
 

 

 

Configuration Manual 

MSc Research Project 

MSc Cloud Computing 

Harinarayanan Suresh 

Student ID: x22140905 

School of Computing 

National College of Ireland 

Supervisor: Shaguna Gupta 



 

 

National College of Ireland 

MSc Project Submission Sheet 

School of Computing 

Student 

Name: 
Harinarayanan Suresh   

Student ID: x22140905 
  

Programme: MSc Cloud Computing Year: 2023 

Module: MSc Research Project 
  

Lecturer: 

Submission 

Shaguna Gupta   

Due Date: 31/01/2024   

Project Title: 
Expanding the Comparative Analysis of Privacy-Preserving 

Homomorphic Encryption Techniques in Cloud Computing 

Word Count: 3543…………………………………… Page Count:11………………………………… 
I hereby certify that the information contained in this (my submission) is information 

pertaining to research I conducted for this project. All information other than my own 

contribution will be fully referenced and listed in the relevant bibliography section at the 

rear of the project. 
ALL internet material must be referenced in the bibliography section. Students are required 

to use the Referencing Standard specified in the report template. To use other author's 

written or electronic work is illegal (plagiarism) and may result in disciplinary action. 

Signature: Harinarayanan Suresh 

Date: 29/01/2024 
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 

You must ensure that you retain a HARD COPY of the project, both 

for your own reference and in case a project is lost or mislaid. It is not 

sufficient to keep a copy on computer. 

 

Assignments that are submitted to the Programme Coordinator Office must be placed into 

the assignment box located outside the office. 

Attach a completed copy of this sheet to each project (including multiple 

copies) 

☑ 

Attach a Moodle submission receipt of the online project 

submission, to each project (including multiple copies). 

☑ 



 

 

 





 

1 

Configuration Manual 

Harinarayanan Suresh 

Student ID: x22140905 

1 Introduction 

This notebook, titled "Evaluating Homomorphic Encryption on Real World Datasets," is 

designed to provide a practical and comprehensive overview of applying homomorphic 

encryption techniques to various datasets. Aimed at students, academics, and professionals 

interested in data security and cryptography, this guide offers a hands-on approach to 

understanding and implementing homomorphic encryption. 

Homomorphic encryption is a crucial cryptographic technique that allows for computations on 

encrypted data without the need to decrypt it. This capability is increasingly important in fields 

where data privacy is paramount, such as healthcare, finance, and personal data protection. 

In this notebook, we explore the application of three homomorphic encryption techniques—

CKKS, RIPPLE, and Lattice-Based—across five different datasets: MNIST, IRIS, Adult 

Income, Heart Disease, and Cancer Wisconsin. Each dataset presents a unique set of 

characteristics, making them ideal for demonstrating the versatility and effectiveness of these 

encryption methods. 

The structure of the notebook is as follows: 

1. Data Preparation: We begin by introducing each dataset, followed by necessary 

preprocessing steps to make the data suitable for encryption. 

2. Encryption Implementation: The notebook then delves into the implementation of the 

CKKS, RIPPLE, and Lattice-Based encryption techniques. Each section is detailed and 

structured to enhance understanding and facilitate practical application. 

3. Results Analysis: Lastly, we assess and compare the performance of each encryption 

technique across the datasets. This analysis aims to highlight the practical implications 

and efficiency of homomorphic encryption in real-world data scenarios. 

This notebook is intended to be both informative and engaging, encouraging readers to interact 

with the content and apply the concepts learned. Our goal is to provide a clear, academically 

sound, and professional exploration of homomorphic encryption, making it accessible and 

relevant to a wide audience. 

2 Required Specification 

In order to effectively run and interact with the "Evaluating Homomorphic Encryption on Real 

World Datasets" notebook, it is important to have the appropriate hardware and software setup. 

This section provides a comprehensive guide on the recommended hardware specifications, 

necessary software, and library dependencies required to ensure an optimal experience with the 

notebook. These recommendations are designed to facilitate smooth execution of the 

encryption techniques and efficient handling of the datasets involved. 
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2.1 Hardware Specifications 

Actual Specification for Execution Environment 

The notebook "Evaluating Homomorphic Encryption on Real World Datasets" has been 

executed and tested on a robust and high-performance environment provided by Google Colab 

Pro. This setup ensures efficient handling and processing of data, especially given the 

computationally intensive nature of homomorphic encryption algorithms. The actual hardware 

specifications of the environment are as follows: 

● Backend: Python 3 Google Compute Engine backend, augmented with TPU (Tensor 

Processing Unit) capabilities for enhanced computational power. 

● System RAM: A substantial 35.2 GB of RAM, facilitating smooth handling of large 

datasets and complex computations. 

● Disk Space: A generous 225.8 GB of disk space, more than sufficient for storing 

extensive datasets and any additional files generated during the notebook's execution. 

Recommended Specifications for Users 

While the notebook has been executed on a high-end platform, it is designed to be accessible 

and runnable on a wide range of hardware setups. For users looking to run this notebook in 

their environments, the following specifications are recommended: 

● Processor: A modern multi-core processor (e.g., Intel Core i5/i7/i9 or AMD Ryzen 

series) to handle the computational demands of encryption algorithms efficiently. 

● Memory: A minimum of 8 GB of RAM is recommended. However, for handling larger 

datasets or for more intensive data processing tasks, 16 GB or more is preferable. 

● Storage: Adequate disk space for the datasets and any additional output files. A 

minimum of 50 GB of free space is recommended to ensure smooth operation. An SSD 

(Solid State Drive) is preferred for faster data read/write speeds. 

● Graphics Card (Optional): While not a necessity for most encryption-related tasks, a 

dedicated GPU can be beneficial for specific data processing or machine learning tasks 

that may be part of the notebook. 

These recommended specifications aim to strike a balance between accessibility and 

performance, ensuring that a wide range of users can effectively work with the notebook 

without necessitating a high-end computing environment. 

2.2 Software Specifications 

To ensure the successful execution of the "Evaluating Homomorphic Encryption on Real World 

Datasets" notebook on a local machine, certain software requirements must be met. These 

specifications are essential for creating an environment that can effectively handle the 

notebook's operations, including data processing and homomorphic encryption techniques. 

● Operating System: The notebook is compatible with various operating systems 

including Windows, macOS, and Linux. Ensure that your operating system is up to date 

for optimal performance and compatibility. 

● Python Installation: Python is the foundational programming language for this 

notebook. A Python 3.x version is required, with Python 3.6 or later recommended for 

better compatibility with the latest libraries and tools. 
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● Jupyter Notebook: This interactive computing environment is where the notebook will 

be accessed and run. It allows for a seamless integration of code execution, rich text, 

visualisations, and other media. Jupyter Notebook can be installed in the following 

ways: 

Standalone Installation: Using Python’s package manager pip: pip 

install notebook 

○ Anaconda Distribution: Installing Anaconda, a Python distribution which 

includes Jupyter Notebook, is an easy way to get everything set up, especially 

for those who are new to Python or data science. Download and install 

Anaconda from https://www.anaconda.com/products/individual. 

● Python Virtual Environment (Optional but Recommended): Setting up a virtual 

environment is a good practice to manage dependencies and isolate the project. This 

can be done using `venv` or `conda` environments. A virtual environment ensures that 

the installation of the required libraries for this notebook does not affect other Python 

projects or system-wide settings. 

● Internet Connection: A stable internet connection is necessary, especially if you're 

installing Python, Jupyter Notebook, or other dependencies from the internet, or if your 

notebook fetches data from online sources. 

By adhering to these software specifications, users can create a local environment capable of 

running the notebook efficiently, thereby allowing for a productive and educational experience 

in exploring homomorphic encryption techniques on real-world datasets. 

2.3 Library Dependencies 

For the successful execution and exploration of the "Evaluating Homomorphic Encryption on 

Real World Datasets" notebook, it is essential to have specific Python libraries installed. These 

libraries provide the necessary tools for data manipulation, visualisation, machine learning, and 

homomorphic encryption techniques. Below is a detailed list of these dependencies and 

instructions on how to install them. 

Data Handling and Visualization Libraries: 

● NumPy: Used for numerical computations and array manipulations. 

● Pandas: Essential for data manipulation and analysis. 

● Matplotlib: A plotting library for creating static, interactive, and animated 

visualisations in Python. 

Installation Command: 

pip install numpy pandas matplotlib 

Machine Learning Libraries: 

● Scikit-Learn: Provides simple and efficient tools for data mining and data analysis. 

● TensorFlow Keras: Used for loading the MNIST dataset. 

Installation Command: pip install 

scikit-learn tensorflow 

https://www.anaconda.com/products/individual
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Specific Datasets: 

● The notebook uses functions like load_iris and load_breast_cancer from Scikit-Learn 

to load the IRIS and Breast Cancer Wisconsin datasets directly. 

● The MNIST dataset is loaded via TensorFlow Keras. 

Note: These datasets do not require separate installation as they are part of the Scikit-Learn and 

TensorFlow Keras libraries. 

Homomorphic Encryption Libraries: 

● Piheaan: A library for homomorphic encryption. 

● Pyfhel: Another Python library for homomorphic encryption, providing Python 

bindings for the Microsoft SEAL library. Installation Command: 

pip install piheaan Pyfhel 

System Utilities: 

● Sys: A module that provides access to some variables used or maintained by the Python 

interpreter and to functions that interact strongly with the interpreter. It is part of the 

standard Python library. 

● Time: A module for time-related tasks. Also included in the standard Python library. 

Note: Both sys and time are part of the standard Python library and do not require 

separate installation. 

Ensure that these libraries are installed in your Python environment before running the 

notebook. This will allow you to fully engage with all aspects of the notebook, from basic data 

handling to implementing and understanding homomorphic encryption techniques. 

3 Data and its Encryption Decryption 

This section of the manual delves into the core aspect of the notebook - the practical application 

of encryption and decryption techniques on real-world datasets. It provides a detailed overview 

of the datasets used, along with step-by-step instructions on how they are encrypted and 

decrypted using advanced homomorphic encryption methods. This guidance is crucial for 

understanding the implementation nuances and effectiveness of these cryptographic techniques 

in data analysis. 

3.1 Data Loading 

In the notebook "Evaluating Homomorphic Encryption on Real World Datasets," we load and 

prepare five key datasets, each serving a specific purpose in demonstrating homomorphic 

encryption techniques. 

● MNIST Dataset 

○ Loaded using TensorFlow Keras (mnist.load_data()), this dataset of 

handwritten digits is concatenated into a single data array for analysis. The 

notebook includes a quick verification and visualisation of the dataset. 

● IRIS Dataset 
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○ The IRIS dataset, useful for pattern recognition tasks, is loaded via Scikit-

Learn's load_iris() function. It is then converted into a DataFrame, with its 

structure displayed for verification. 

● Adult Income Dataset 

○ Sourced from an online CSV file, this dataset is loaded using Pandas’ 

read_csv() with predefined column names. It's used for socio-economic 

analysis, specifically income level prediction. 

● Heart Disease Dataset 

○ Also loaded from an online source with Pandas, this dataset helps in predicting 

heart disease presence in patients. Special handling is done for missing values, 

with the dataset's structure displayed post-loading. ● Breast Cancer Wisconsin 

Dataset 

Loaded using Scikit-Learn’s load_breast_cancer(), this dataset is vital for 

medical diagnostics, particularly breast cancer. It's organised into a DataFrame 

and displayed for a comprehensive overview. 

These datasets are essential for the subsequent encryption and decryption analysis, each 

providing a unique context for evaluating the effectiveness of homomorphic 

encryption techniques. 

3.2 CKKS Method 

The CKKS (Cheon-Kim-Kim-Song) homomorphic encryption scheme, known for its 

efficiency in handling real numbers, is utilised in the notebook for both encrypting and 

decrypting various datasets. This sophisticated approach is critical for evaluating the 

practicality of applying homomorphic encryption in real-world scenarios. 

CKKS Implementation: 

● Data Processing (process_data): This function normalises and flattens the datasets, 

preparing them for the encryption process. It's a crucial step to ensure data consistency 

and compatibility with the CKKS scheme. 

● Encryption (encrypt_data): This function takes the processed data and encrypts it 

using CKKS. It measures and reports key metrics like encryption time, space 

complexity, latency, and throughput, providing valuable insights into the encryption 

process's efficiency. 

● Decryption (decrypt_data): Following encryption, the data is decrypted using the 

CKKS scheme. The decryption process is closely monitored to measure the time taken, 

space complexity, latency, and throughput. These metrics are essential for evaluating 

the performance and practicality of the CKKS method in real-world applications. 

● Batch Processing (batch_encrypt_decrypt): Given the large size of the datasets, 

this function facilitates the processing of data in batches, allowing for more efficient 

encryption and decryption. It also aggregates performance metrics over multiple 

batches, providing a comprehensive view of the overall efficiency. 
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Application on Datasets 

1. MNIST Dataset: 

○ The dataset is processed, encrypted, and then decrypted in batches. Each step is 

evaluated for performance metrics to understand the CKKS method's efficiency 

on image data. 

2. IRIS Dataset: 

○ Similar to MNIST, the IRIS dataset undergoes processing, encryption, and 

decryption, with an emphasis on evaluating the performance of CKKS on a 

smaller, feature-rich dataset. 

3. Adult Income Dataset: 

○ This dataset includes categorical data, which is first encoded. The encrypted 

data is then decrypted, and performance metrics are analysed to assess CKKS's 

applicability on socio-economic data. 

4. Heart Disease Dataset: 

○ After preprocessing and encoding, the dataset is encrypted and decrypted using 

CKKS. Performance metrics provide insights into the method's effectiveness for 

healthcare data. 

5. Cancer Wisconsin Dataset: 
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The focus here is on processing medical diagnostic data for encryption and 

decryption, with a thorough evaluation of performance metrics to determine the 

CKKS method's suitability for sensitive health data. 

In each case, the CKKS method demonstrates its capability to handle various data types, from 

images to numerical and categorical data, showcasing its potential for broad applications in 

data privacy and security. The notebook not only implements these techniques but also provides 

an in-depth analysis of their performance, offering valuable insights for researchers and 

practitioners in the field of data security. 

3.3 RIPPLE Method 

The notebook implements the RIPPLE homomorphic encryption scheme, adept at handling 

both real and integer numbers. This method is pivotal for examining the feasibility of 

homomorphic encryption across various data types and scenarios. 

RIPPLE Implementation 

● Data Processing (process_data): This function is crucial for normalizing and 

formatting the datasets, making them suitable for the RIPPLE encryption process. 

● Utility Functions: Includes functions like crange, discrete_gaussian, 

discrete_uniform, which are essential for polynomial operations within the 

RIPPLE scheme. 

● RIPPLE Class: Encapsulates the core functionalities of the RIPPLE encryption 

scheme, including key generation (generate_keys), encryption (encrypt), and 

decryption (decrypt). It also includes methods for addition and multiplication of 

encrypted data, demonstrating the homomorphic properties. 

● Batch Processing (batch_encrypt_decrypt): Handles encryption and decryption 

in batches, which is particularly beneficial for processing large datasets efficiently. This 

function also aggregates performance metrics, offering a comprehensive view of the 

method's efficiency. 

Application on Datasets 

1. MNIST Dataset: 

○ Preprocessed and encrypted using RIPPLE, with performance metrics for 

encryption recorded. 

○ The encrypted data is then decrypted, and decryption metrics are analysed. 

2. IRIS Dataset: 

○ Undergoes a similar process of RIPPLE encryption and decryption. 

○ Performance metrics are evaluated to understand the method's efficiency on a 

smaller dataset. 

3. Adult Income Dataset: 

○ Includes a preprocessing step for encoding categorical data. 

○ Post-encryption and decryption, performance metrics are assessed to gauge the 

method's applicability to socio-economic data. 

4. Heart Disease Dataset: 
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○ After preprocessing and encoding, the dataset is encrypted and decrypted using 

RIPPLE. 

○ Performance metrics are recorded to evaluate the scheme's effectiveness for 

healthcare data. 

5. Cancer Wisconsin Dataset: 

○ Focuses on encrypting and decrypting medical diagnostic data using RIPPLE. 

Performance metrics are thoroughly evaluated to ascertain the method's 

suitability for sensitive health data. 

In each scenario, the RIPPLE method adeptly handles different data types, showcasing its 

versatility and potential in data privacy and security applications. The notebook effectively 

implements these techniques and provides an in-depth analysis of their performance, offering 

valuable insights for those in the field of data security and encryption. 

3.4 Lattice-Based Homomorphic Encryption 

The notebook incorporates a Lattice-Based Homomorphic Encryption approach, utilising the 

Pyfhel library. This method leverages lattice cryptography for secure data processing, enabling 

computations on encrypted data. It's instrumental in exploring the practicality of lattice-based 

encryption in diverse data scenarios. 

Lattice-Based Homomorphic Encryption Implementation 

● Data Processing (process_data): This function prepares the datasets for encryption, 

ensuring they are in the correct format. It flattens image data and converts dataframes 

into numpy arrays. 

● Encryption Function (encrypt_data): Encrypts data using the lattice-based 

approach. It measures and reports key metrics like encryption time, space complexity, 

latency, and throughput. 

● Decryption Function (decrypt_data): Decrypts the encrypted data and evaluates 

the decryption process, reporting similar metrics as encryption. 

● Batch Processing (batch_encrypt_decrypt): Facilitates handling of large datasets 

by processing data in batches, both for encryption and decryption. This function also 

calculates average performance metrics across batches for a comprehensive analysis. 

Application on Datasets 

1. MNIST Dataset: 

○ The dataset is processed, encrypted, and decrypted using the lattice-based 

method. Each step's performance is evaluated for efficiency metrics, providing 

insights into the method's applicability to image data. 

2. IRIS Dataset: 

○ Processes, encrypts, and decrypts the IRIS dataset, with performance metrics 

evaluated to understand the efficiency of lattice-based encryption on smaller, 

feature-rich datasets. 

3. Adult Income Dataset: 
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○ Includes preprocessing for encoding categorical data. The encrypted data is then 

decrypted, with performance metrics analysed to assess the method's suitability 

for socio-economic data. 

4. Heart Disease Dataset: 

○ After preprocessing and encoding, the dataset is encrypted and decrypted. 

Performance metrics provide insights into the method's effectiveness for 

healthcare data. 

5. Cancer Wisconsin Dataset: 

○ Processes medical diagnostic data for encryption and decryption, with thorough 

performance metrics evaluation to determine the method's suitability for 

sensitive health data. 

In each case, the Lattice-Based Homomorphic Encryption method demonstrates its capacity to 

handle various data types, showcasing its potential for broad applications in data privacy and 

security. The notebook effectively implements these techniques and provides an in-depth 

analysis of their performance, offering valuable insights for researchers and practitioners in the 

field of data security. 

3.5 Technique Comparison by Dataset 

This section presents a comparative analysis of the three encryption techniques—CKKS, 

RIPPLE, and Lattice-Based Homomorphic Encryption—across various datasets. We evaluate 

and contrast their performance in terms of time complexity, space complexity, latency, and 

throughput, offering insights into the efficiency and suitability of each method for different 

types of data. This comparison is pivotal in understanding the trade-offs and advantages unique 

to each encryption technique when applied to datasets like MNIST, IRIS, Adult Income, Heart 

Disease, and Cancer Wisconsin. 

The performance of CKKS, RIPPLE, and Lattice-Based encryption methods is analysed across 

multiple datasets—MNIST, IRIS, Adult Income, Heart Disease, and Cancer Wisconsin—using 

bar plots that focus on key metrics: time complexity, space complexity, latency, and throughput. 

● Time Complexity Bar Plot 

○ Setup: Side-by-side bars represent encryption and decryption times for each 

technique across all datasets. 

○ Data: Average encryption (encryption_times) and decryption times 

(decryption_times) are calculated and displayed for each method and dataset. 

○ Visualisation: Titled 'Encryption and Decryption Time Comparison', plots for 

each dataset use logarithmic y-axes for clear time complexity comparison. 

● Space Complexity Bar Plot 

○ Setup: Displays space complexity during encryption and decryption for each 

method across datasets. 

○ Data: Space complexities (encryption_space and decryption_space) are 

calculated and plotted, highlighting memory usage. 

○ Visualisation: Titled 'Encryption and Decryption Space Comparison', these plots 

visualise memory requirements for each dataset and encryption technique. 

● Latency Bar Plot 
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○ Setup: Shows latency of each method during encryption and decryption across 

datasets. 

○ Data: Latency values (encryption_latency and decryption_latency) are displayed 

for each dataset and technique. 

○ Visualisation: Titled 'Encryption and Decryption Latency', these plots assess the 

responsiveness of each encryption method for each dataset. 

● Throughput Bar Plot 

○ Setup: Visualizes throughput of each encryption method

 across different datasets. 

○ Data: Throughput values (encryption_throughput and decryption_throughput) 

are calculated and plotted, demonstrating data processing efficiency. 

○ Visualisation: Titled 'Encryption and Decryption Throughput', these plots 

compare the data processing capabilities of each technique for each dataset. 

● Combined Analysis 

○ This comprehensive approach provides a holistic view of each encryption 

method's performance across diverse datasets. 

By comparing all datasets side-by-side, we can draw broader conclusions about 

each method's overall efficiency, scalability, and suitability for various types of 

data. 

○ This analysis is crucial for understanding the strengths and limitations of each 

encryption method, allowing for informed decisions when selecting the most 

appropriate technique for specific data processing needs. 

The bar plots collectively offer a nuanced understanding of how each encryption method 

performs under different data scenarios, guiding users in choosing the right technique for their 

specific use case and dataset. 
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