~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Cloud Computing

Vijayanand Somavaram
Student ID: x22147802

School of Computing
National College of Ireland

Supervisor: Aqeel Kazmi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Vijayanand Somavaram
Student ID: x22147802
Programme: MSc in Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Aqeel Kazmi
Submission Due Date: 31/01/2024
Project Title: Configuration Manual
Word Count: 1020
Page Count: [14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: S.Vijayanand

Date: 30th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Vijayanand Somavaram
x22147802

This project can be divided into two phases

e Phase One: Data collection phase

e Phase One: Prediction phase

Due to resource limitations for this research project, please note that all the AWS services
should be set in the same AWS Region.

1 Collecting Latency Data

In this phase, a methodology to collect the time taken to execute queries by DynamoDB
will be collected. This methodology will include setting up AWS Services like EC2, API
Gateway, Lambda, DynamoDB, and CloudWatch.

1.0.1 Step One: Create a Lambda function

Open the AWS console, select AWS Lambda from the search, and click on the ”Create
Lambda” option. Enter the name of the Lambda function, and select the runtime as
Python 3.11 as shown in[I] Click on the Create option.

Create function .

AWS Serverless Application Repository applications have moved to Create application.

Basic information

Permissions info
By default, Lambda will create an execution role with permissions to upload logs to Amazon CloudWatch Logs. You can customize this default role later when adding triggers.

» Change default execution role

Figure 1: Create a lambda function

Remove the existing code from the code editor. From the submitted code artifacts
copy the ”lambdaPython” code onto the editor as shown in[2} Click On Deploy

1

Code source info

4 Fie Edit Find View Go Tools Window ‘ Deploy ‘

B lambda_functionx &
B8 testrunction - / (= X ; Rmport json
. lambda_function.py 3 de (event, context):

-
=
[}
=
=

£
=
=

w

json.dumps(“Hello from Lambda!")

Figure 2: Add the Python Code

1.1 Step Two: Create API Gateway

Search for API Gateway, from the console, and click on create. As shown in [3] select
HTTP API and click on the Build option. Enter the name of the API, and then click on
"review and create” as shown in[dl As Shown in [5] enter the name of a route, by clicking
on the ”Create” option. From [6] select the "POST” route. Then from the route details
click on ” Attach Integration”. As shown in [7] click on the ”create” button. Then on the
next window as shown in [§ under the integration target select the integration type as
”Lambda function”, under the integration details select the ”Lambda function” created
from step one and save. From the left nav as shown in [9] select the ”Stages” option. On
the next window as shown in [10] enter the name of the stage and save the information.
Then on the next window as shown in [11], click on the ”Deploy” option to deploy the
API. From the left nav as shown in select the ”CORS” option to avoid CORS errors.
On the next window as shown on [13 add the values and save them. From the left nav as
shown in [14] select the name of your API, and the URLs under the stages for ”your api
name” is the API URL that will be used in later stages.

1.1.1 Step Three: Setup Web Application

Launch an EC2 instance from the AWS console, for this application ”t2.micro” ubuntu
instance will be enough. Connect to the instance through SSH client. For this, an
application called MobaXterm has been used. It is a tool for remote computing. Follow
the instructions as displayed on SSH client and connect to EC2 instance as shown on [15]
Then install apache2 server on the instance using the commands

e "sudo apt-get install apache2”
e "cd var”

e "cd www”

e "cd html”

Create API

Choose an API type

HTTP API

Build low-latency and cost-effective REST APIs with built-in features such as OIDC and OAuth2, and native CORS
support.

Works with the following:
Lambda, HTTP backends

Figure 3: Create API Gateway

Create an API

Create and configure integrations

Specify the backend services that your API will communicate with. These are called integrations. For a Lambda
integration, APl Gateway invokes the Lambda function and responds with the response from the function. For HTTP
integration, APl Gateway sends the request to the URL that you specify and returns the response from the URL.

Integrations (0) nfo
Add integration

APl name

An HTTP API must have 2 e S nam etic and does not have to be unique; ill use the API's ID (generated later) to
programma g

Review and Create m

Figure 4: Api Gateway

Open another window on Mobaxterm. Download the web application zip on the local
folder where the ”.pem” file is present. Enter the following commands

e "scp -1 /path/to/your/.pemkey /copy/from/path.zip user@server:/copy/to/path”
e "sudo apt-get install unzip”

e "unzip yourfile.zip”

e "cd assets”

e 7cd js”

e "sudo nano server.js”

e Copy and paste the API URL from step 2 in the place of URL as shown in

outes

Routes for test_api

Q

Figure 5: Api Gateway

Routes fortest_api Gt Route details

POST /(I wunbtB0)

Authorization

Authorizers protect your AP! against unauthorized requests, Routes with no authorization attached are open.
No authoizeratached tothisroute, | pttach authorization

Integration

The ntegrationis the backend resource tha tis route calls when it receives a request.

No inegration attached tothisroute. | ggtach integration

Figure 6: Api Gateway

Attach integrations to routes Manage integrations

Integrations for test_api Create ‘

Qe 0000

Figure 7: Api Gateway

Attach this integration to a route

Q POST/

Integration target

Integration type

Lambda function

Integration details

Integration target
Choose the Lambda function that A

AWS Region Lambda function

us-east-1 v Q, arn:aws:lambda:us-east-1:631982972732:function:testFunction

» Advanced settings

Description - optional

Figure 8: Api Gateway

e press "CTRL + O” press enter

e press "CTRL + x” to exit

With this the application is up, click on the EC2 Instance id, and open the public
address, change the URL on the browser from ”"https” to "http”. The application should
be as shown in [I7

D e=we Lo g
Route=s

Aauthorizatiom

Imntegrations

CORS
Reirmpooric

Exxpoor it

D = Loy

Stages

Momnitorr
Metrics

Loggimog

Protect

T hrottlimng

Figure 9: Api Gateway

Stage details

Name

test_stag

Description

Figure 10: Api Gateway

1.1.2 Step 4: Setup DyanmoDB:

From the AWS Console enter DyanmoDB, and click on the ” Create table” button. Enter
the name of the table, "test partition key”, under table settings select ” Customize set-
tings”, and under ”"Read/write capacity settings” select ”Provisioned” For both Read
capacity and Write capacity turn off Auto Scaling. For now, enter minimum capacity
under read capacity units as 51 and 408, scroll to the bottom, and click on the ”Create

Table” button as shown in images [I§ and
From the Lambda function create in Step one, open the editor to connect it with

Stage: test_stag ¥ Deploy

Delete

Figure 11: Api Gateway

D ewe= Lo o
Routes
Soauuathorizaticorm
Imtegrationmns
O RS

Reirm oo r it

Ex< oo r it

D = g Loy

Stages

W Pl el h e

M et rics
Loy irncy

P o teacit

T nr it Lirme

Figure 12: Api Gateway

DyanamoDB. To do so, enter the name of the table for the variables shown in 20} In
this case, enter the same name for both the "table” and ”writeTable” variables. The
connection now is completed. The DynamoDB table now created is capable of handling
24KB or read-and-write workloads. To test it click on "Read Payload size 24kb” or
”Write payload size 24kb” from the app. By doing so the application will send continuous
requests to DynamoDB for 250 seconds.

To check the logs and query times from the lambda console click on the ”Monitor”
option and then click on ”View cloudwatch logs” and then by clicking on log files the

Cross-Origin Resource Sharing

Configure CORS info

CORS allows resources from different domains to be loaded by browsers. If you configure CORS for an API, API Gateway ignores CORS headers returned from your backend integration. See our C
details.

Access-Control-Allow-Origin Access-Control-Allow-Headers

Access-Control-Allow-Methods Access-Control-Expose-Headers

Access-Control-Max-Age Access-Control-Allow-Credentials
0 @ nNo

Figure 13: Api Gateway

APIs API details

Custom domain names

VPClinks APIID Protocol Create
hfkejrmfza HTTP 2023-12-14

API: test_apl..hfkejrmfz4) oo Default endpoint

No Description Enabled

Develop

Routes Stages for test_api (2)

Q

Stage name Invoke URL Attached deployment Auto deploy Last updated
$default v xd7hdr enabled 2023-12-14

b oty 9x9al disabled 2023-12-14

Stages

Manage t
'¥ Monitor anage/2gs

Metrics 1

Logging

Figure 14: Api Gateway

data can be viewed as shown in 21]

1.1.3 Conclusion

This way the experiment was conducted for 49 KB, and 98 KB for 2000, 3000, 4000, and
5000 requests per minute. Data was collected from the logs and was formatted for the
machine learning model training.

2 Prediction Phase

After collecting the data from phase one, the data was formatted which have been sub-
mitted in the artifacts by name, ”24KBdata” and "49KBdata” and ”"98KBdata”.

2.0.1 Step one: Model training:
As shown in images 22 and 23] the notebook code can be downloaded from artifacts.

[+~]
Split Multi Tunneling P

1]

= /drives/e/RIC_PROJECT/ec2 front end ssh -1 "x22147802_data_layer.pem” ubuntul

= Name | Welcome to Ubuntu 22.04.3 LTS (GNU/Linux 6.2.0-1017-aws x86_64)

B3

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

System information as of Thu Dec 14 10:56:06 UTC 2023
System load: 0.0 Processes:

Usage of /: 35.8% of 7.57GB Users logged 1in:

Memory usage: 26 IPv4 address for eth0: 17
Swap usage: %

* Ubuntu Pro delivers the most comprehensive open source security and
compliance features.

https://ubuntu.com/aws/pro
Expanded Security Maintenance for Applications is not enabled.

31 updates can be applied immediately.
To see these additional updates run: apt list --upgradable

Enable ESM Apps to receive additional future security updates.
See https://ubuntu.com/esm or run: sudo pro status

Last login: Wed Dec 13 13:43:12 2023 from 51.171
ubuntu@ip-172-31-30-51:~$ [l

Figure 15: Mobaxterm Application

b(document). ready/((){

.post').on('click"',

e.preventDefault();
payloadSizeInKB= parselnt).attr('data-size'));
payloadType=).attr('data-type');
seconds=0;

intervalld= setInterval(() => {
$.ajax({ . _

url: 'https://jao60bhgh6.execute-apil.eu-west-1.amazonaws.com/',

type: 'POST',

data:{value:payloadSizeInkB, loadType:payloadType},

dataType: 'json',

headers:{
"Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Credentials':'true’,
'withCredentials' : 'true'

})

crossDomain: true,

encode: true

Figure 16: Mobaxterm Application

2.0.2 step two: Integration and Predictions:

For Predictions, a web application was created using the Streamlit framework. The code
can be downloaded from the artifacts. Just like the steps followed in phase one, step
three, an ec2 instance should be launched. The ec2 security port should be open to port:
80. The downloaded code should be uploaded to ec2 after creating a folder on ec2 by any
SSH tool. Enter the following commands

e "sudo mkdir newFolder”

EFFICIENCIES IN DYNAMO DB

Click The Buttons To Send Requests With Payload Sizes To AWS

Lambda Serverless Functions

Figure 17: Web Application for data collection

Create table

Table details

DynamoDB is a schemaless database that requires only a table name and a primary key when you create the table.

Table name

String

Figure 18: setup DynamoDB

e upload the code to this folder
e "cd newFolder”

e "sudo apt-get update”

e "python3 -m venv env”

e "cd env”

e "cd bin”

10

Read capacity

Auto scaling Info
Dynamically adjusts provisioned throughput capacity on your behalf in response to actual traffic pattern
® On

O Off

Minimum capacity units Maximum capacity units Target utilization (%)

51 ‘ | 10 | ‘ 70

Write capacity

Auto scaling Info
Dynamically adjusts provisioned throughput capacity on your behalf in response to actual traffic patterns
@ On

O off
Minimum capacity units Maximum capacity units Target utilization (%)

408 ‘ |1O | ‘70

Figure 19: setup DynamoDDB

dynanodh= boto3.resource(dynanady’)
tatle= dynanodh. Ta0. -(147800 data Lajer 240 1)

wr1teTable= dynamodd. Table(22147801 data Lajer write 1ntenszve vI')

Figure 20: Link Table

e "source activate”

° ”Cd “77

° ”Cd “77

e "pip install” all the packages mentioned in image

e "streamlit run streamlit.py —server.port=80"

11

START RequestId: d50744df-e7ac-49cb-add3-8157151eab6a Version: $LATEST

63 writes per second at 4013 at 30 % for wcu novel config at 250 loops : 2.0737648857696533

END RequestId: d5e744df-e7ac-49cb-add3-8157151eab6a

REPORT RequestId: d5e744df-e7ac-49cb-add3-8157151ea66a Duration: 2094.31 ms Billed Duration: 2095 ms Memory Size: 128 MB Max Memory Used: 8@ MB

START RequestId: 78b2e7f8-c96d-4b29-9950-5c7b@55b82a5 Version: $LATEST
63 writes per second at 4013 at 30 % for wcu novel config at 250 loops : 2.074413299560547 seconds
END RequestTd: 78b2e7f8-c96d-4b29-9950-5¢7ba55b82a5

REPORT RequestId: 78b2e7f8-c96d-4b29-9950-5c7b855b82a5 Duration: 2095.89 ms Billed Duration: 2096 ms Memory Size: 128 MB Max Memory Used: 80 MB

Figure 21: Cloudwatch

import pandas as pd

from sklearn.preprocessing import LabelEncoder

from sklearn.ensemble import RandomForestRegressor

from sklearn.multioutput import MultiOutputRegressor

from sklearn.metrics import mean_squared_error

from sklearn.model_ selection import train_test_split

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import joblib

import sklearn

import numpy as np

data = pd.read_csv('/content/98KB_data.c
encoder = LabelEncoder()

data[['itemSizeinKB', 'requests econd’ 1]
= data[["defaultConfiguration’, ‘expectedDefaultlLatency’, ‘NovelConfiguration’|, "expectedNovellLatency]]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

print(sklearn.__version__)

Figure 22: notebook

e Click the public URL of the Instance, change the URL from ”https” to "http”, and
the application will run as shown in the image

12

model = MultiOutputRegressor(RandomForestRegressor(random_state=42))
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y pred, multioutput="raw
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_test, y pred, multioutput='raw
= r2_score(y_test, y pred, multioutput='raw_values")
print(“"Mean Squared Error for each output: “, mse)
print("Root Mean Squared Error for each output: ", rmse)
print(“"Mean Absolute Error for each output: ", mae)
print(”"R-squared for each output: r2)

>

joblib.dump(model, 'model_ 98.pkl")
joblib_dump(encoder, "label_encoder_98.pkl")

Figure 23: Notebook

reamlit.py 7 ...

Figure 24: python env

13

Input Features
Item Size in KB

2

Requests per Second

50

Multi-output Regression Model Predictor for Read Intensive
Applications

Predictions:

Default Configuration: 150.0 RCU

Expected Default Latency: 1469.76 milliseconds
Novel Configuration: 195.0 RCU

Expected Default Latency: 1441.57 milliseconds

Figure 25: Application

14

	Collecting Latency Data
	Step One: Create a Lambda function
	Step Two: Create API Gateway
	Step Three: Setup Web Application
	Step 4: Setup DyanmoDB:
	Conclusion

	Prediction Phase
	Step one: Model training:
	step two: Integration and Predictions:

