

Configuration Manual

MSc Research Project

MSc Cloud Computing

Harinarayanan Suresh

Student ID: x22140905

School of Computing

National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:
Harinarayanan Suresh

Student ID: x22140905

Programme: MSc Cloud Computing Year: 2023

Module: MSc Research Project

Lecturer:

Submission

Shaguna Gupta

Due Date: 31/01/2024

Project Title:
Expanding the Comparative Analysis of Privacy-Preserving

Homomorphic Encryption Techniques in Cloud Computing

Word Count: 3543…………………………………… Page Count:11…………………………………
I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are required

to use the Referencing Standard specified in the report template. To use other author's

written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Harinarayanan Suresh

Date: 29/01/2024
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into

the assignment box located outside the office.

Attach a completed copy of this sheet to each project (including multiple

copies)

☑

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

☑

1

Configuration Manual

Harinarayanan Suresh

Student ID: x22140905

1 Introduction

This notebook, titled "Evaluating Homomorphic Encryption on Real World Datasets," is

designed to provide a practical and comprehensive overview of applying homomorphic

encryption techniques to various datasets. Aimed at students, academics, and professionals

interested in data security and cryptography, this guide offers a hands-on approach to

understanding and implementing homomorphic encryption.

Homomorphic encryption is a crucial cryptographic technique that allows for computations on

encrypted data without the need to decrypt it. This capability is increasingly important in fields

where data privacy is paramount, such as healthcare, finance, and personal data protection.

In this notebook, we explore the application of three homomorphic encryption techniques—

CKKS, RIPPLE, and Lattice-Based—across five different datasets: MNIST, IRIS, Adult

Income, Heart Disease, and Cancer Wisconsin. Each dataset presents a unique set of

characteristics, making them ideal for demonstrating the versatility and effectiveness of these

encryption methods.

The structure of the notebook is as follows:

1. Data Preparation: We begin by introducing each dataset, followed by necessary

preprocessing steps to make the data suitable for encryption.

2. Encryption Implementation: The notebook then delves into the implementation of the

CKKS, RIPPLE, and Lattice-Based encryption techniques. Each section is detailed and

structured to enhance understanding and facilitate practical application.

3. Results Analysis: Lastly, we assess and compare the performance of each encryption

technique across the datasets. This analysis aims to highlight the practical implications

and efficiency of homomorphic encryption in real-world data scenarios.

This notebook is intended to be both informative and engaging, encouraging readers to interact

with the content and apply the concepts learned. Our goal is to provide a clear, academically

sound, and professional exploration of homomorphic encryption, making it accessible and

relevant to a wide audience.

2 Required Specification

In order to effectively run and interact with the "Evaluating Homomorphic Encryption on Real

World Datasets" notebook, it is important to have the appropriate hardware and software setup.

This section provides a comprehensive guide on the recommended hardware specifications,

necessary software, and library dependencies required to ensure an optimal experience with the

notebook. These recommendations are designed to facilitate smooth execution of the

encryption techniques and efficient handling of the datasets involved.

2

2.1 Hardware Specifications

Actual Specification for Execution Environment

The notebook "Evaluating Homomorphic Encryption on Real World Datasets" has been

executed and tested on a robust and high-performance environment provided by Google Colab

Pro. This setup ensures efficient handling and processing of data, especially given the

computationally intensive nature of homomorphic encryption algorithms. The actual hardware

specifications of the environment are as follows:

● Backend: Python 3 Google Compute Engine backend, augmented with TPU (Tensor

Processing Unit) capabilities for enhanced computational power.

● System RAM: A substantial 35.2 GB of RAM, facilitating smooth handling of large

datasets and complex computations.

● Disk Space: A generous 225.8 GB of disk space, more than sufficient for storing

extensive datasets and any additional files generated during the notebook's execution.

Recommended Specifications for Users

While the notebook has been executed on a high-end platform, it is designed to be accessible

and runnable on a wide range of hardware setups. For users looking to run this notebook in

their environments, the following specifications are recommended:

● Processor: A modern multi-core processor (e.g., Intel Core i5/i7/i9 or AMD Ryzen

series) to handle the computational demands of encryption algorithms efficiently.

● Memory: A minimum of 8 GB of RAM is recommended. However, for handling larger

datasets or for more intensive data processing tasks, 16 GB or more is preferable.

● Storage: Adequate disk space for the datasets and any additional output files. A

minimum of 50 GB of free space is recommended to ensure smooth operation. An SSD

(Solid State Drive) is preferred for faster data read/write speeds.

● Graphics Card (Optional): While not a necessity for most encryption-related tasks, a

dedicated GPU can be beneficial for specific data processing or machine learning tasks

that may be part of the notebook.

These recommended specifications aim to strike a balance between accessibility and

performance, ensuring that a wide range of users can effectively work with the notebook

without necessitating a high-end computing environment.

2.2 Software Specifications

To ensure the successful execution of the "Evaluating Homomorphic Encryption on Real World

Datasets" notebook on a local machine, certain software requirements must be met. These

specifications are essential for creating an environment that can effectively handle the

notebook's operations, including data processing and homomorphic encryption techniques.

● Operating System: The notebook is compatible with various operating systems

including Windows, macOS, and Linux. Ensure that your operating system is up to date

for optimal performance and compatibility.

● Python Installation: Python is the foundational programming language for this

notebook. A Python 3.x version is required, with Python 3.6 or later recommended for

better compatibility with the latest libraries and tools.

○

3

● Jupyter Notebook: This interactive computing environment is where the notebook will

be accessed and run. It allows for a seamless integration of code execution, rich text,

visualisations, and other media. Jupyter Notebook can be installed in the following

ways:

Standalone Installation: Using Python’s package manager pip: pip

install notebook

○ Anaconda Distribution: Installing Anaconda, a Python distribution which

includes Jupyter Notebook, is an easy way to get everything set up, especially

for those who are new to Python or data science. Download and install

Anaconda from https://www.anaconda.com/products/individual.

● Python Virtual Environment (Optional but Recommended): Setting up a virtual

environment is a good practice to manage dependencies and isolate the project. This

can be done using `venv` or `conda` environments. A virtual environment ensures that

the installation of the required libraries for this notebook does not affect other Python

projects or system-wide settings.

● Internet Connection: A stable internet connection is necessary, especially if you're

installing Python, Jupyter Notebook, or other dependencies from the internet, or if your

notebook fetches data from online sources.

By adhering to these software specifications, users can create a local environment capable of

running the notebook efficiently, thereby allowing for a productive and educational experience

in exploring homomorphic encryption techniques on real-world datasets.

2.3 Library Dependencies

For the successful execution and exploration of the "Evaluating Homomorphic Encryption on

Real World Datasets" notebook, it is essential to have specific Python libraries installed. These

libraries provide the necessary tools for data manipulation, visualisation, machine learning, and

homomorphic encryption techniques. Below is a detailed list of these dependencies and

instructions on how to install them.

Data Handling and Visualization Libraries:

● NumPy: Used for numerical computations and array manipulations.

● Pandas: Essential for data manipulation and analysis.

● Matplotlib: A plotting library for creating static, interactive, and animated

visualisations in Python.

Installation Command:

pip install numpy pandas matplotlib

Machine Learning Libraries:

● Scikit-Learn: Provides simple and efficient tools for data mining and data analysis.

● TensorFlow Keras: Used for loading the MNIST dataset.

Installation Command: pip install

scikit-learn tensorflow

https://www.anaconda.com/products/individual

4

Specific Datasets:

● The notebook uses functions like load_iris and load_breast_cancer from Scikit-Learn

to load the IRIS and Breast Cancer Wisconsin datasets directly.

● The MNIST dataset is loaded via TensorFlow Keras.

Note: These datasets do not require separate installation as they are part of the Scikit-Learn and

TensorFlow Keras libraries.

Homomorphic Encryption Libraries:

● Piheaan: A library for homomorphic encryption.

● Pyfhel: Another Python library for homomorphic encryption, providing Python

bindings for the Microsoft SEAL library. Installation Command:

pip install piheaan Pyfhel

System Utilities:

● Sys: A module that provides access to some variables used or maintained by the Python

interpreter and to functions that interact strongly with the interpreter. It is part of the

standard Python library.

● Time: A module for time-related tasks. Also included in the standard Python library.

Note: Both sys and time are part of the standard Python library and do not require

separate installation.

Ensure that these libraries are installed in your Python environment before running the

notebook. This will allow you to fully engage with all aspects of the notebook, from basic data

handling to implementing and understanding homomorphic encryption techniques.

3 Data and its Encryption Decryption

This section of the manual delves into the core aspect of the notebook - the practical application

of encryption and decryption techniques on real-world datasets. It provides a detailed overview

of the datasets used, along with step-by-step instructions on how they are encrypted and

decrypted using advanced homomorphic encryption methods. This guidance is crucial for

understanding the implementation nuances and effectiveness of these cryptographic techniques

in data analysis.

3.1 Data Loading

In the notebook "Evaluating Homomorphic Encryption on Real World Datasets," we load and

prepare five key datasets, each serving a specific purpose in demonstrating homomorphic

encryption techniques.

● MNIST Dataset

○ Loaded using TensorFlow Keras (mnist.load_data()), this dataset of

handwritten digits is concatenated into a single data array for analysis. The

notebook includes a quick verification and visualisation of the dataset.

● IRIS Dataset

○

5

○ The IRIS dataset, useful for pattern recognition tasks, is loaded via Scikit-

Learn's load_iris() function. It is then converted into a DataFrame, with its

structure displayed for verification.

● Adult Income Dataset

○ Sourced from an online CSV file, this dataset is loaded using Pandas’

read_csv() with predefined column names. It's used for socio-economic

analysis, specifically income level prediction.

● Heart Disease Dataset

○ Also loaded from an online source with Pandas, this dataset helps in predicting

heart disease presence in patients. Special handling is done for missing values,

with the dataset's structure displayed post-loading. ● Breast Cancer Wisconsin

Dataset

Loaded using Scikit-Learn’s load_breast_cancer(), this dataset is vital for

medical diagnostics, particularly breast cancer. It's organised into a DataFrame

and displayed for a comprehensive overview.

These datasets are essential for the subsequent encryption and decryption analysis, each

providing a unique context for evaluating the effectiveness of homomorphic

encryption techniques.

3.2 CKKS Method

The CKKS (Cheon-Kim-Kim-Song) homomorphic encryption scheme, known for its

efficiency in handling real numbers, is utilised in the notebook for both encrypting and

decrypting various datasets. This sophisticated approach is critical for evaluating the

practicality of applying homomorphic encryption in real-world scenarios.

CKKS Implementation:

● Data Processing (process_data): This function normalises and flattens the datasets,

preparing them for the encryption process. It's a crucial step to ensure data consistency

and compatibility with the CKKS scheme.

● Encryption (encrypt_data): This function takes the processed data and encrypts it

using CKKS. It measures and reports key metrics like encryption time, space

complexity, latency, and throughput, providing valuable insights into the encryption

process's efficiency.

● Decryption (decrypt_data): Following encryption, the data is decrypted using the

CKKS scheme. The decryption process is closely monitored to measure the time taken,

space complexity, latency, and throughput. These metrics are essential for evaluating

the performance and practicality of the CKKS method in real-world applications.

● Batch Processing (batch_encrypt_decrypt): Given the large size of the datasets,

this function facilitates the processing of data in batches, allowing for more efficient

encryption and decryption. It also aggregates performance metrics over multiple

batches, providing a comprehensive view of the overall efficiency.

6

Application on Datasets

1. MNIST Dataset:

○ The dataset is processed, encrypted, and then decrypted in batches. Each step is

evaluated for performance metrics to understand the CKKS method's efficiency

on image data.

2. IRIS Dataset:

○ Similar to MNIST, the IRIS dataset undergoes processing, encryption, and

decryption, with an emphasis on evaluating the performance of CKKS on a

smaller, feature-rich dataset.

3. Adult Income Dataset:

○ This dataset includes categorical data, which is first encoded. The encrypted

data is then decrypted, and performance metrics are analysed to assess CKKS's

applicability on socio-economic data.

4. Heart Disease Dataset:

○ After preprocessing and encoding, the dataset is encrypted and decrypted using

CKKS. Performance metrics provide insights into the method's effectiveness for

healthcare data.

5. Cancer Wisconsin Dataset:

○

7

The focus here is on processing medical diagnostic data for encryption and

decryption, with a thorough evaluation of performance metrics to determine the

CKKS method's suitability for sensitive health data.

In each case, the CKKS method demonstrates its capability to handle various data types, from

images to numerical and categorical data, showcasing its potential for broad applications in

data privacy and security. The notebook not only implements these techniques but also provides

an in-depth analysis of their performance, offering valuable insights for researchers and

practitioners in the field of data security.

3.3 RIPPLE Method

The notebook implements the RIPPLE homomorphic encryption scheme, adept at handling

both real and integer numbers. This method is pivotal for examining the feasibility of

homomorphic encryption across various data types and scenarios.

RIPPLE Implementation

● Data Processing (process_data): This function is crucial for normalizing and

formatting the datasets, making them suitable for the RIPPLE encryption process.

● Utility Functions: Includes functions like crange, discrete_gaussian,

discrete_uniform, which are essential for polynomial operations within the

RIPPLE scheme.

● RIPPLE Class: Encapsulates the core functionalities of the RIPPLE encryption

scheme, including key generation (generate_keys), encryption (encrypt), and

decryption (decrypt). It also includes methods for addition and multiplication of

encrypted data, demonstrating the homomorphic properties.

● Batch Processing (batch_encrypt_decrypt): Handles encryption and decryption

in batches, which is particularly beneficial for processing large datasets efficiently. This

function also aggregates performance metrics, offering a comprehensive view of the

method's efficiency.

Application on Datasets

1. MNIST Dataset:

○ Preprocessed and encrypted using RIPPLE, with performance metrics for

encryption recorded.

○ The encrypted data is then decrypted, and decryption metrics are analysed.

2. IRIS Dataset:

○ Undergoes a similar process of RIPPLE encryption and decryption.

○ Performance metrics are evaluated to understand the method's efficiency on a

smaller dataset.

3. Adult Income Dataset:

○ Includes a preprocessing step for encoding categorical data.

○ Post-encryption and decryption, performance metrics are assessed to gauge the

method's applicability to socio-economic data.

4. Heart Disease Dataset:

8

○ After preprocessing and encoding, the dataset is encrypted and decrypted using

RIPPLE.

○ Performance metrics are recorded to evaluate the scheme's effectiveness for

healthcare data.

5. Cancer Wisconsin Dataset:

○ Focuses on encrypting and decrypting medical diagnostic data using RIPPLE.

Performance metrics are thoroughly evaluated to ascertain the method's

suitability for sensitive health data.

In each scenario, the RIPPLE method adeptly handles different data types, showcasing its

versatility and potential in data privacy and security applications. The notebook effectively

implements these techniques and provides an in-depth analysis of their performance, offering

valuable insights for those in the field of data security and encryption.

3.4 Lattice-Based Homomorphic Encryption

The notebook incorporates a Lattice-Based Homomorphic Encryption approach, utilising the

Pyfhel library. This method leverages lattice cryptography for secure data processing, enabling

computations on encrypted data. It's instrumental in exploring the practicality of lattice-based

encryption in diverse data scenarios.

Lattice-Based Homomorphic Encryption Implementation

● Data Processing (process_data): This function prepares the datasets for encryption,

ensuring they are in the correct format. It flattens image data and converts dataframes

into numpy arrays.

● Encryption Function (encrypt_data): Encrypts data using the lattice-based

approach. It measures and reports key metrics like encryption time, space complexity,

latency, and throughput.

● Decryption Function (decrypt_data): Decrypts the encrypted data and evaluates

the decryption process, reporting similar metrics as encryption.

● Batch Processing (batch_encrypt_decrypt): Facilitates handling of large datasets

by processing data in batches, both for encryption and decryption. This function also

calculates average performance metrics across batches for a comprehensive analysis.

Application on Datasets

1. MNIST Dataset:

○ The dataset is processed, encrypted, and decrypted using the lattice-based

method. Each step's performance is evaluated for efficiency metrics, providing

insights into the method's applicability to image data.

2. IRIS Dataset:

○ Processes, encrypts, and decrypts the IRIS dataset, with performance metrics

evaluated to understand the efficiency of lattice-based encryption on smaller,

feature-rich datasets.

3. Adult Income Dataset:

○

9

○ Includes preprocessing for encoding categorical data. The encrypted data is then

decrypted, with performance metrics analysed to assess the method's suitability

for socio-economic data.

4. Heart Disease Dataset:

○ After preprocessing and encoding, the dataset is encrypted and decrypted.

Performance metrics provide insights into the method's effectiveness for

healthcare data.

5. Cancer Wisconsin Dataset:

○ Processes medical diagnostic data for encryption and decryption, with thorough

performance metrics evaluation to determine the method's suitability for

sensitive health data.

In each case, the Lattice-Based Homomorphic Encryption method demonstrates its capacity to

handle various data types, showcasing its potential for broad applications in data privacy and

security. The notebook effectively implements these techniques and provides an in-depth

analysis of their performance, offering valuable insights for researchers and practitioners in the

field of data security.

3.5 Technique Comparison by Dataset

This section presents a comparative analysis of the three encryption techniques—CKKS,

RIPPLE, and Lattice-Based Homomorphic Encryption—across various datasets. We evaluate

and contrast their performance in terms of time complexity, space complexity, latency, and

throughput, offering insights into the efficiency and suitability of each method for different

types of data. This comparison is pivotal in understanding the trade-offs and advantages unique

to each encryption technique when applied to datasets like MNIST, IRIS, Adult Income, Heart

Disease, and Cancer Wisconsin.

The performance of CKKS, RIPPLE, and Lattice-Based encryption methods is analysed across

multiple datasets—MNIST, IRIS, Adult Income, Heart Disease, and Cancer Wisconsin—using

bar plots that focus on key metrics: time complexity, space complexity, latency, and throughput.

● Time Complexity Bar Plot

○ Setup: Side-by-side bars represent encryption and decryption times for each

technique across all datasets.

○ Data: Average encryption (encryption_times) and decryption times

(decryption_times) are calculated and displayed for each method and dataset.

○ Visualisation: Titled 'Encryption and Decryption Time Comparison', plots for

each dataset use logarithmic y-axes for clear time complexity comparison.

● Space Complexity Bar Plot

○ Setup: Displays space complexity during encryption and decryption for each

method across datasets.

○ Data: Space complexities (encryption_space and decryption_space) are

calculated and plotted, highlighting memory usage.

○ Visualisation: Titled 'Encryption and Decryption Space Comparison', these plots

visualise memory requirements for each dataset and encryption technique.

● Latency Bar Plot

10

○ Setup: Shows latency of each method during encryption and decryption across

datasets.

○ Data: Latency values (encryption_latency and decryption_latency) are displayed

for each dataset and technique.

○ Visualisation: Titled 'Encryption and Decryption Latency', these plots assess the

responsiveness of each encryption method for each dataset.

● Throughput Bar Plot

○ Setup: Visualizes throughput of each encryption method

 across different datasets.

○ Data: Throughput values (encryption_throughput and decryption_throughput)

are calculated and plotted, demonstrating data processing efficiency.

○ Visualisation: Titled 'Encryption and Decryption Throughput', these plots

compare the data processing capabilities of each technique for each dataset.

● Combined Analysis

○ This comprehensive approach provides a holistic view of each encryption

method's performance across diverse datasets.

By comparing all datasets side-by-side, we can draw broader conclusions about

each method's overall efficiency, scalability, and suitability for various types of

data.

○ This analysis is crucial for understanding the strengths and limitations of each

encryption method, allowing for informed decisions when selecting the most

appropriate technique for specific data processing needs.

The bar plots collectively offer a nuanced understanding of how each encryption method

performs under different data scenarios, guiding users in choosing the right technique for their

specific use case and dataset.

References

1. NumPy: NumPy contributors. NumPy: A fundamental package for scientific computing

with Python. Available at: https://numpy.org/

2. Pandas: McKinney, W. Pandas: A Foundational Python Library for Data Analysis and

Statistics. Available at: https://pandas.pydata.org/

3. Matplotlib: Hunter, J.D. Matplotlib: A 2D Graphics Environment. Computing in

Science & Egineering, 2007. Available at: https://matplotlib.org/

4. TensorFlow Keras: Chollet, F. et al. Keras: The Python Deep Learning API. Available

at: https://keras.io/

5. Scikit-Learn: Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of

Machine Learning Research, 2011. Available at: https://scikit-learn.org/stable/

https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://keras.io/

○

11

6. Cheon-Kim-Kim-Song (CKKS) Homomorphic Encryption Scheme: Cheon, J.H., Kim,

A., Kim, M., and Song, Y. Homomorphic Encryption for Arithmetic of Approximate

Numbers. Advances in Cryptology – ASIACRYPT 2017.

