
Efficient Resource Management
using Ant Lion Optimisation

Algorithm

MSc Research Project

MSc in Cloud Computing

Aditi Dilip Sulke
Student ID: 22138617

School of Computing

National College of Ireland

Supervisor: Prof. Punit Gupta

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Aditi Dilip Sulke

Student ID: 22138617

Programme: MSc in Cloud Computing

Year: Jan 2023-24

Module: MSc Research Project

Supervisor: Punit Gupta

Submission Due Date: 14/12/2023

Project Title: Efficient Resource Management using Ant Lion Optimisation
Algorithm

Word Count:

Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Aditi Dilip Sulke

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Efficient Resource Management using Ant Lion
Optimisation Algorithm

Aditi Dilip Sulke
22138617

Abstract

This study investigates an in-depth comparison of meta-heuristic algorithms,
Ant Lion Optimizer (ALO) and Ant Colony Optimisation (ACO) in the context
of Execution time and VM allocation in Cloud Computing. It determines which
algorithm produces superior results by focusing on execution time efficiency and
differences in VM allocation. The research begins with a thorough examination of
both algorithms, emphasizing their underlying principles and applications in the
context of resource allocation, followed by a comparative analysis of the perform-
ance efficacy of these algorithms. The effects of these algorithms concerning task
execution time which is one of the critical metrics in cloud computing is evaluated
and its comparison sheds light on how both of these algorithms affect resource util-
isation. This study offers useful insights for practitioners looking for optimal VM
allocation strategies, emphasizing ALO’s advantages over ACO in terms of execu-
tion time and adaptability. By the end of this study, ALO emerges to have less
execution time and maximum resource utilization can be visualized. To improve
overall system performance, the primary focus is on optimizing Virtual Machine
(VM) allocation and minimizing execution time. As the research concludes, ALO
emerges as an optimal solution with shorter execution times and better resource
utilization, implying its potential for improving overall system performance.

1 Introduction

The rapid growth of cloud computing in recent years has changed the dynamics of IT
infrastructure management. Cloud services are attracting businesses with the promise of
on-demand resources, scalability, and cost-effectiveness. However, as cloud infrastructures
grow in complexity and scale, efficient resource allocation has become a critical issue.
The need to address the challenges posed by dynamic workloads, changing requirements,
and the imperative to optimize resource utilization in cloud environments is driving this
research. The role of optimization algorithms in ensuring efficient resource allocation
is becoming increasingly important as the field evolves. ALO and ACO, inspired by
the collective behavior of ants and ant lions, have shown promise in solving complex
optimization problems. This research aims to evaluate their practical application in
cloud computing, with a particular focus on VM allocation and execution time efficiency.

An essential aspect of cloud infrastructure management is the allocation of Virtual
Machines (VMs), a task that directly influences resource utilization, system efficiency,
and overall performance. As the scale and complexity of cloud environments continue
to grow, the optimization of VM allocation becomes paramount for achieving optimal

1



resource utilization and responsiveness.
Ant Lion Optimizer (ALO) and Ant Colony Optimization (ACO) have emerged as power-
ful nature-inspired optimization algorithms, drawing inspiration from the foraging behavi-
ors of ants and ant lions. These algorithms have proven to be effective in solving complex
optimization problems, such as those found in cloud computing. This thesis uses a sim-
ulation tool to conduct a comparative analysis of ALO and ACO in the context of VM
allocation within cloud computing environments. The primary focus is on evaluating the
performance of these algorithms in terms of execution time efficiency and resulting VM
allocation patterns. Understanding the advantages and disadvantages of each algorithm
in this context is critical for making decisions in real-world cloud deployments.

Although there are many other service delivery models in this technology, the focus of
this research is on the Infrastructure as a Service (IaaS) model. It is concerned with the
server side of this technology for resource allocation. Task scheduling allows virtualized
resources to be assigned to a specific task for a set period. It is possible to accomplish
this by utilizing a task-scheduling algorithm that will be handled by a cloud resource
broker. Task scheduling indicates that the next task will be completed in the shortest
amount of time. CSP monitors the status of running virtual machines to find a better
resource for an upcoming task. Following that, it performs a load-balancing operation to
keep all VMs loaded.

Figure 1: Task Scheduler Flow

In the above Figure.1, A user’s request to run a task or application on the cloud
platform is represented by a User Request. A queue that manages incoming user tasks.
Tasks are prioritized based on their arrival time. The task scheduler is in charge of as-
signing tasks from the queue to available virtual machines (VMs) or containers. It uses
scheduling algorithms to optimize task allocation based on factors such as resource needs,
priority, and load balancing. The dynamic resource allocator continuously monitors VM
resource utilization and makes dynamic decisions to allocate or deallocate resources based
on demand and performance metrics. It entails scaling up or scaling down VMs, adjusting
CPU and memory allocations, and provisioning additional VMs. The VM pool is a col-
lection of available virtual machines. Dynamically added and removed virtual machines.

In basic terms, this research question explores the practical world, attempting to un-
cover the implementation complexities and tangible impact of optimisation algorithms
in the context of cloud computing. The overall objective is to improve resource man-
agement, refine task scheduling methodologies, and boost cloud system efficiency. The
Cloudsim framework is chosen for this implementation because of its ability to simulate

2



cloud environments and facilitate a detailed analysis of optimization algorithm perform-
ance.

1.1 Research Background

In the field of information technology, cloud computing has become a paradigm-shifting
phenomenon that is completely changing how resources are managed and delivered. The
scalability and flexibility of cloud services are attracting more and more organizations,
making resource allocation within cloud environments crucial. The management of vir-
tual machines (VMs), which has an impact on resource utilization, system efficiency, and
overall performance, is an essential aspect of this allocation process. Nature-inspired ap-
proaches have become popular in the optimization algorithms field for solving challenging
cloud computing issues. This research compares two metaheuristic algorithms that are
based on the collective behavior of ants and ant lions: Ant Lion Optimizer (ALO) and
Ant Colony Optimization (ACO). These algorithms apply to the dynamic and complex
nature of optimization problems because they have proven to be successful in solving
them.
The research is being driven by the increasing size and complexity of cloud infrastruc-
tures. To achieve optimal resource utilization and responsiveness, VM allocation must be
optimized. To make informed decisions in practical cloud deployments, it becomes essen-
tial to understand how ALO and ACO perform in terms of execution time efficiency and
VM allocation. As cloud computing evolves, this study focuses on the Infrastructure as a
Service (IaaS) model. Cloud Service Providers (CSPs) manage server-side infrastructure
such as data centers and servers in IaaS. Algorithms for allocating virtualized resources
to specific tasks are essential, and cloud resource brokers handle this scheduling. The
focus on IaaS emphasizes the importance of effective resource allocation, task scheduling,
and load balancing for optimal cloud service delivery.

1.2 Research Question

The focus of this research is on the efficient use of optimization algorithms within cloud
environments, and how optimization algorithms can be used to improve resource alloca-
tion, such as Virtual Machines (VMs) and other computational resources. Examine the
effect on resource utilization. It is critical to evaluate how optimization algorithms handle
dynamic workloads and contribute to the scalability and adaptability of cloud environ-
ments to meet the changing needs of cloud-based applications. The research question
dives into the practical implementation and impact of optimization algorithms in cloud
computing environments, to improve resource management, task scheduling, and overall
system efficiency.

1.3 Research Objective

This research compares the performance of two metaheuristic algorithms in cloud com-
puting, Ant Lion Optimizer (ALO) and Ant Colony Optimization (ACO), in terms of
execution time and virtual machine (VM) allocation. The following are examples of
primary research objectives:

3



• Evaluating and comparing the efficiency of ALO and ACO in terms of execution
time, to determine which algorithm performs better.

• Examining and comparing the effectiveness of ALO and ACO in virtual machine
allocation, with a focus on understanding how each algorithm optimizes resource
utilization.

• Exploring the efficiency of each algorithm to allocate resources as the number of
tasks or workload intensity changes.

• Contributing to the study of optimization strategies by providing comparative ana-
lysis.

1.4 Outline

The Related works for this study is given in Section 2, followed by Methodology in
Section 3. Section 4contains the Design Specifications related to the study. Section 5 has
the content related to implementation of this study, followed by Evaluation in Section 6.
Finally the research is concluded in Section 7

2 Related Work

This paper gives a review of the whole list of various algorithmic approaches. A number
of algorithms have been mentioned that work on load balancing, and task scheduling.
The author has proposed a two-level architecture for load balancing in which the first
level is performed on the physical machine and the second on the VM Level. Based on
this proposal there are two sets of task migration namely Intra VM task migration and
Inter VM task migration. However, the load balancing activity involves steps for the
identification of user task requirements, VM resource details, resource allocation, task
scheduling, and migration. The author has also identified major problems rising to load
unbalancing which include the dynamic nature of tasks, unpredictable traffic flow, and
demanding resource requirements. The major performance metrics considered in this
study are response time, performance, makespan, throughput, resource utilization, mi-
gration time, scalability, energy consumption, and carbon emission. The only drawback
is that this paper is not able to give a specific best approach for load balancing algorithm
which can be used to resolve the mentioned issue but is able to give a good review of the
list of algorithms.Afzal and Kavitha (2019)

In this research paper, the author has claimed that Virtualisation is the backbone and
most essential feature of cloud-based applications, which significantly affects the perform-
ance of scalable services that are provided on demand by clients if the migration process
and allocation of virtual machine resources are handled inefficiently. This study tries to
improve resource allocation in the IaaS paradigm; this idea is important because it deals
with the balance of resources offered to clients and workload/user demands on servers.
Cloud users access services by making requests, which are represented in the cloud en-
vironment by Virtual Machines (VMs). This researcher proposes an algorithm for load
balancing which mainly is focused on the IaaS model. The author has implemented the
proposed load balancing algorithm using simulation, and according to them task schedul-
ing significantly adds to load balancing in a cloud system. Improving the Load Balancing

4



process with Task Scheduling can lead to more efficient use of cloud resources. The goal
of this work was to present an improved Load Balancing method. When compared to
conventional Dynamic LBA, our technique minimizes Makespan and provides 78 percent
more efficient resource use.Shafiq et al. (2021)

The research paper provides preliminary knowledge about various techniques of load
balancing and also answers the question of why load balancing is needed. The author
has mentioned briefly the challenges of load balancing and has discussed the same. Load
balancing techniques are used to balance the load on virtual cloud computers, allowing
each machine to operate equally based on its capacity. Load balancing allows work to
be delivered evenly to each virtual machine, resulting in the optimum performance from
each. Cloud service providers may control strain on virtual machines using load-balancing
strategies. Cloud computing infrastructure is built on virtual computers. The author has
mentioned challenges that can be used to narrow down the identification problem for load
balancing can be listed as geographically distributed nodes, single point failure, virtual
machine migration, heterogeneous nodes, load balancing scalability, and algorithm com-
plexity. The techniques for VM migration are of great use as their classification table can
be taken into consideration to identify the pros and cons of workload balance which can
lead to Low task execution and reduced response time.Sriram (2022)

In this research paper, the author has proposed a 3-tier architecture consisting of
Cloud Layer, Fog Layer, and Consumer Layer as a solution in response to the optim-
ization of the load balancing feature. As the size of cloud data centers increases, there
is a growth in the number of virtual machines. VMs placed on the physical machine
(PM) serve application requests. The fast expansion of Internet services has resulted in a
network resource imbalance. Some hosts consume a lot of bandwidth, which might cause
network congestion. Network congestion has an impact on overall network performance
which leads to the solution of optimising load balancing. In this research, one more aspect
of live virtual migration was done because while considering the constant fluctuation of
VM load, the physical host load may be high enough to impair service quality, or it may
be too low to fully use resources. The VM migration was necessary to improve service
quality and resource utilization rate. For simulation, Cloud Analyst Simulation tool was
used. To efficiently balance the load of VMs in the fog, this study suggests live VM
migration. However, processing time is increased since the live VM migration algorithm
continually seeks the most cost-effective solution. Cluster-based VM migration will be
used in the future for more efficient outcomes.Yu et al. (2022)

This study demonstrates the direct importance of the framework structure, tasks, and
resources. The primary goal of the proposed approach (LBMPSO) is to properly schedule
all incoming tasks to available VMs in order to decrease makespan and enhance machine
utilization in cloud computing. Each job must be assigned to a single VM. This approach
can reduce total makespan time, boost the use of resources, and balance the load in each
virtual machine. To handle the problem of load balancing and job scheduling, a modi-
fied PSO algorithm known as LBMPSO is developed in this study. The LBMPSO task
scheduling approach is based on the PSO algorithm, which employs a fitness function to
determine the optimal particle arrangement. The fitness function computes the execution
times of each VM and returns the most elevated execution time as the PSO particle’s fit-
ness value (F). The results of the tests show that, under each scenario, LBMPSO reduces

5



the makespan time and increases resource usage when compared to PSOBTS, L-PSO, and
DLBA methods. Furthermore, as the number of tasks grows, so does the resource use
in all circumstances. The proposed LBMPSO is executed on Eclipse Java Programming
Environment and CloudSim toolkit.Pradhan and Bisoy (2022)

The author’s goal in this research is to build long-term load balancing of cloud data
centers while also delivering efficient external service performance. The data center is
often positioned far away from the end users. Distributed servers are cloud environment
components that may be accessed using multiple internet hosting programs. Effective
cloud node scheduling and load balancing are required to achieve greater Quality of
Service (QoS) and efficient operation of external services. This work offers QMPSO, a
novel approach for dynamic load balancing across virtual machines based on a hybrid-
ization of modified Particle Swarm Optimization (MPSO) with an enhanced Q-learning
algorithm. The suggested approach balances the load by reassigning it to the appropriate
VMs based on their fitness values. When compared to distinct techniques such as MPSO
and Q-learning, the suggested approach enhances the makespan, throughput, and energy
usage during load balancing and effectively minimizes task waiting time.Jena et al. (2022)

The research paper explains in detail the concept of scheduling. The author gives an
insight into how scheduling takes place in time-shared and space-shared formats. Along
with this, scheduling in the cloud on the basis of Task scheduling which can said as VM
level scheduling, and VM scheduling, or named Host Scheduling is explained. As Cloud-
sim Simulator is used, the parent classes are implemented as VM scheduler and Cloudlet
Scheduler. The various algorithms are used to analyze the Burst Time parameter on
providing certain priority and turnaround time and the average time of different task
scheduling algorithms is provided. Amongst the algorithms used, the author has come
to the conclusion that FCFS has many shortcomings with respect to waiting time and
turnaround time but the Shortest Job First algorithm performs better.Sahoo et al. (2022)

According to the author of this paper, task scheduling can be defined as minimizing
loss of time and maximizing performance. This paper is basically a survey of various task
scheduling algorithms, and strategies taking into consideration various parameters. Re-
searchers have conducted their work at a particular point in time, limited by constraints
in terms of knowledge, space, and time. The author has considered miscellaneous tech-
niques during scheduling and numerous constraints applied, but given the vastness of
cloud computing, researchers have been unable to capture all of its aspects simultan-
eously.Arunarani et al. (2019)

In this research paper, the author has discussed the problem that arises with on-
demand use of cloud resources which mainly has pointed down to task scheduling. To
work efficiently in distributing complex and different incoming tasks, the author has tried
using meta-heuristic algorithms that have the capability of solving scheduling problems
and also tried some hybrid algorithms. This paper also covers a brief detail about various
simulation tools widely used for task scheduling. The major gap of using meta-heuristic
algorithms and their application to task scheduling has been achieved. The open chal-
lenges of current issues mentioned as resource scheduling, and quality of service can
worked upon as future work. In all this article has a good approach to studying all the
necessary algorithms for task scheduling.Houssein et al. (2021)

6



In this research paper, the concept of Grid computing is discussed with respect to
task scheduling The author has mentioned that the use of scheduling algorithms can be
more efficient in scheduling applications. However since the genetic inherit algorithms do
not have the efficiency which is required for space problems, therefore a combination of
local search algorithms is proposed to overcome this gap. A new algorithm is proposed
considering parameters such as the number of missed tasks which shows a decrease in
makespan. Although the GELS algorithm has the special behavior of greedy algorithms,
it doesn’t always move to a solution with a better amount of purpose function directly,
but it works by examining existing solutions. Although this proposed genetic algorithm
is not completely able to cater to the needs for task execution time, but gives better
solution for makespan. ZAKARIA et al. (2021)

In this research paper, the author has an opinion that task scheduling should be
done but with efficient energy consumption and enable green computing. The traditional
task scheduling algorithms which are used frequently are not enough to have a model
for energy consumption. To overcome this issue, the parameter of the makespan should
be reduced but it also should cater to the mentioned needs. Hence, a new biologically
inspired scheduling algorithm is proposed based on the modified Ant Colony Algorithm
ensuing load balancing and enhancing energy consumption. ACO was decided as it gov-
erns the optimal use of resources available in data centers. This paper contributes to the
proposition of a scheme based on an ant system for scheduling and has used a Cloudsim
simulator.Ari et al. (2017)

This research paper gives a comparison study of six metaheuristic algorithms serving
to maximise convergence speed with simulation done in Cloudsim. The author gives a
diagrammatical representation of metaheuristic techniques of scheduling algorithms and
traits such as control parameters, optimization parameters, and problems applied are dis-
cussed. This paper helps to get a whole view of which algorithms can be used if one wants
to work with the mentioned algorithms. This paper involves future work as hybridization
to harness the advantages and increase the efficiency of each algorithms with factors such
as resource utilisation cost, makespan and load balancing which can be worked upon.
Singh et al. (2021)

2.1 Summary

The literature analysis on load balancing, ALO, ACO, and VM utilization has brought
to light critical aspects of optimizing cloud computing environments. While existing re-
search demonstrates effective load-balancing strategies and the utility of nature-inspired
algorithms such as ALO and ACO, gaps in understanding their complex applications
in specific contexts still exist. This research aims to address a better understanding of
complex algorithms with an aspect of reducing execution time while managing resources
efficiently. We anticipate adding valuable knowledge to the ongoing discussion on optim-
izing cloud infrastructures for improved performance and resource utilization by building
on the insights obtained from this comprehensive literature review.

7



3 Methodology

Allocating available resources to tasks or processes inside a computer system is known as
resource allocation, and its primary goal is to guarantee that resources are used as effi-
ciently as possible to meet the system’s performance targets. In this case, task scheduling
is essential for maximizing the use of available resources, particularly the CPU. The sched-
uler determines when each task will execute, which affects how well the CPU is used. Task
scheduling strategies have a big impact on resource allocation decisions. Certain jobs,
for instance, may be prioritized by a scheduler; resource allocation methods should make
sure that these tasks have access to the resources they need to fulfill their priorities. The
system must be able to adjust both task scheduling and resource allocation in response
to dynamic changes.

The scheduler and resource allocator must modify their choices as tasks come and
go from the system and as resource demands change. The task scheduler in multitask-
ing operating systems chooses the next task to run depending on time-sharing, priority,
and other rules. The chosen task is subsequently given CPU time, memory, and other
resources via the resource allocator. The task scheduler in multitasking operating sys-
tems chooses the next task to run depending on time-sharing, priority, and other rules.
The chosen task is subsequently given CPU time, memory, and other resources via the
resource allocator. Tasks may be divided among several nodes in distributed computing
environments. Resource allocation guarantees that the resources allotted on each node
are adequate for each task, while task scheduling determines where each task should be
executed.In computer systems, resource allocation and task scheduling are linked activit-
ies. To achieve the best possible system performance, responsiveness, and resource usage,
these two components must effectively coordinate with one another.

Continuous monitoring and adaptive scaling strategies serve as essential components
in this search because they enable organizations to respond dynamically to fluctuating
demands while maintaining optimal performance. The following section mentions key
methodologies and practices for dynamic scaling in cloud environments. This discussion
clarifies the strategies that enable organizations to achieve enhanced application avail-
ability, and responsiveness through judicious resource allocation, ranging from real-time
metric monitoring to the implementation of auto-scaling groups.

• It is important to continuously monitor a variety of metrics, including network
traffic, CPU and memory use, and application-specific performance indicators.
Monitoring solutions that measure these variables in real-time are frequently provided
by cloud providers.

• Establish preset limits for the metrics that are being tracked. The upper and
lower bounds at which scaling measures should be initiated are indicated by these
thresholds. Define policies that outline the scaling steps to be done under the
metrics and thresholds that have been observed. Scale Down (Downward Vertical
Scaling): To prevent over-provisioning, the system lowers the resources assigned to
instances when the workload drops.

• Scale Out (Outward Horizontal Scaling): This technique divides the workload
among several instances by dynamically adding new ones to the system in response

8



to rising demand. Scale In (Inward Horizontal Scaling): To conserve resources and
cut expenses, extra instances are eliminated when demand declines.

• Auto-scaling groups and related features are provided by numerous cloud providers.
When circumstances change, auto-scaling groups automatically modify the number
of instances. A desired capacity, minimum and maximum limits, and scalability
policies are set up for the group.

• Load balancers divide incoming traffic among the instances when scaling horizont-
ally to guarantee uniform utilization. The load balancer pool can have instances
added or removed dynamically.

• Organizations can increase application availability, responsiveness, and cost-effectiveness
by implementing dynamic scaling, which guarantees that resources are distributed
as efficiently as possible based on demand and usage trends.

3.1 Compared Algorithms

3.1.1 Ant Colony Algorithm

For VM to be allocated using Ant Colony Algorithm, firstly state the goals of the optimiz-
ation process (e.g., minimizing response time, maximizing resource utilization, minimizing
energy consumption) and the VM allocation problem. Draw possible virtual machine al-
locations as paths or solutions. Every ant will build a solution that matches a specific
distribution of virtual machines (VMs) among tasks or services.Make a pheromone mat-
rix to show which VM allocation path is most desirable. Ants update their pheromones
according to the caliber of the solutions they create. Better solutions ought to produce
more robust pheromone trails. Starting with an empty solution, each ant choose which
virtual machines (VMs) to allocate by combining heuristic data and pheromone levels.

Heuristic data may consist of variables like virtual machine capacity, closeness, or
resource availability. Ants iteratively choose VMs for tasks as they progress through
the VM allocation space, building solutions. Pheromones affect the selection probabilit-
ies during the probabilistic construction process. Based on the specified goals, rate the
quality of each ant’s solution (e.g., response time, resource utilization). Pheromones are
left behind by ants on the paths they follow, and the quantity left behind correlates with
the quality of the solution. Globally update the pheromone matrix regularly.Blum (2005)

Over time, evaporation is used to lower the pheromone levels. More robust solutions
have a greater impact on pheromone levels, which in turn affects the trade-off between
exploration and exploitation. Continue doing this until a termination criterion is satisfied
or for several iterations. The pheromone matrix directs ants toward better solutions as
the algorithm iteratively investigates various VM allocations. Decide which of the ants’
best solutions to use as the final VM allocation after a predetermined number of iterations.

3.1.2 Ant Lion Optimisation

Ant lions are well-known for digging conical pits in sandy areas to catch ants. As ants fall
down the pit’s slope, the ant lion waits at the bottom to capture its prey. The Ant Lion

9



Optimization algorithm was inspired by this predatory behavior. The algorithm keeps a
population of potential solutions, each of which is a candidate solution to the optimiza-
tion problem. In the context of ALO, solutions are referred to as ants, while potential
solutions are referred to as prey. The ant lions represent solutions that are searching for
an optimal solution in the search space. Ant lions explore their surroundings by taking
random walks and building traps to catch prey. Similarly, in ALO, candidate solutions
are perturbed at random to explore the solution space. The fitness of solutions determines
their likelihood of attracting other solutions, similar to how ant lions trap other solutions.

ALO, which was inspired by the random walks of ant lions, can be used to explore
the resource space for VM allocation. Each solution in the population represents a pos-
sible VM allocation configuration. The algorithm dynamically adjusts the VM allocation
solutions based on their fitness, which could be a metric like resource utilization, load bal-
ancing, or cost-effectiveness. The ability of ALO to balance exploration and exploitation
can be useful for determining an optimal distribution of VMs across available resources,
ensuring efficient utilization, and preventing over-provisioning or under-provisioning. In
this case, the fitness function for ALO could be designed to minimize task execution
time. It may take into account factors such as the computational capacity of allocated
VMs, data transfer times, and overall system responsiveness. Because of ALO’s dynamic
nature, adaptive resource allocation is possible, ensuring that tasks are assigned to VMs
with sufficient resources to minimize execution time.Gulati et al. (2022)

Figure 2: Flowchart of Ant Lion Optimisation

For implementation of algorithms, the Cloudsim simulation tool is used as it gives an
insight on how real-world parameters can work. Experiments are carried out by

10



4 Design Specification

This design specification includes a more precise experimental setup to compare Ant Lion
Optimizer (ALO) and Ant Colony Optimization (ACO) in the domain of VM allocation.
The research will use a CloudSim simulation environment to get an output in terms
of parameters like Task start time, Finish time, VM ID, CloudletID, Datacenter used
when the Number of VMs, number of Cloudlets, and number of Datacenters are tuned.
A thorough execution time analysis will be performed, measuring the time required for
both algorithms to converge. The VM allocation patterns will be visualized and quanti-
fied. Multiple runs with varying input scenarios will be executed to ensure robustness.
The design will emphasize clarity in algorithm implementation, meticulous data collec-
tion, and robust statistics in order to draw meaningful comparisons and derive insights
into the relative efficiency of ALO over ACO in dynamic cloud computing.

As mentioned, the implementation is done using Cloudsim. The most important ob-
servation for this study is task execution time but to get to that use case other parameters
in the Cloudsim file such as the Number of VMs, Number of Cloudlets, Number of data
centers, and specifications of each machine should be defined.

Implementation is carried out by experimenting with virtual machines, datacenters,
and cloudlets.

• Virtual Machines: A virtual machine is a virtual environment which functions as
a virtual computer system with its own CPU, RAM, hostname, and memory on a
real hardware system (located off- or on-premises).

• Cloudlets: A cloudlet is similar to the task. Cloudlets frequently support dynamic
resource allocation, allowing them to scale resources based on demand. This allows
for efficient resource utilization while adapting to varying workloads.

• Datacenters: A datacenter is a centralized facility that occupies computing hard-
ware, networking infrastructure, and storage systems for the management, pro-
cessing, and storage of data. A datacenter contains VMs according to its holding
capacity.

A datacenter is a centralized facility that houses computing hardware, networking infra-
structure, and storage systems for the management, processing, and storage of data for
various IT services and applications.

5 Implementation

5.1 Simulation Tool

The implementation makes use of JAVA, a versatile and widely used programming lan-
guage that is compatible with CloudSim, and Python for algorithm execution. The
ALO algorithm is expressed in a straightforward and modular manner, ensuring that
the fundamental principles of random walks and deterministic movements are effectively
captured in the code. Movement probabilities, exploration-exploitation trade-offs, and
convergence criteria of the ALO algorithm are carefully parameterized to align with the

11



characteristics of the simulated cloud environment. The implementation is intended to
show ALO’s scalability and adaptability by demonstrating its ability to dynamically
adjust VM allocation based on workload changes and demand fluctuations within the
CloudSim environment.

Firstly, number of Cloudlets, number of Vm are defined, after which when that file is
executed

Figure 3: CloudSim Flow for Algorithm Execution

5.2 Comparitive Exploration of ACO and ALO

• Inspiration: ACO is inspired by ant foraging behavior. It is a swarm intelligence
algorithm that communicates and finds optimal paths in a solution space using
pheromones. ALO was inspired by the hunting behavior of antlions, which build
sand traps to catch prey. It focuses on exploring solution space by combining
random walks and deterministic movements.

• Exploration and Exploitation: ACO emphasizes the importance of balancing explor-
ation and exploitation. Pheromones guide ants toward promising regions as they
explore the solution space probabilistically. Stronger solutions contribute more to
pheromone levels over time.ALO uses both random walk and deterministic move-
ments. The random walk allows for exploration, whereas deterministic movements
are used to find better solutions. Based on the exploration-exploitation trade-off,
the algorithm adapts.

• Solution Representation: ACO has Paths or sequences of decisions are used to
represent solutions, and pheromones are associated with these paths. The pher-
omone levels on paths influence the likelihood that ants will choose those paths.
ALO Points in the solution space are frequently used to represent solutions. Ant-
lions explore the environment using a mix of random and deterministic movements,
adapting their positions based on the quality of solutions.

• Application to VM Allocation: ACO has been used to solve VM allocation issues
in cloud computing. The pheromone matrix guides the exploration of allocation
possibilities, with ants representing potential VM allocations. It is frequently used
for tasks such as load balancing and resource allocation. While ALO has been

12



used in a variety of optimization problems, its application to VM allocation may
be less common. In certain scenarios, the algorithm’s adaptability and exploration-
exploitation trade-off could be used to allocate VMs.

• Algorithmic Features: ACO uses pheromones for communication and updating solu-
tion quality information globally. It’s well-suited for problems where decentralized
communication among agents is beneficial. ALO combines random walk with de-
terministic movements. It adapts its behavior based on the random exploration
and exploitation of the solution space, potentially offering advantages in terms of
convergence.

• Performance and Convergence: ACO is well-known for its ability to find high-quality
solutions, particularly to combinatorial optimization problems. Its convergence
speed is determined by parameter settings as well as the nature of the problem.
ALO’s unique combination of random and deterministic movements is intended
to balance exploration and exploitation. The algorithm’s performance may vary
depending on the characteristics of the problem.

• Parameter Sensitivity: The performance of ACO can be affected by parameter
settings such as pheromone evaporation rates, exploration rates, and the impact
of heuristic information. ALO’s performance, like that of many optimization al-
gorithms, can be influenced by parameter settings, and determining appropriate
values may necessitate experimentation.

• Maturity and Adoption: ACO is a well-known optimization algorithm with a wide
range of applications and a large body of literature. It has been widely used in a
variety of fields. ALO is a newer technology, and its adoption and application in
various domains, including VM allocation, may be less extensive than ACO.

5.3 Algorithm Implementation

As previously stated, ALO employs the random walking method in a defined search area.
Every ant takes a different walk path, which increases the algorithm’s exploration. With
regard to random walks, the upper bound sand lower bounds of each variable in ant
normalises. These walks should concentrate on the ant lion, which describes how ants
become trapped in sand pits created by ant lions in nature. The ant lion with the best
chance of influencing ant movement is the fittest. To simulate these, a roulette wheel is
used. Only two ants, the random ant and the elite ant lion, have the ability to influence
the movement of the other ant. The range of the random walks decreases proportionally
as the number of iterations increases. Below is the Fitness function Equation derived for
this algorithm:Gulati et al. (2022)

• In this phase the random location of the ants is defined.
This phase is responsible for initialization of basic cloud infrastructure:

RWi& = [RWi1& ..RWik& ..RWin]

The walk of the ant at kth iteration can be defined by below quation.

13



NRWik = RWik−a
b−a

where RW is the position of individual ant.

• Grab the prey

This phase defines the boundary limit of each ant LB is the lower bound and UB
be the upper bound limit of iteration,

LBK = LB
D
; UB∗ = UB

D

LBj = ALj + LBk

• Create an ant ambush, it determines new positions for ants which is based on the
positions of neighboring ants with the midpoint between lower bounds and upper
bounds.

Anti = ((NRWi, jk +NRWi, ek)(UBk − LBk) + LBjk + LBek)/2

• Update fitness function:
This step is responsible to evaluate the fitness value of the new position of the ant
after each iteration where α + β = 1.

F itnessvaluei = α ∗ Utilization+ β ∗ TotalExecutiontimei

TotalExecutionT imei =
∑n

i=1 TaskLengthi/MIPSj

6 Evaluation

Efficient Virtual Machine (VM) utilization is critical to the performance, cost-effectiveness,
and responsiveness of cloud computing. The Ant Lion Optimizer (ALO) and Ant Colony
Optimization (ACO) are compared for VM allocation, with a focus on resource utilization
optimization and task execution time. The effective use of computing resources within
VMs is measured by VM utilization, which takes into account CPU, memory, and net-
work usage. It is critical to strike a balance between execution time and VM utilization.
ALO’s dynamic exploration results in adaptive VM allocation, with the goal of maxim-
izing utilization while maximizing execution speed. Graphs depict allocation patterns in
a visual manner, revealing algorithmic adaptability to changing workloads.
The inherent adaptability of ALO is expected to result in more efficient VM allocation,
resulting in less idle time. CPU usage, memory occupancy, and network throughput are
specific metrics that provide insight into dynamic workload adaptability. VM utilization
is quantified using quantitative metrics such as the percentage of VM capacity used. The
thesis compares ALO and ACO under various conditions, taking task execution time into
account. ALO’s efficiency in task completion time should complement its advantage in

14



VM utilization. The comparison of various case studies ensures scalability and consist-
ency in VM utilization patterns.

6.1 Case Study 1

In this experiment, the number of datacenters is 2, the number of virtual machines is
24, and the number of cloudlets which are the tasks are 250. As per the graph, one can
visualize that when ACO and ALO are compared the number of VMs used is less in ALO
as compared to ACO.

VM ID

N
um

be
r o

f C
lo

ud
le

ts

1

5
10

50
100

1 2 4 6 8 10 20

ALO ACO

Number of Cloudlets vs VM ID

Figure 4: Comparison of ALO and ACO

Due to the limited data volume, the observed trend of fewer virtual machines used
in Ant Lion Optimization (ALO) compared to Ant Colony Optimization (ACO) may
lack clarity in the given experiment with a smaller scale of 2 datacenters, 24 virtual
machines, and 250 cloudlets. With a small task set, the details of ALO’s superiority in
VM allocation may be difficult to identify. To draw definitive conclusions, the experiment
must be repeated with larger datasets, ensuring a more thorough evaluation of ALO’s
efficiency. The current results point to a potential advantage for ALO, but more testing
is needed to draw firm conclusions in a variety of cloud computing scenarios.

6.2 Case Study 2

In this experiment, the number of datacenters is 4, the number of virtual machines is 48,
and the number of cloudlets which are the tasks is kept at 500. As per the graph, one
can visualise that when ACO and ALO are compared area under the ALO curve is less.

15



VM ID

N
um

be
r o

f C
lo

ud
le

ts

1

5

10

50

100

1 5 10 50

 ALO ACO

Number of Cloudlets vs VM ID

Figure 5: Comparison of ALO and ACO

The experiment’s results show that Ant Lion Optimization (ALO) uses fewer virtual
machines (VMs) than Ant Colony Optimization (ACO) with 4 datacenters, 48 VMs, and
500 cloudlets when the area under curve concept is used. It suggests that ALO is more
efficient in VM allocation. ALO’s dynamic approach, which combines random walks and
deterministic movements, allows for more precise exploration, which leads to a more op-
timized allocation strategy. The observed decrease in VM usage demonstrates ALO’s
ability to avoid overprovisioning, reduce resource redundancy, and emphasize a stream-
lined allocation process. This result demonstrates ALO’s ability to improve resource
utilization, lower operational costs, and improve overall performance in cloud environ-
ments when compared to ACO.

6.3 Case Study 3

In this experiment, the number of datacenters is 6, the number of virtual machines is 72,
and the number of cloudlets which are the tasks are kept at 800. As per the graph, one
can visualise that when ACO and ALO are compared the number of VMs used is less in
ALO as compared to ACO.

16



VM ID

N
um

be
r o

f C
lo

ud
le

ts

1

5
10

50
100

500

1 5 10 50

ALO ACO

Number of Cloudlets vs VM ID

Figure 6: Comparison of ALO and ACO

The experiment’s results, which show that Ant Lion Optimization (ALO) uses fewer
virtual machines (VMs) than Ant Colony Optimization (ACO), demonstrate ALO’s su-
perior efficiency in VM allocation. The dynamic combination of random walks and de-
terministic movements in ALO allows for adaptive exploration while minimizing resource
redundancy. As a result, the VM allocation strategy is streamlined and optimized, demon-
strating ALO’s ability to achieve more efficient resource utilization. The results suggest
that ALO’s complex approach to exploration-exploitation trade-offs contributes to its
VM allocation superiority, demonstrating potential benefits in terms of lower operational
costs and improved overall system performance.

6.4 Case Study 4

In this experiment, the number of datacenters is kept 8, the number of virtual machines
is 96, and the number of cloudlets that are the tasks is kept at 1000. As per the graph,
one can visualize that when ACO and ALO are compared the number of VMs used are
less in ALO as compared to ACO.

17



VM ID

N
um

be
r o

f C
lo

ud
le

ts

1

5
10

50
100

500

1 5 10 50 100

ALO ACO

Number of Cloudlets vs VM ID

Figure 7: Comparison of ALO and ACO

In the experiment with 8 datacenters, 96 VMs, and 1000 cloudlets, Ant Lion Op-
timization (ALO) used fewer virtual machines (VMs) than Ant Colony Optimization
(ACO). This demonstrates ALO’s superior efficiency in VM allocation. The complex
combination of random walks and deterministic movements used by ALO allows for a
more adaptive and optimized exploration of the solution space, resulting in a streamlined
allocation strategy. When compared to ACO, the observed reduction in VM usage high-
lights ALO’s effectiveness in minimizing resource redundancy, avoiding overprovisioning,
and ultimately optimizing cloud resource utilization, contributing to potential cost sav-
ings and improved system performance.

18



6.5 Evaluation based on Execution Time

7
0

.6
9

1
3

2
.2

2
2

3
.8

6

3
1

1
.4

8

1
0

7
.7

5

1
7

8
.9

6 2
2

6
.4

4
4

4
.1

1

2 5 0 5 0 0 8 0 0 1 0 0 0

EX
EC

U
TI

O
N

 T
IM

E

NUMBER OF CLOUDLETS

COMPARISON OF EXECUTION TIME

ALO Execution Time ACO Execution Time

Figure 8: Graph of comparison of Execution Time in ALO and ACO

The bar graph depicting execution times for varying numbers of tasks after applying Ant
Lion Optimization (ALO) and Ant Colony Optimization (ACO) shows that ALO consist-
ently outperforms ACO in terms of execution time. This disparity implies that ALO is
better at allocating tasks efficiently, resulting in faster task completion. ALO’s dynamic
exploration and exploitation approach most likely contributes to its superior perform-
ance by allowing it to adapt to changing task scenarios effectively. ACO’s comparatively
longer execution times, on the other hand, may indicate difficulties in optimizing task al-
location or adapting to dynamic workloads. These findings highlight ALO’s potential for
improving task execution efficiency in cloud computing scenarios, indicating it as a viable
option for practitioners seeking improved responsiveness and shorter execution times.

6.6 Discussion

The observation that VM utilization is higher with more task execution in Ant Lion
Optimizer (ALO) compared to Ant Colony Optimization (ACO) suggests that ALO ex-
hibits a more effective and efficient utilization of virtual machine resources during the
execution of tasks. Here are some potential factors and insights that may contribute to
this observed difference in VM utilization:

• Adaptability and Dynamic Allocation in ALO: ALO’s nature-inspired dynamic ex-
ploration behavior may lead to a more adaptive VM allocation strategy. As tasks

19



execute, ALO dynamically adjusts the allocation of VMs based on real-time condi-
tions, optimizing resource utilization to match the evolving workload.

• Parallelism and Faster Convergence in ALO: ALO’s parallel nature, where multiple
agents explore the solution space concurrently, can lead to faster convergence. The
faster convergence may result in more efficient VM allocations, maximizing the
utilization of resources throughout the execution of tasks.

• Exploration of Diverse VM Allocation Configurations: ALO’s adaptability may
allow it to explore a broader range of VM allocation configurations, adapting to
different characteristics of tasks. This exploration of diverse configurations can lead
to a more fine-tuned and optimized use of VM resources, ultimately contributing
to higher utilization.

• ALO’s Response to Dynamic Workload Changes: ALO’s ability to dynamically
respond to changes in workload dynamics could contribute to its superior VM util-
ization. As the workload fluctuates, ALO may efficiently redistribute VMs to ac-
commodate varying resource demands, ensuring that VMs are utilized optimally.

• Resource-Aware Task Allocation in ALO: ALO’s dynamic exploration may involve a
more comprehensive consideration of the resource requirements of individual tasks.
This resource-aware task allocation could lead to optimized VM assignments, en-
hancing overall VM utilization throughout the execution process.

• Robustness to Changes in Task Characteristics: ALO’s adaptability may make
it more robust in responding to changes in task characteristics. As tasks with
different resource requirements execute, ALO adjusts VM allocations to ensure
optimal utilization, preventing underutilization or overutilization of VM resources.

The inherent parallelism of ALO allows multiple agents to explore simultaneously, con-
tributing to faster convergence. The decentralized nature of ALO allows for independent
exploration, potentially utilizing computational resources more efficiently. In scenarios
with complex solution spaces, this parallel and decentralized approach can lead to im-
proved execution time efficiency.

In the context of VM allocation, this adaptability may lead to varied and responsive
patterns, which are particularly well-suited for dynamic cloud environments due to ALO’s
nature-inspired dynamic exploration behavior. The dynamic exploration nature of ALO
allows it to discover various VM allocation configurations, effectively accommodating
fluctuations in workloads. While exploitation is beneficial for stability and convergence
to optimal solutions, it may result in less dynamic patterns of VM allocation. Because of
ACO’s preference for exploitation, established VM allocation paths may be chosen over
more adaptive solutions in dynamic environments.

7 Conclusion and Future Work

This study explored the use of the Ant Lion Optimizer (ALO) and Ant Colony Optimiz-
ation (ACO) algorithms in dynamic resource allocation within the CloudSim simulation
framework. The implemented ALO and ACO algorithms have shown efficacy in improving
system performance, as evidenced by shorter makespan and better resource utilization.

20



This work contributes to the existing body of knowledge by demonstrating the adaptab-
ility and efficacy of nature-inspired optimization techniques in addressing the challenges
posed by dynamic workloads in cloud computing.
However, it is important to recognize the limitations of this study. While CloudSim
simulations provide a controlled environment for experimentation, they may not fully
capture the complexities of real-world cloud systems. When implemented in live cloud
infrastructures with diverse workloads, network latencies, and hardware variations, the
performance observed in simulations may differ. The proposed algorithms’ scalability
must be carefully considered in large-scale cloud deployments.
The difficulties encountered during implementation, such as algorithm parameter tuning
and convergence issues, highlight the need for additional refinement and optimization.
The obtained results are dependent on specific configurations and assumptions. Future
research could address these limitations by conducting experiments in real cloud environ-
ments with more diverse and dynamic workloads. Investigating hybrid approaches that
combine ALO and ACO with other optimization techniques may improve the robustness
and adaptability of resource allocation strategies. In practice, despite its limitations, the
findings of this study provide valuable guidance for cloud practitioners and researchers.
This work lays the groundwork for the ongoing pursuit of efficient and adaptive resource
allocation strategies in the face of dynamic and unpredictable workloads as cloud com-
puting evolves.

21



References

Afzal, S. and Kavitha, G. (2019). Load balancing in cloud computing–a hierarchical
taxonomical classification, Journal of Cloud Computing 8(1): 22.

Ari, A. A. A., Damakoa, I., Titouna, C., Labraoui, N. and Gueroui, A. (2017). Efficient
and scalable aco-based task scheduling for green cloud computing environment, 2017
IEEE International Conference on Smart Cloud (SmartCloud), IEEE, pp. 66–71.

Arunarani, A., Manjula, D. and Sugumaran, V. (2019). Task scheduling techniques in
cloud computing: A literature survey, Future Generation Computer Systems 91: 407–
415.

Blum, C. (2005). Ant colony optimization: Introduction and recent trends, Physics of
Life reviews 2(4): 353–373.

Gulati, D., Gupta, M., Saini, D. K. and Gupta, P. (2022). Neural inspired ant lion
algorithm for resource optimization in cloud, Sustainable Smart Cities: Theoretical
Foundations and Practical Considerations, Springer, pp. 205–217.

Houssein, E. H., Gad, A. G., Wazery, Y. M. and Suganthan, P. N. (2021). Task scheduling
in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and
future trends, Swarm and Evolutionary Computation 62: 100841.

Jena, U., Das, P. and Kabat, M. (2022). Hybridization of meta-heuristic algorithm for
load balancing in cloud computing environment, Journal of King Saud University-
Computer and Information Sciences 34(6): 2332–2342.

Pradhan, A. and Bisoy, S. K. (2022). A novel load balancing technique for cloud comput-
ing platform based on pso, Journal of King Saud University-Computer and Information
Sciences 34(7): 3988–3995.

Sahoo, B. K., Sardana, A., Solanki, V., Gupta, S. and Saluja, K. (2022). Novel approach of
diagnosing significant metrics of load balancing using cloudsim, 2022 10th International
Conference on Emerging Trends in Engineering and Technology-Signal and Information
Processing (ICETET-SIP-22), IEEE, pp. 1–6.

Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A. and Alzain, M. A. (2021). A load balancing
algorithm for the data centres to optimize cloud computing applications, IEEE Access
9: 41731–41744.

Singh, H., Tyagi, S., Kumar, P., Gill, S. S. and Buyya, R. (2021). Metaheuristics for
scheduling of heterogeneous tasks in cloud computing environments: Analysis, per-
formance evaluation, and future directions, Simulation Modelling Practice and Theory
111: 102353.

Sriram, G. (2022). Challenges of cloud compute load balancing algorithms, International
Research Journal of Modernization in Engineering Technology and Science 4(1): 1186–
1190.

Yu, D., Ma, Z. and Wang, R. (2022). Efficient smart grid load balancing via fog and
cloud computing, Mathematical Problems in Engineering 2022: 1–11.

22



ZAKARIA, B., ABOUELMEHDI, K., BENI-HSSANE, A. and KHALOUFI, H. (2021).
New hybrid algorithm for task scheduling in cloud computing, Journal of Theoretical
and Applied Information Technology 99(24).

23


	Introduction
	Research Background
	Research Question
	Research Objective
	Outline

	Related Work
	Summary

	Methodology
	Compared Algorithms
	Ant Colony Algorithm
	Ant Lion Optimisation


	Design Specification
	Implementation
	Simulation Tool
	Comparitive Exploration of ACO and ALO
	Algorithm Implementation

	Evaluation
	Case Study 1
	Case Study 2
	Case Study 3
	Case Study 4
	Evaluation based on Execution Time
	Discussion

	Conclusion and Future Work

