
Configuration Manual

MSc Research Project

MSc in Cloud Computing

Venkateshwarlu vanga
Student ID: x22158952

School of Computing

National College of Ireland

Supervisor: Shaguna Gupta

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Venkateshwarlu vanga

Student ID: x22158952

Programme: MSc in Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Shaguna Gupta

Submission Due Date: 14/12/2023

Project Title: Configuration Manual

Word Count: 1320

Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Venkateshwarlu Vanga

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Venkateshwarlu vanga
x22158952

1 Introduction

This document aims to provide a detailed guide for setting up and managing the project
efficiently. It covers system architecture, installation steps, configuration choices, exe-
cution process, and analysing the results. It also provides an overview of the research
project’s development for ”Securing Cloud Environments Through Real-Time Network
Monitoring System for Detecting Network Attacks using Advanced Deep Learning Meth-
ods” It’s crucial to review this document thoroughly before deploying the project.

2 Prerequisites

This document is for people who are familiar with Ubuntu, Python, basic Deep Learning
concepts, and Python Flask. Knowing these things will help you understand and use the
information in this document more effectively.

3 Environment Setup

For setting up the environment, I utilized Anaconda for running Jupyter notebook, the
same can see at Figure 1.

Figure 1: Anaconda Navigator

All necessary libraries, such as Pandas and Numpy, were installed. These libraries
played a crucial role in reading, mapping, and visualizing the dataset. Additionally, the

1



Sklearn library (Scikit-learn) was employed for data analysis and modeling, offering vari-
ous algorithms for classification. To develop deep learning models, I utilized Tensorflow
and Keras. Figure 2.

Figure 2: Libraries List

For implementation, AWS Cloud was used, and an EC2 Instance with the latest
version of Ubuntu was configured Figure 3. The project primarily leverages the Python
programming language, and we ensured the use of the latest version, which can be verified
and downloaded from https://www.python.org/downloads/.

Figure 3: AWS EC2 instance

Multiple libraries, including TensorFlow, Matplotlib, and Scikit-learn, were incorpor-
ated into the project using the pip command as shown below. Along with Python Flask.

2



Figure 4: sudo apt update and upgrade

Figure 5: sudo apt install python3-pip

Figure 6: pip install scikit-learn tensorflow matplot

Figure 7: Installing Python Flask

4 Implementation

Our project model contains different components, which can be seen below.

3



4.1 Dataset collect

The UNSW-NB15 dataset was created by the University of New South Wales for use
in the 2015 International Knowledge Discovery and Data Mining Tools Competition.
Like the older KDD Cup 1999 dataset, the UNSW-NB15 dataset is intended to help
develop effective network intrusion detection systems. The goal of the dataset is to
enable the creation of models that can accurately differentiate between malicious and
benign network traffic. A key strength of the UNSW-NB15 dataset is that it contains a
wide variety of simulated attack types within a modeled university network environment.
The audit-friendly data provides rich details on diverse intrusion scenarios. Overall, the
UNSW-NB15 dataset represents a valuable research resource to drive continued progress
on cybersecurity data analysis and predictive modeling for intrusion detection.

4.2 Data Preprocessing

In this stage first we are looking at the raw data from dataset. To accommodate the large
dataset, we divided it into four separate CSV files named UNSW-NB15-1.csv, UNSW-
NB15-2.csv, UNSW-NB15-3.csv, and UNSW-NB15-4.csv. These files are defined as df1,
df2, df3, and df4, as shown in the Figure 8.

Figure 8: Raw Data

We printed all the features from the features.csv file Figure 9 and displayed sample
data from the first CSV file, df1, using the head and tail commands please refer to the
Figure 10 for details.

Figure 9: Printing all the Features

4



Figure 10: head and tail of the data

As the above data lacks headers, we added headers to all four CSV files, combined the
data, and printed a sample with headers. Additionally, we provided an overview of the
data, including the number of columns and rows. Furthermore, we printed the ”label”
data along with the count of 0’s and 1’s can be seen at Figure 11

Figure 11: Concating the all data

Next, we printed the first and last 5 lines of the final data and checked the data types
of each column. Following this, we examined numerical and categorical features, and
duplicates were removed. Figure 12

5



Figure 12: Removing Duplicate data

We replaced missing values in the ’attack-cat’ column with ’normal’, substituted ’-’
with ’none’, performed a fundamental transformation of IP addresses to decimal, and
checked for null values. Figure 13

Figure 13: Checking null values

4.3 Data analysis and visualisation

After that we provided a comprehensive view of Source-to-Destination (S/D) and Destination-
to-Source (D/S) transaction bytes, highlighting their majority. Additionally, we visual-
ized the data structure using bar plots Figure 14 and displayed different attack categories
with respect to labels, using both bubble scatter plots and histogram plots Figure 15

6



Figure 14: Bar Plot

Figure 15: Bubble Scatter Plots and Histogram Plots

7



4.4 Feature Engineering

Feature engineering is a crucial step in optimizing the dataset for deep learning applica-
tions. Categorical columns in the dataset were transformed into numerical values using
’Label Encoding’ to achieve both balanced Figure 16 and imbalanced Figure 17 repres-
entation. Please refer to the image for more details.

Figure 16: Imbalanced Class in Label Column

Figure 17: Balanced Class in Label Class After Sampling

To manage resources effectively and mitigate the risk of overfitting, Principal Com-
ponent Analysis (PCA) was used to reduce the dimensionality of the data Figure 18

8



Figure 18: Principal Component Analysis

Since the 18 components capture 98 percent of the information, this not only makes
computations faster but also assists the model in handling new data. This refined data is
then used for training and evaluating the model, where we split it into training and test
datasets. Figure 19

Figure 19: Splitting data into training and test datasets

4.5 Model Training

Here we are using 3 machine learning models Recurrent Neural Networks (RNN), Autoen-
coder, and Graph Neural Networks (GNN) algorithms. The training data was reshaped
to maintain temporal relationships, utilizing binary cross-entropy loss and the Adam op-
timizer over 10 epochs with 512-sample batches to underlying patterns in the data.
Figure 20 RNN
Figure 21 Autoencoder
Figure 22 GNN

9



Figure 20: Recurrent Neural Network (RNN)

Figure 21: AutoEncoder

Figure 22: Graph Neural Network (GNN)

10



4.6 Model Evaluation and Results

For model evaluation, we assessed performance using metrics such as accuracy, sensitivity,
false positive rate, and specificity, offering nuanced insights into the model’s ability to
distinguish between normal and anomalous instances in the test data. The evaluation
also included the use of the ROC-AUC curve, and based on the results, the Autoencoder
demonstrated good performance Figure 24.
The ’Autoencoder ROC-AUC curve’ can be seen at Figure 23. And similar execution for
RNN and GNN models.

Figure 23: Autoencoder ROC-AUC curve

Figure 24: ROC-AUC-Score Comparison

4.7 Web-UI Implementation And Execution

Monitoring the cloud environment in real-time is a crucial task for timely detection and
response to anomalies or attacks. We developed a web interface for live network monitor-
ing and alerting users, employing a server-client model. The web application, developed
in ’Visual Studio code’ in Python Flask Figure 25 Flask is a lightweight and efficient
Python web framework, and it will utilizes our ’Autoencoder’ model to predict the cloud
network traffic sent by the client.

11



Figure 25: Visual Studio

Python socket programming was used to enable real-time data communication between
the client and server, as shown in the image. The application utilizes our final model to
analyze network data and provides real-time predictions of network anomalies, classifying
them as ’Normal’ or ’Anomalous’. Please refer to the below images for reference.
Now, follow the below steps.
1. Connect to ec2 instance via command line or putty or RDP. We need two terminals,
one is to run the Client script and another is to run the application.
ssh -i ”key.pem” ec2-user@ec2.aws.com
2. Copy all the files related to our Web application from ’Visual Studio’ to ec2 intance
and extract them Figure 26
3. In one terminal run the ’UNSW-client.py’ client script Figure 29
3. In second terminal run the application file i.e ’app.py’. It will ask us to connect to the
URL ”http://x.x.x.x:5000” to access the application Figure 30.
4. The Client sends the packets one after the other Figure 29
5. Our Deep Learning model predicts the incoming packets. And show’s a ”Green Color”
31 for ”Normal” and ”RED Color” 32 for ”Anomalous”

Figure 26 Shows the list of flies in the web application
Figure 27 Shows the ’app.py’ file, it has the best performing model i.e ’AUTOEN-
CODER.h5’ that will predict the incoming packets.
Figure 28 Shows the ’UNSW-client.py’ client script, it will use the test data ”UNSW-
test.csv”
Figure 29 We are running the Client script and we can see it sending the packets to the
server
Figure 30 Shows the Server receiving a response from a client
Figure: 31 32 shows the UI that we are accessing at ”http://ip.address:5000” the public
IP of our EC2 instance followed by port number.

12



Figure 26: list of flies - ls -l

Figure 27: vi app.py

Figure 28: vi UNSW-client.py

13



Figure 29: python3 UNSW-client.py

Figure 30: python3 app.py

Figure 31: Networking Monitoring System Predicting Normal Traffic

Figure 32: Network Monitoring System Predicting Anomalous Traffic

14


	Introduction
	Prerequisites
	Environment Setup
	Implementation
	Dataset collect
	Data Preprocessing
	Data analysis and visualisation
	Feature Engineering
	Model Training
	Model Evaluation and Results
	Web-UI Implementation And Execution


