Service Count with respect to Label
200000 Label
w0
1
175000 4
150000 1
125000 1
o
]
S 100000
75000 4
50000
25000 -
smtp ftp ftp-data pop3 dhcp ss| irc snmp radius
service

Figure 14: Bar Plot

In [37]: # Creating a bubble scatter plot to visualize the S/D Packet count and D/S Packets count with Attacks
# Defining a dictionary to map each label to a specific size
mapp = {
28 S5p
g 15
b

final_df['bubble_size'] = final_df['Label'].map(mapp)

custom_colors = ['#FB2576', '#3F0071', '#FFBEQ0', '#@0AF91']
fig = px.scatter(
final_df,
x="Spkts",
y="'Dpkts"',
size='bubble_size',
color_discrete_sequence=custom_colors,
Label',
S/D Packet count and D/S Packets count with Attacks"

)
fig.show()

S/D Packet count and D/S Packets count with Attacks

12k
Label
1
10k
0.8
8k
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<
=
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Figure 15: Bubble Scatter Plots and Histogram Plots



4.4 Feature Engineering

Feature engineering is a crucial step in optimizing the dataset for deep learning applica-
tions. Categorical columns in the dataset were transformed into numerical values using
"Label Encoding’ to achieve both balanced Figure [16| and imbalanced Figure [17| repres-
entation. Please refer to the image for more details.

In [43]: # plotting pie plot to understand distribution of different Classes in Label column
custom_colors = [ '#F45905', '#155263']
counts = final_df['Label'].value_counts()
px.pie(final_df,names=counts.index,values = counts.values,title="Label Class Count ",color_discrete_sequence=custom_

Label Class Count

| J |
- o

Figure 16: Imbalanced Class in Label Column

In [47]: 1s = ['0', '1']
custom_colors = ['#F45905', '#155263']
values = new_labels.value_counts()
fig = go.Figure(data=[go.Pie(labels=1s, values=values, marker=dict(colors=custom_colors))])
fig.update_layout(title="Label Class Count After Sampling")
fig.show()

Label Class Count After Sampling

|} |
- o

Figure 17: Balanced Class in Label Class After Sampling

To manage resources effectively and mitigate the risk of overfitting, Principal Com-
ponent Analysis (PCA) was used to reduce the dimensionality of the data Figure



Implementing Principle Component Analysis

In [49]: i
fron

# Adding a line for the 95%
fig.add_trace(go.Scatter (x=d

fig.show()

The Number of Components Needed to Explain Variance

1
0.8
0.6
I
0.4
0.2
N s 10 15 20 25 30 35 a0 as

Number of Components.

— = Cumulative variance

Cumlative Variance (%)

Figure 18: Principal Component Analysis

Since the 18 components capture 98 percent of the information, this not only makes
computations faster but also assists the model in handling new data. This refined data is
then used for training and evaluating the model, where we split it into training and test
datasets. Figure

In [50]:

In [51]:
Out[51]:

In [52]:

In [53]:

4.5 Model

pca_comp = PCA(n_components = 18) # 18 components are capturing 98% of Info from the data
pca_scaled_data = pca_comp.fit_transform(scaled_data) # indicates the varience of each component
print(np.sum(pca_comp.explained_variance_ratio_))

0.9800545654248592

pca_scaled_data.shape # shape of data after PCA implementation
(199292, 18)
t train and test split of data

From sklearn.model_selection import train_test_split # importing train test split libraray
(_train, X_test, y_train, y_test = train_test_split(pca_scaled_data,new_labels, test_size =0.3,random_state = 1,shuff

print(X_train.shape) # shape of training data
print(X_test.shape) # shaping of test data
(139504, 18)

(59788, 18)

Figure 19: Splitting data into training and test datasets

Training

Here we are using 3 machine learning models Recurrent Neural Networks (RNN), Autoen-
coder, and Graph Neural Networks (GNN) algorithms. The training data was reshaped
to maintain temporal relationships, utilizing binary cross-entropy loss and the Adam op-
timizer over 10 epochs with 512-sample batches to underlying patterns in the data.

Figure 20 RNN

Figure [21] Autoencoder

Figure 22 GNN



Recurrent Neural Network (RNN) Model:

In [57]: modell=Sequential() # adding first layera as seq layer
modell.add (tf.keras. layers. Input(shape=(1, X_train.shapel1l)))  # adding input layer
#model1.add(tF.keras. layers.BatchNormalization())  # adding batch normalization layer
model1.add (SimpleRNN(5)) # Adding SimpleRNN layer with 5 neurons
modell.add(Dropout(0.2))  # adding dropout layer to avoid overfitting of model
# modell.add(SimpleRNN(20)) # Adding SimpleRNN layer with 20 neurons

# model1’add(Dropout (0.2))  # adding dropout layer to avoid overfitting of model
# modell.add(Dense (10, activation: r')) # adding dense layer with 10 neurons

¥ Model . add(Dropout(0.2)) - # agding dropout layer ¢o avoid overritting of model

model1.add (Dense(1,activation=" ")) # adding output layer with 1 neurons
o e e et e ool L 2 Ty o iy coon
mode 1. summary ()

In [58]: historyl=modell.fit(x_train, y_train, validation_data

x_test, y_test), batch_size= 512, epochs= 10) # training RN,

Epoch 1/10

273/273 [

ccuracy: ©.9698
h 2/10

- 55 9ms/step - loss: 0.6106 - accuracy: 0.6747 - val_loss: 0.3858 - val_a

- 1s 3ms/step — loss: 0.2776 — accuracy: 0.9727 — val_loss: 0.1744 — val_a

- 1s 2ms/step — loss: ©.1519 — accuracy: 0.9874 — val_loss: 0.1009 — val_a

~ 1s 2ms/step — loss: ©.1021 — accuracy: 0.9899 — val_loss: 0.0709 — val_a

- 1s 2ms/step — loss: ©.0794 — accuracy: 0.9906 — val_loss: 0.0568 — val_a

~ 1s 2ms/step — loss: 0.0667 — accuracy: ©.9909 — val_loss: ©.0494 — val_a

~ 1s 2ms/step — loss: 0.0599 — accuracy: ©.9911 — val_loss: 0.0453 — val_a

- 1s 2ms/step — loss: ©.0547 — accuracy: ©.9914 — val_loss: ©.0428 — val_a

~ 1s 3ms/step — loss: 0.0522 — accuracy: 0.9915 — val_loss: 0.0412 — val_a

= - 1s 3ms/step — loss: 0.0503 - accuracy: 0.9916 - val_loss: 0.0401 - val_a
ccuracy: 0.9918

Figure 20: Recurrent Neural Network (RNN

AutoEncoder Model

In (641: #autokncoder modelz
n_features = X_train.shapel(1]
modelz - Sequentiall)
mode12.add(t1. keras. layers. Input (shape
# Encoder Layer

1, n_features)))

mode12-add(tf.keras. layers. ConviD(filters=n_featuress4, kernel_size=1, activation='relu'))
mode12.add (Dropoyt (8.1))
# Encoder

tretu’))

mode o add (vr- keras. layers.ConviD(filters=n_featuress2, kernel size=1, activatio
mode12.add (Dropout (6.1))

3
mode 2. add (11 keras. layers.Convib(filters=n_features, kernel_size=1, activation='relu’))
1))

mode12.add (Dropout (-

# BottleNeck
model2.add (tf.keras. layers.BatchNormalization())

mode12.add (tf. keras. layers.Flatten())

model2.add (tf.keras. layers.Dense(n_features,activation="relu))
mode12.add (tf.keras. layers.Reshape((1,n_features)))

In [65]: =model2.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size= 512, epochs= 10) # training autoencoder
Epoch 1/10
2 ~ 195 20ms/step — loss: ©.1344 — accuracy: ©.9463 — val_loss: ©.0350 — val
- 4s 1ams/step - loss: ©.0323 - accuracy: ©.9917 — val_loss: 0.0236 - val_
— 4s 1Sms/step — loss: ©.0222 — accuracy: ©.9927 — val_loss: 0.0099 — val_
~ 4s 1Sms/step — loss: ©.0111 — accuracy: ©.9965 — val_loss: 0.0024 — val_
~ 4s 16ms/step — loss: ©.0072 — accuracy: ©.9978 — val_loss: 0.0011 — val_
~ 3s 13ms/step — loss: ©.0041 — accuracy: ©.9987 — val_loss: 0.0011 — val_
- 55 17ms/step — loss: ©.0029 — accuracy: ©.9991 — val_loss: 7.2860e-04 —
~ 4s 1Sms/step — loss: ©.0028 — accuracy: ©.9992 — val_loss: 7.8217e-04 —
- 55 18ms/step - loss: ©.0026 - accuracy: ©.9992 - val_loss: 5.7153e-04 —
- 4s 15ms/step — loss: ©.0024 — accuracy: ©.9993 — val_loss: 5.8106e-04 —
Graph Neural Network (GNN) Model:
In [701: from keras.models import Model
from keras.layers import Input, Dense, Flatten, Concatenate

import numpy as

# Reshaping the data to remove the ummccessary singleton dimension

x_tr: Bt e S R
fom 3= e A e SR G P S T
num_nodes = x_train2.shape[1]

adjacency_matrix

p-ones ((num_nodes, num_nodes))

# Converting adjacency matrix to edge list

S Wl i L b
graph_input = Input(sh __nodes, num_nodes,))
feaRure Gnput = Tnput(shape(x_trains.shapelils})

# dense layers for node feature processing

densel ;1 $festure_input)
dense2 ) (dense1)
dense3 ‘retus) (densez)

Epoch 1/10

— 14s ams/step - loss: ©.0282 — accuracy: ©.9923 — val_loss: 0.0059 — va
1 accuracy: ©.9987

~ 13s ams/step - loss: ©.0075 — accuracy: ©.9978 — val_loss: 0.0191 — va

Uaccuracy: 0.9923

— 14s ams/step — loss: ©.0042 — accuracy: ©.9988 — val_loss: 0.0028 — va

Laccuracy: 0.9991

T — 13s ams/step — loss: 0.0035 — accuracy: ©.9989 — val_loss: 0.0029 — va
accuracy: ©0.9992

— 105 3ms/step - loss: ©.0027 — accuracy: ©.9992 — val_loss: 0.0013 — va
Laccuracy: 0.9997

— 105 3ms/step — loss: ©.0025 — accuracy: ©.9992 — val_loss: 0.0028 — va

~ 95 3ms/step - loss: ©.0022 - accuracy: ©.9994 - val_loss: 0.0016 - val

— 125 3ms/step - loss: ©.0018 — accuracy: ©.9994 — val_loss: 8.8814e—04

~ 13s ams/step - loss: ©.0026 — accuracy: ©.9992 — val_loss: 0.0012 — va

- 155 ams/step - loss: ©.0017 - accuracy: ©.9995 — val_loss: ©.0010 — va

Uaccuracy: 0.9999

Figure 22: Graph Neural Network (GNN
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4.6 Model Evaluation and Results

For model evaluation, we assessed performance using metrics such as accuracy, sensitivity,
false positive rate, and specificity, offering nuanced insights into the model’s ability to
distinguish between normal and anomalous instances in the test data. The evaluation
also included the use of the ROC-AUC curve, and based on the results, the Autoencoder
demonstrated good performance Figure [24]

The "Autoencoder ROC-AUC curve’ can be seen at Figure And similar execution for
RNN and GNN models.

Plotting ROC_AUC Curve for Auto-Encoder Model

In [69]: y_pred_prob2 = model2.predict(x_test).ravel()

# Calculate ROC curve and AUC
fpr, tpr, _ = roc_curve(y_test, y_pred_prob2)
roc_auc2 = auc(fpr, tpr)

# Create ROC scatter plot using Plotly
fig = go.Figure()

fig.add_trace(
go.Scatter(x=fpr, y=tpr, mode='lines', line=dict(color='darkorange', width=2),
name=f'AUC = {roc_auc2:.2f}")
)

ROC Curve

True Positive Rate (TPR)
\

o 0.2 0.4 0.6 o8 1
False Positive Rate (FPR)

Figure 23: Autoencoder ROC-AUC curve

In [76]1: result_data = {'Accuracy:laccuracyl,accuracy2,accuracy3l, # creating data contains metrics of evaluation
“s ity':ltpri, tpr2, tpral,
Rate’: [fpri, fpr2,fpr3l,
ficty2,specificty3],
2, roc auc3l,
# making dataframe of data

In (771:
out1771:

ROC_AUC_Score Comparison
. 0.99672 1.00000 1.00000

os

o6

0.4

0.2

o RNN Autoencoder GNN

Figure 24: ROC-AUC-Score Comparison

4.7 Web-UI Implementation And Execution

Monitoring the cloud environment in real-time is a crucial task for timely detection and
response to anomalies or attacks. We developed a web interface for live network monitor-
ing and alerting users, employing a server-client model. The web application, developed
in "Visual Studio code’ in Python Flask Figure Flask is a lightweight and efficient
Python web framework, and it will utilizes our ’Autoencoder’ model to predict the cloud
network traffic sent by the client.
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Figure 25: Visual Studio

Python socket programming was used to enable real-time data communication between
the client and server, as shown in the image. The application utilizes our final model to
analyze network data and provides real-time predictions of network anomalies, classifying
them as 'Normal’ or ’Anomalous’. Please refer to the below images for reference.

Now, follow the below steps.

1. Connect to ec2 instance via command line or putty or RDP. We need two terminals,
one is to run the Client script and another is to run the application.

ssh -i "key.pem” ec2-user@ec2.aws.com

2. Copy all the files related to our Web application from "Visual Studio’ to ec2 intance
and extract them Figure

3. In one terminal run the "UNSW-client.py’ client script Figure

3. In second terminal run the application file i.e 'app.py’. It will ask us to connect to the
URL ”http://x.x.x.x:5000” to access the application Figure [30]

4. The Client sends the packets one after the other Figure

5. Our Deep Learning model predicts the incoming packets. And show’s a ” Green Color”
31l for ”Normal” and "RED Color” 32l for ” Anomalous”

Figure 26| Shows the list of flies in the web application

Figure Shows the ’app.py’ file, it has the best performing model i.e "AUTOEN-
CODER.h5’ that will predict the incoming packets.

Figure Shows the "UNSW-client.py’ client script, it will use the test data "UNSW-
test.csv”

Figure 29 We are running the Client script and we can see it sending the packets to the
server

Figure |30 Shows the Server receiving a response from a client

Figure: shows the Ul that we are accessing at "http://ip.address:5000” the public
IP of our EC2 instance followed by port number.
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total 31700

-rW-rw-r ubuntu ubuntu 0 6 :23 AUTOENCODER.h5
ubuntu ubuntu : 02:20 UNSW_client.py
ubuntu ubuntu 6 UNSW_server.p:
ubuntu ubuntu 21975600 Dec :51 UNSW_test.csv
ubuntu ubuntu 10192476 Dec
ubuntu ubuntu 1500 Dec app.py
ubuntu ubuntu 3868 Dec 4 index.html
ubuntu ubuntu 515 Dec 6 03:12 instructions.txt
ubuntu ubuntu 6 Dec
ubuntu ubuntu 4096 Dec

2 ubuntu ubuntu 4096 Dec
. 1 |

while True

Figure 28: vi UNSW-client.py
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Server is listening on ip-172-31-23-76:8000
Waiting for a client connection...

Got connection from ('172.31.23.76', 34746)
Sent Network Packet 1

Sent Network Packet

Sent Network Packet
Sent Network Packet
Sent Network Packet
Sent Network Packet
Sent Network Packet
Sent Network Packet
Sent Network Packet

Figure 29: python3 UNSW-client.py

A\ Not Secure  34.250.198.243:5000

Real Time Network Monitoring System

Current Network Packet Status

NORMAL

Description
System is Safe, No action is required

Next packet arriving in: 10 seconds

Figure 31: Networking Monitoring System Predicting Normal Traffic

A\ Not Secure  34.250.198.243:5000

Real Time Network Monitoring System

Current Network Packet Status

ANOMALOUS

Description

System is attacked, Take actions Immediately

Next packet arriving in: 7 seconds

Figure 32: Network Monitoring System Predicting Anomalous Traffic
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