
An Investigation Into Performance
Efficiencies In AWS DynamoDB

Configurations For Various Serverless
Application Workloads

MSc Research Project

Cloud Computing

Vijayanand Somavaram
Student ID: x22147802

School of Computing

National College of Ireland

Supervisor: Aqeel Kazmi

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Vijayanand Somavaram

Student ID: x22147802

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Aqeel Kazmi

Submission Due Date: 31/01/2024

Project Title: An Investigation Into Performance Efficiencies In AWS Dy-
namoDB Configurations For Various Serverless Application
Workloads

Word Count: 7969

Page Count: 25

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: S.Vijayanand

Date: 30th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



An Investigation Into Performance Efficiencies In
AWS DynamoDB Configurations For Various

Serverless Application Workloads

Vijayanand Somavaram
x22147802

Abstract

NoSQL database systems are being widely used and undoubtedly gained a lot
of popularity in the last decade or so. Many factors affect the performance of the
NoSQL database system. Among these factors, the database system’s throughput
settings, including the read and write capacity units, can affect its performance.
In many NoSQL databases, especially in cloud-based systems like Amazon Dy-
namoDB, Azure Cosmos DB, or Google Cloud Big-table, users must provision the
read and write capacity units. These systems allow users to manually provision
the capacity units and provide services to auto-manage the throughput settings.
This research studies how these capacity units affect the performance of database
systems and focuses on identifying the optimal provisioned throughput settings
considering the incoming traffic requests with predictable payloads, to eventually
optimize the performance of severless environments that use these databases. If
these values are under-provisioned it can lead to increased latency, throttling, and
poor performance during high-traffic periods. If over-provisioned, it can lead to
unnecessary costs. As part of this research, AWS DynamoDB which is one of the
prominent NoSQL databases was considered. This study is about evaluating the
performance of DynamoDB under the default settings provided by AWS and invest-
igating whether these settings could be improved further to assess if latencies can be
reduced even further. The experimental results indicate that read-intensive work-
loads showed improvement in latencies through additional capacity provisioning.
However, write-intensive workloads did not exhibit improvement with additional
capacity provisioning. This research utilized data collected from tests conducted
and developed a machine-learning model that predicts the optimal read capacity
units for requests under predictable workloads.

1 Introduction

As the web generates a variety of data that in nature is not structured, it becomes hard
to manage it with relational databases. To solve this problem, the NoSQL databases have
emerged. Over the past few decades, NoSQL database systems have gained an exponential
rise in popularity, because of their ability to handle the demands of modern, data-intensive
applications. Now, many factors affect the performance of the NoSQL databases. Factors
like the type of Data Model, Scalability, Data Distribution, Query Complexity, Caching,
Replication and Redundancy, Hardware, etc. One of the factors that influences the

1



performance of a NoSQL database is its provisioned throughput settings, which include
provisioning its read and write capacity units.

1.1 Background And Motivation

This research has been largely motivated by the work conducted by Palepu et al. (2022).
The authors conduct experiments to Benchmark the Data Layer across Serverless Plat-
forms. The paper talks about how the decoupling of computing or in this scenario, the
serverless environments and their corresponding storage layers results in latencies and
performance degradation. The paper also talks about how it is important to accelerate
the to and fro data transfer between serverless environments and storage environments
for building high-performance applications. Another key point the paper talks about
is that the data transfer rate between serverless platforms and storage services depends
on multiple factors such as the computing power of the resources, network bandwidths,
design schema of the storage being used, etc.

It is important to note that one of the key factors that influence the performance
of a Serverless application is the data storage layer from which all the necessary data
transactions are done. From the complete application end-to-end environment, that is,
both the serverless environment and the data layer, this research will focus on the data
storage layer. The paper Idziorek et al. (2023) says that the response time for the process
of storing or retrieving data based on the type of request results in delay as there are
operations that have to be performed. Now many factors influence the time taken to
respond to an incoming request by a NoSQL database, some of them are the data model,
data distribution, data replication and redundancy, and so on. One of the factors is
the provisioned read and write capacity units or the throughput capacity of the NoSQL
database. The throughput capacity of a database refers to how many operations (reads
or writes) the database can handle and process effectively to ensure a smooth application
performance, within a given time frame.

A table in AWS DynamoDB can be created using two capacity modes, one of them is
Provisioned Capacity mode where the read and write capacity units have to be provisioned
manually by the user, and the other mode is On-demand capacity where the read and
write capacity units are automatically managed by AWS. In either case, it is important
to note that these settings directly impact the database’s ability to handle concurrent
read and write operations which will impact its performance. If these values are under-
provisioned it can lead to increased latency, throttling, and poor performance during
high-traffic periods and will result in bad user experience. If over-provisioned, it can lead
to unnecessary costs. So, it is crucial to provision the system with appropriate values
for optimum performance. This research uses AWS DynamoDB’s provisioned capacity
mode, to provide the ideal capacity units that optimize performance.

1.2 Research Question

Based on all the information presented in the above section, the following research ques-
tion arises:

How can cloud database infrastructures be further improved through novel
configurations for optimal performance in a serverless environment ?

2



1.3 Objectives

Optimizing with Novel Configurations:

• Determine the ideal read and write capacity units for AWS DynamoDB tables,
which is a cloud and serverless database infrastructure.

• Develop and implement methodologies, elaborated in upcoming sections, to con-
figure DynamoDB with novel settings, aiming for improved response times when
receiving requests from a serverless Lambda function which is also an application
serverless environment.

Machine Learning Model Development:

• Construct a machine learning model that is capable of predicting the ideal capacity
units needed for various workloads within a Serverless Application environment.

• With the experimental data and methodologies developed in this study, enhance the
accuracy and application of the machine learning model under various workloads.

1.4 Contribution

As a developer or a general user, the information to provision the DynamoDB table with
the ideal and efficient capacity units is very little. It would be very beneficial to have
a set of bench-marked guidelines and data that is derived from experimental evidence.
The motive behind this research is to fill in this gap and serve as a helping guide to users
who would like to incorporate DynamoDB services into their applications and want to
understand the impact, provisioning capacity units have on the performance of its tables.

2 Related Work

This research has acquired a lot of information from many research papers and studies.
The following sections will explore how these studies have had an impact on the current
research.

2.1 Basis of the Research Idea

The research paper by (Palepu et al.; 2022) is on benchmarking the performance of
different storage systems that can be used with serverless platforms, across multiple
cloud vendors. The paper discusses that high scalability in serverless environments can
be achieved by segregating the compute infrastructure from the storage layer. However,
this decoupling of the compute layer from the storage layer results in latency. It also
addresses the latency in serverless platforms resulting from using storage systems for
data transfers. Several cloud service providers provide storage for serverless platforms,
one of them is AWS DynamoDB. AWS DynamoDB is considered to be a low-latency,
key-value store database system. The paper also discusses how adjusting various cloud
service settings can enhance data transfer speed between serverless platforms and storage
systems. The research paper Palepu et al. (2022) talks about storage systems from various
cloud vendors, but this current research focuses on AWS serverless applications and AWS
DynamoDB.

3



In the last decade or so, studies have shown the gain in popularity of NoSQL databases
driven by the explosion of data in volume and size. (Filip and Čegan; 2020) shows the
drop in the performance of relational databases when compared with NoSQL databases.
Research paper by (Gomes et al.; 2019) talks about how NoSQL databases are the best
at handling huge amounts of data in very little time, but it also mentions some trade-offs
like on a few occasions data across different database replicas may not have the same
consistent data. From (Kumar et al.; 2018) efficiency of a database system has been
calculated by the amount of time it takes to perform write, read, and delete operations.
From the research Seghier and Kazar (2021), on conducting read and write related tests
on different NoSQL systems, the results show the performance of query execution times
change with read and write-intensive workloads. In (Elhemali et al.; 2022) the authors,
mention that for applications requiring strongly consistent reads, double the read capacity
units are necessary, and also that write capacity units impact the speed of writing and
replicating data across the number of database replicas created. In these cases, insufficient
RCUs and WCUs may lead to request throttling ultimately affecting the application
performance.

From Gunawan et al. (2019), a study was conducted to determine the estimated query
response time of various NoSQL databases. As part of this research, different NoSQL
database services were selected, and experiments were executed by repeatedly processing
various types of queries, which included the CRUD operations. The queries were repeated
multiple times, specifically 1000, 2000, 3000, 4000, and 5000 repetitions. After each query
execution, the response time was recorded to analyze and understand the time taken by
each database system to handle the requests. This process aimed to provide valuable
insights into the abilities of each system.

To summarize the research papers mentioned in this section,

• NoSQL databases have performance advantages over traditional databases.

• NoSQL databases excel at handling large volumes of data with some trade-offs.

• The efficiency of a NoSQL database can be measured in terms of its ability to
perform read and write operations in less time.

• The time taken by a database system to resolve a request is different for read-
intensive tasks and different for write-intensive tasks.

• Under-provisioning read and write capacity units to a database system may lead to
request throttling which is nothing but denial or delay of service.

• The capacity of different database systems was estimated by recording the query
execution times.

Even though these articles provide only an overview of various aspects of NoSQL
database systems relevant to this current research and do not dive deeper into issues like
optimization, and configuring DynamoDB database systems to enhance efficiency, they
provide a deeper understanding of the underlying structure of Serverless applications and
database systems, especially DynamoDB, which serves as a basis for the current research
undertaken.

4



2.2 Influence of Database Performance on Serverless Applica-
tions

The Journal by (Eismann et al.; 2021), talks about the increase in the adoption of server-
less applications, its ease of use and efficiency are considered to be two of the most
desirable properties of the services. It also hides usage of the server from the users and
runs code on-demand which can be automatically scaled and billed only for the time
the function is used. Serverless platforms relieve users from bothering about operational
concerns like deployment, scaling, monitoring, and focus on development. In the research
article by (Mvondo et al.; 2021) the authors, talk about how cloud-based applications
that use the ”Functions as a Service” (FaaS) paradigm have become very popular. Ap-
plications based on the Faas paradigm are designed to be stateless, which means they
do not retain information about previous interactions or transactions. Each function ex-
ecution is independent and doesn’t store any data between executions. To maintain or
retrieve data between these stateless executions, FaaS applications have to communicate
with an external data store. This, in turn, leads to delays in Serverless Platforms. An-
other research article by (Filip and Čegan; 2020), compares the performance of SQL and
NoSQL databases. It discusses the delay between requests to the database system and
its fulfillment response during operations involving storing and retrieving data. Based
on these research articles, It can be said that the performance of the external data store
becomes crucial to minimize the latencies in Serverless Applications.

2.3 DynamoDB capacity units and their impact

In the research article by (Pelle et al.; 2019), the authors say that applications on stateless,
serverless platforms like AWS Lambda require external data stores. Since applications
in such scenarios rely on external data stores, the performance of all activities related
to data store operations becomes very crucial. The research talks about DynamoDB
along with other AWS services. They mention that the read and write capacity units
of DynamoDB can be configured to achieve maximum performance and avoid request
throttling. They however do not offer any further insights on how DynamoDB can be
provisioned to achieve better performance.

In (Tantiphuwanart et al.; 2023) the authors say that for their application, the effi-
ciency has been enhanced by Using DynamoDB in terms of both read and write operations
for a large number of users. The research reveals that using DynamoDB for operations,
especially for read operations, the response time decreased significantly. In this research,
DynamoDB was used in an on-demand mode, however, the authors suggest that further
enhancements could be achieved by switching to provisioned mode, a consideration left
for their future work. Their future work also includes predicting the optimal provisioned
throughput for DynamoDB, ultimately optimizing response times to surpass the perform-
ance of the on-demand mode. The current research undertaken aims to find the optimal
provisioned capacity units under varying workloads to achieve lower response times.

From the experiments conducted in (Preuveneers and Joosen; 2020), results show the
impact of the application workloads on the NoSQL database’s latency. The workloads in
the experiments consisted of different distributions of read and update operations. The
results concluded that the variance in the latencies with write operations, and less variance
with read operations. This means that a table in DynamoDB has to be configured
according to the incoming varying workload traffic.

5



So what are Default settings, item size, RCUs, WCUs, On-demand Mode, and Pro-
visioned Mode that are being talked about? Generally, Capacity Unit is the measure of
the number of resources that are allocated to a system to perform a certain task.

• Default Settings: These are the RCUs and WCUs suggested by the AWS Dy-
namoDB capacity calculator, how they are calculated will be discussed in further
sections.

• Item Size: Item size represents the “memory of an element” or “size” or “Byte size”
of an item involved in the operations. When it is said that 4 KB of item size is
being read, It is referring to the size of the data(4KB) present in the DynamoDB
table that is being read. Similarly, in the case of write operations, it is the size of
the data that is being written to the DynamoDB Table.

• Read Capacity Units (RCUs): This represents the number of reads per second that
a table can perform. One read capacity unit corresponds to one strongly consistent
read per second for items up to 4 KB in size, or two eventually consistent reads per
second for items up to 4 KB.

• Write Capacity Units (WCUs): This represents the number of writes per second
that a table can perform. One write capacity unit corresponds to one write per
second for items up to 1 KB in size.

• On-demand Mode: In DynamoDB’s on-demand mode, the user does not have to
specify how much read and write capacity a table needs beforehand. Instead, Dy-
namoDB automatically scales to handle workloads and charges the user for the
actual read and write requests made.

2.3.1 Provisioned Mode:

The primary focus of this research is on the Provisioned Capacity mode of DynamoDB.
The article by (Andreoli et al.; 2023) mentions that DynamoDB allows its customers to
specify the throughput requirements for a table. Depending on the provisioned values
the AWS service allocates sufficient resources to the table. (Tantiphuwanart et al.; 2023)
also mentions that provisioned throughput settings improve response times. (Chawathe;
2019) discusses the pricing for the two available modes of DynamoDB and Provisioned
Mode. It is generally considered that the On-demand provisioned mode is several times
costlier than the provisioned-capacity mode, and also that if the incoming workloads are
known and if the tables are provisioned accordingly the response times are expected to
be faster than the On-demand mode.

2.3.2 Impact of Read and Write Capacity Units:

The following section explains how RCUs and WCUs affect the performance of an ap-
plication:

In the research by (Dineva and Atanasova; 2021), the application system being used is
based on IOT to enhance agricultural processes. According to the application requirement
details mentioned, the optimal throughput for the system is 50 requests per second, and
each operation carries a data payload of 24 KB per item. For this, they have configured
2400 Write Capacity Units and 300 Read Capacity Units. After utilizing the DynamoDB

6



system as part of their application, the system was found to handle the requirement
efficiently. Thus configuring the DynamoDB table with optimum throughput settings
will result in efficient performance in applications. However, the research does not further
investigate improving the DynamoDB latencies.

(Wang et al.; 2019), investigates the cost-performance trade-offs for an IoT-based
application. As part of the research, under the worst practices scenario, DynamoDB
which was being used as part of the application system was poorly configured or under-
provisioned. From the results, it was observed that many of the requests were being
throttled or rejected and some cloud architectures under this scenario were prone to
delays, which confirms that the throughout settings of DynamoDB impact the perform-
ance of applications.

2.4 Evolution of DynamoDB

Before releasing DynamoDB to the cloud in 2012, it was used internally for Amazon’s
e-commerce platform. (DeCandia et al.; 2007), is a very old research article published
by amazon.com. Even though this article is very old, it is being discussed to provide
an idea about how DynamoDB has evolved over the past decade. At the time of its
initial release, AWS Dynamo was built for latency-sensitive applications that provided
at least 99.9 percent of read-and-write operations to be performed within a few hundred
milliseconds. Despite the commitment made by Amazon to deliver a 99 percent reliability
rate with provisioned throughput settings for DynamoDB tables, user feedback has played
a crucial role in addressing operational challenges. Also as mentioned in (Idziorek et al.;
2023), in the year 2018, AWS released On-demand provision mode. It is also mentioned
in (Andreoli and Cucinotta; 2021), that DynamoDB is considered to be a solution with
the capability of providing guaranteed levels of read and write operations per second, and
keeping the latency lower than 10ms. Based on this observation of constant evolution
and room for development, this research aims to find if cloud database infrastructures
be further improved through novel configurations for optimal performance in a serverless
environment.

3 Methodology

The main objective of this research is to study if some performance or efficiency aspects
of Serverless platforms that use DynamoDB as a Data Store be further improved. The
performance of a Serverless platform depends on a wide variety of factors, one of them
being the efficiency of its data store. As mentioned in the above sections. A table in
AWS DynamoDB can be set up using On-demand or Provisioned capacity mode, the
first is a fully managed AWS service, while the other is manually providing the necessary
throughput settings.

3.1 How are throughput settings calculated:

While creating a table on DynamoDb, a throughput settings calculator is provided. The
theory behind this calculation as mentioned in the study by (Dineva and Atanasova;
2021) is as follows:

7



Figure 1: Overview of the Methodology

Read Consistency Capacity Units(RCU) Read Requests per second (r) Item Size(i)

Eventually consistent 1 2 4KB
Strongly consistent 1 1 4KB

Table 1: Read Capacity Units.

3.1.1 For Read Capacity units:

• There are two consistency models supported by DynamoDB, eventually consistent
(default) and strongly consistent.

• Eventually consistent reads give higher throughput at the cost of not always re-
turning the latest data.

• In contrast, strongly consistent reads always return the latest data at the cost of
reduced throughput.

Both of these consistency models work with items of up to 4KB in size, the difference
being eventually consistent reads provide 2 x 4KB reads per 1 RCU, whereas strongly
consistent reads only provide 1 x 4KB reads per RCU. Table 1 provides a clear under-
standing.

3.1.2 For Write Capacity Units:

As the name suggests this controls the write throughput to your DynamoDB table. Cal-
culating the required write capacity units is simpler because a consistency model does
not apply here. One write capacity unit will give you one write per second of an item up
to 1KB in size. Table 2 provides a clear understanding.

With the references from AWS Documentation and (Dineva and Atanasova; 2021),
we arrive at the following formulae:

Capacity Units (WCU) Requests per second (r) Item Size(i)

1 1 1 KB

Table 2: Write Capacity Units.

8



RCU = [x ∗ (y/i)]/r (1)

Where x is the expected number of reads per second and y is the size of the item in KB.

WCU = x ∗ y (2)

Where x is the expected number of writes per second and y is the size of the item in KB.

3.2 Scenario With Theoretical Calculation

Let’s say RCU should be calculated for an application that uses a DynamoDB table as
its Datastore. The application requires an average read of 2000 per minute with an item
size of 24KB, the reads can be eventually consistent to maximize throughput. Applying
the formula from Equation 1, we get

RCU = [(2000/60) ∗ (24/4)]/2 (3)

The output for the expression will be 99 RCUs, for the same requirement the data
obtained from the AWS DynamoDB capacity calculator is also the same.

In the same way, calculating the write capacity units for an application, that has a
payload size of 24 KB, for 50 standard write requests per second. After applying the
formula from Equation 2, we get

RCU = [24 ∗ 50] (4)

The output result of the expression will be 1200 WCUs, which is the same recom-
mendation setting suggested by the AWS DynamoDB capacity calculator.

3.3 Data Collection Procedure

As discussed in the related work section about the study conducted from (Gunawan et al.;
2019), recording the time taken to fulfill an operation requirement or latency times was
done as part of this current research.

Now to carry out the experiments, for DynamoDB to handle a certain number of
read or write requests per minute, it has been configured by the default values obtained
from AWS DynamoDB calculator. To test this as part of this research, the following
environment was set up:

• A DynamoDB table was created in Provisioned Capacity mode, and the auto-scaling
setting was turned off. While creating the table AWS provides a throughput ca-
pacity calculator. For an item size of 24KB, if entered in the throughput capacity
calculator, DynamoDB will suggest read and write capacity units, these are re-
commended capacity units, and in this analysis report, these settings are being
addressed as Default settings.

• A Serverless Lambda function was created, whose job is to read or write data from
or into DynamoDB. DynamoDB client can be imported, using the “boto3” python
module, into the Lambda Function to perform various operations.

9



• An AWS API Gateway was configured which acts as the front runner to access
the Lambda function. The API gateway was configured to accept and handle all
POST, and GET requests.

• The Web application developed will send requests to the API gateway which will in
turn trigger the lambda function. The application can be used to send read-related
requests and write-related requests. The UI of the application clearly distinguishes
between the types of operations that can be performed for different sizes of data.

• Now that the experiment setup is completed. By clicking a button on the applica-
tion, a request will be sent to the API Gateway, the API gateway will trigger the
lambda function, and the lambda function will perform the operations. During this
time, on the lambda function, the times before beginning and after executing the
query are saved. The difference between these two values is logged. The logged
values can be found in the AWS CloudWatch.

• After collecting the data for the “Default settings” to test the query execution
times under novel configurations, the same DynamoDB table can be edited. To
test the scenarios, the read and write capacity units were increased by 10, 20,
and 30 percent above the default or recommended values by the AWS throughput
capacity calculator.

• The web application scripts were designed to send continuous requests to the API
gateway every second for over 250 seconds under each scenario. This procedure
was repeated for 24KB, 49KB, and 96KB of item size, with the DynamoDB table
configured with default and novel configurations and for both read and write related
operations separately.

• The AWS DynamoDB table throughput capacity calculator as shown in 2 provides
the price or cost that will be incurred for setting up the table, depending on the
number of RCUs and WCUs. The cost will also be updated when the table is
edited for upgrading the table from default configurations to novel configurations.
To calculate the cost, the data is collected manually either while setting up the
table or editing the table.

Figure 2: AWS DynamoDB Capacity Calculator

3.4 Further Improvement

Now after testing the suggested RCU and WCU by DynamoDB, it raises the question
that also happens to be the main focus of this research, i.e., can these response times be

10



further improved or brought down? There are many optimization techniques like query
optimization, assigning the partition key and sort key most efficiently, etc. However, this
research focuses on whether keeping parameters like query, the payload of the request,
item read size constant, and varying capacity units, can latencies be improved.

This research examines whether keeping certain factors like the type of query used,
payload size of the request, and read or write item size constant, but changing the provi-
sioned capacity units can reduce latency. Specifically examining, if adjusting the capacity
of the system can reduce the response times.

3.4.1 Test Scenarios

To begin the further improvement testing, the capacity units were increased by 10 percent,
keeping the Item size to be read or written and requests per second constant.

• Read Capacity Units results: The response times logged did not show any
significant improvement. This way data was collected by increasing the capacity
units by 10, and 20 percent. The results still were found not to be very signific-
ant. However, when the capacity units were increased by 30 percent, a significant
decrease in response times was observed. To verify this further, the read capa-
city units were increased by 30 percent of the recommended capacity units. This
new adjustment was implemented across varying request volumes, specifically 1000,
2000, 3000, 4000, and 5000 requests per minute for each set of requests over 250
seconds. The difference in response was found to be significant. The highest dif-
ference in default vs Novel configuration response time was observed while testing
5000 read requests per second for 249 default capacity units vs 324 capacity units,
the difference in response times logged was 444.7 milliseconds. This number may
not be significant in less time-sensitive tasks, but for real-time applications, this
number is very significant and has a huge impact. The following graph 3 shows
how the latencies for reading 24 KB size of items for 1000, 2000, 3000, 4000, and
5000 requests per second

Figure 3: Default Read configurations vs Novel Read Configurations

11



• Write Capacity Units results: After recording the response times for writing
data of both 24 KB and 49 KB to the DynamoDB table, it was observed that
an increase of 10 percent from the default recommended settings did not result in
any significant improvements, except for one instance. To investigate further the
values were incremented by 10, 20, and 30 percent progressively. Unlike the RCU
results, increasing the WCUs progressively did not provide evidence suggesting a
drop in the response times. In fact, in some cases, the latency times of increased
configuration settings show delayed responses compared to the default configuration
settings. The following graph 4 shows the latencies for writing 24 KB size of items
for 17, 33, 50, and 67 requests per second or 1000,2000,3000 and 4000 requests per
minute. From the graph 4, it can understood that the latencies when the tables
were configured with default values, the latencies were minimal when compared to
the latencies of tables that were configured with novel configurations.

Figure 4: Default Write configurations vs Novel Write Configurations

3.5 Data Analysis

AWS Cloudwatch was used to log the response times. In every scenario i.e., 1000, 2000,
3000, 4000, and 5000 requests per minute, default configuration response times vs novel
configuration response times have been collected. The difference in times was analyzed
for each scenario. When the read capacity units were increased by 30 percent, the differ-
ence in log times was found to be significantly lower by 60-70 percent on average. But
in the case of write capacity units, the default or recommended settings by the AWS
DynamoDB capacity calculator on analysis were found to be faster than the novel config-
urations. Despite increasing the values up to 40 percent, no significant improvements were
observed. Since write capacity units did not indicate any improvements with the novel
configurations, this research’s attention was directed exclusively toward the data associ-
ated with read capacity units. This data was further analyzed and used for predictions
in the machine learning models.

12



3.5.1 Data Collected

As mentioned in the previous sections, data was collected during the experiments and
prepared for model training as shown in the table 3. The nature of the data collected
as shown in the table is named as the following columns, ”itemSizeinKB”, ”request-
spersecond”, ”defaultConfiguration”, ”expectedDefaultLatency”, ”NovelConfiguration”,
”expectedNovelLatency”. Due to size limitation only a small amount of information is
being shown, but the information was gathered for 24 KB and 1000 req/min (17 req/s),
24 KB and 2000 req/min (33 req/s), 24 KB and 3000 req/min (50 req/s), 24 KB and
1000 req/min (67 req/s), and 24 KB and 5000 req/min (83 req/s). This was repeated
with 49 KB of data and 98 KB of data.

col 1 col 2 col 3 col 4 col 5 col 6

24 17 51 0.743492842 66 0.754738092
24 17 51 0.735300779 66 0.730283499
24 17 51 0.771490574 66 0.7067132
24 33 99 0.918589354 129 0.643455267
24 33 99 0.941638708 129 0.954394102
24 33 99 0.851253271 129 1.000084877
24 50 150 1.438911915 195 1.421566486
24 50 150 1.462717533 195 1.39555335
24 50 150 1.428402662 195 1.449452162

Table 3: Data Collected for 24 Kb Item size Read. Col 1: itemSizeinKB, col 2: request-
spersecond, col 3: defaultConfiguration, col 4: expectedDefaultLatency, col 5: NovelCon-
figuration, col 6: expectedNovelLatency

3.5.2 Machine Learning Model for Predictions

In this scenario with the data that has been recorded, the idea is to predict multiple
outputs i.e., ”defaultConfiguration”, ”expectedDefaultLatency”, ”NovelConfiguration”,
and ”expectedNovelLatency”, with two available features ”itemSizeinKB” and ”request-
spersecond”. In such scenarios, several models can be used to predict data that has many
features. In this research, Multi-output Regression Models will be used. Multi-output
Regression Models are well-suited for tasks where the output variables are correlated. In
situations where predicting multiple outputs is interconnected, a multi-output regression
model can simplify the modeling process. MultiOutputRegressor is a sci-kit-learn wrap-
per that extends any single-output regression model to become a multi-output model or
in other words it allows the usage of traditional single-output regression models, such as
RandomForestRegressor or GradientBoostingRegressor, for tasks where predicting mul-
tiple outputs simultaneously are needed. The sequential diagram 5 describes the steps
implemented for the model to process the input data and generate an output.

4 Design Specification

In this research approach, two paradigms are being utilized. The initial paradigm in-
volves collecting or gathering data, and the next involves utilizing the collected data for
predictions involving user inputs.

13



Figure 5: Sequential steps of the model training and integration

4.1 Collecting Data

The process of collecting data involves conducting various tests to gather latency-related
information on DynamoDB. The entire process of data collection is made simple through a
web application that was developed, whose primary job is to send requests to DynamoDB.
The requests were sent through AWS API Gateway and Lambda functions to DynamoDB.
The query execution time taken by DynamoDB was logged on AWS CloudWatch. The
image 6 gives an overview of the architecture used in this phase.

Figure 6: Collecting Data paradigm architecture overview

14



4.1.1 Web Application:

The web application serves as the primary interface for initiating tests and collecting
data. It is designed to interact with DynamoDB through API Gateway, using serverless
AWS Lambda functions to handle the requests. The application architecture includes the
following components:

• API Gateway: It acts as a gateway for communication between the web application
and Lambda functions.

• Lambda Functions: Handle incoming requests, perform queries on DynamoDB, and
log execution time taken by DynamoDB on CloudWatch

• Web Frontend: User interface for initiating tests and either posting payload or
retrieving information.

4.1.2 Latency Data Logging:

The main objective of this phase is to capture latency-related information. The process
involves

• Query Execution: The web application initiates queries to DynamoDB to simulate
real-world scenarios.

• CloudWatch Logging: The execution times of these queries are logged in Cloud-
Watch for subsequent analysis.

4.1.3 Requirements:

The data collection process should meet the following requirements:

• Efficiency and Consistency: Ensure efficient execution of queries on DynamoDB.
Closely monitor the size of the data that is being retrieved or posted. Closely
monitor the number of requests being sent at a period.

• Logging: Accurately logging execution times for latency analysis.

4.2 Predicting Capacity Units:

This phase also has another web application that serves as an important component in
the second paradigm of the project. It utilizes machine learning models trained on the
collected data to predict appropriate throughput settings for DynamoDB based on user
input.

4.2.1 Functionality:

The web application in this phase has been developed using the Streamlit framework.
The application is designed to predict and recommend suitable throughput settings for
DynamoDB based on user-defined input parameters. The functionality includes:

• User Input: Users select relevant parameters, such as expected workload requests
and the size of the items.

15



• Machine Learning Prediction: Using pre-trained machine learning models to predict
optimal DynamoDB throughput settings.

• Output: Displaying the predicted settings and corresponding latencies, to the user
for future consideration and adjustments.

4.2.2 Requirements:

This phase must meet the following requirements

• User-Friendly Interface: Develop a simple interface for easy input and output-
related interactions.

• Real-time Prediction: Ensure real-time prediction capabilities by integrating with
pre-trained machine learning models.

5 Implementation

In this study, the main aim was to check if the latencies of a serverless application
be further improved through novel DynamoDB configurations. The process involved
Data Collection and phase and Predicting Configurations by training the models on data
collected from the first phase.

5.1 Data Collection:

This phase included the development of a web application hosted on AWS infrastructure,
including EC2, Lambda, API Gateway, and CloudWatch. The web application was de-
signed using HTML, CSS, and JavaScript, while Python was utilized for AWS Lambda
services. AWS API Gateway was used as a front-runner for accepting and routing in-
coming requests from the web application to Lambda functions. The web application
has been hosted on AWS EC2, and AWS CloudWatch has been used to log essential
metrics. Depending on the type of request either read or write, DynamoDB tables have
been created and configured. For each test scenario, DynamoDB tables were provisioned
accordingly.

The primary job of the web application is to send work requests to AWS Serverless
environments, where AWS API Gateway and Lambda functions manage the incoming
requests. Lambda, connected to DynamoDB, forwards requests based on their type.
One key factor affecting Lambda’s performance, measured by the time taken to fulfill
requests, is DynamoDB’s ability to handle these requests. To measure DynamoDB’s
response time, logs are recorded on AWS CloudWatch. An initial log is made when
the query starts, and another is recorded when the response is sent back. To enhance
the overall request-response time and improve the performance of serverless Lambda,
DynamoDB was configured with different settings, and the data collected during this
process forms the output for this phase.

Languages Used:

• HTML, CSS, JavaScript for the web application

• Python for utilizing AWS Lambda services.

16



Tools Used:

• AWS API Gateway.

• AWS EC2 to host the web application.

• AWS Lambda.

• AWS DynamoDB.

• AWS CloudWatch.

Outputs Produced: Raw latency data collected from AWS CloudWatch logs were
analyzed to understand query execution times and patterns for training machine learning
models. The research initially aimed to enhance latencies in both read and write-intensive
workloads. However, through insights and data analysis, it has been demonstrated that
write-based workloads did not exhibit any improvement in latency. This finding influ-
enced the outcome of the research, shifting the focus from predicting throughput settings
for both read and write to exclusively addressing read-intensive workloads.

5.2 Prediction Phase:

Libraries, Tools, and Frameworks Used:

• Python Streamlit

• sci-kit-learn

• Pandas

• AWS EC2 to host the streamlit application

• Google Colab to train and test the machine learning model

Outputs Produced: A deployed Streamlit application accessible to users. Real-time
predictions are presented to users based on input parameters.

5.3 Data set, Model and Implementation:

The data set used in this research originates from latency tests conducted on DynamoDB
through a web application. It contains information about query execution times and
relevant input parameters, providing a deeper understanding of the performance of Dy-
namoDB interactions. This information is collected from CloudWatch logs, this data
serves as the foundation for training machine learning models and for providing insights
into DynamoDB performance. The training process included

• Data Splitting

• Algorithm Selection (Random Forest Regressor)

• Model evaluation using metrics such as Mean Squared Error and R-squared

The trained machine learning models have been integrated into the Streamlit applic-
ation, providing users with a user-friendly interface for throughput predictions. Users
input parameters through the Streamlit interface, and the application responds with
predictions based on the information generated by trained models.

17



6 Evaluation

The evaluation of the results obtained from the research are as follows:

6.1 Experiment 1: Write-Intensive workloads

The research aimed to study and enhance performance in terms of latency for both
Read and write-intensive workloads. However write-intensive workloads did not show
any latency improvement with additional provisioning.

6.1.1 Test Case:

A write-intensive workload test case was designed with a 24 KB item size. The test
scenario involves writing data for 1000 requests per minute or 17 requests per second. To
handle this request AWS DynamoDB was configured with the values suggested by the
AWS DynamoDB capacity calculator, which in this case was 408 WCU. The requests were
sent and the relevant information was logged on the AWS CloudWatch. To investigate
if increasing the provisioned throughput resulted in improved latency, the default setting
was increased by 10, 20, 30, and 40 percent, but no improvement was noticed. After
the data analysis, it was found that the requests were handled smoothly and none of the
requests were throttled but the data showed no signs of improvement in terms of latencies.
After analyzing the collected data, represented in 4 and 5 the difference between the
latencies of the two sets of configurations was not significant and sometimes negative.

Requests/min Default Config Avg latency Novel Config Avg latency Difference

1000 484.87 ms 493.16 ms -8.29 ms
2000 955.47 ms 964.78 ms -9.31 ms
3000 1544.84 ms 1476.01 ms 68.83 ms
4000 2020.09 ms 2024.88 ms -4.79 ms

Table 4: Write 24 KB Workload.

Requests/min Default Config Avg latency Novel Config Avg latency Difference

1000 543.40 ms 535.31 ms 8.09 ms
2000 1103.31 ms 1063.75 ms 39.56 ms
3000 1655 ms 1641.34 ms 13.66 ms
4000 2061 ms 2100.84 ms -39.80 ms

Table 5: Write 49 KB Workload.

The graphs 7 and 8 represent that there is no significant improvement in latencies by
using the novel configurations.

The experiment was continued with 24 KB and 49 KB of payload size with, 2000, 3000,
and 4000 requests per minute, but no improvement was evident. Hence it was concluded
that latencies of write-intensive workloads cannot be made better by provisioning AWS
DynamoDB with higher throughput settings.

18



Figure 7: Write intensive workload

Figure 8: Write intensive workload

6.2 Experiment 2: Read-Intensive workloads

A read-intensive workload test case was designed, focusing on a specific item size of 24
KB. This test scenario involved the task of reading the data at 1000 requests per minute,
which is nothing but a throughput requirement of 17 requests per second. To handle
this demanding workload, the AWS DynamoDB table was configured with the precise
values recommended by the AWS DynamoDB capacity calculator. In this specific case,
the calculated provisioned capacity was 51 Read Capacity Units (RCU). Throughout the
test phase, a detailed record of the test results was maintained by logging the information
on the AWS CloudWatch. This helps in the post-analysis of the test results. The primary
focus of this analysis was to find out whether the provisioned throughput would result
in latency improvement. For this purpose, the initial default setting was progressively
increased by 10, 20, and 30 percent. The reasoning behind this approach was to find
patterns in latency improvements with the increase in provisioned throughput capacity
settings. The data analysis showed that all incoming requests were handled efficiently, and
none of the requests were throttled or denied the service. The procedural increase of the
throughput capacity settings by 10 and 20 percent did exhibit noticeable improvements
in latencies, which indicates a relation between throughput enhancement and response

19



time. However, the most significant impact on latency was observed when the throughput
settings were increased by 30 percent. The data obtained from this experiment not
only validates the efficiency of the default configuration suggested by the AWS capacity
calculator but also shows the potential for optimizing system performance in terms of
latency by strategically adjusting the throughput settings. The graph 9 depicts the
decrease in latency under 17, 33, 50, 63, and 87 requests per second with default vs novel
configurations.

ItemSize Req/min Default Config Avg latency Novel Config Avg latency Difference

24 1000 496.37 ms 483.59 ms 12.78 ms
24 2000 938.45 ms 882.81 ms 55.64 ms
24 3000 1468.70 ms 1438.90 ms 29.80 ms
24 4000 1958.55 ms 1741.22 ms 217.33 ms
24 4000 2667.19 ms 2398.64 ms 268.55 ms
49 1000 434.53 ms 433.89 ms 0.60 ms
49 2000 439.17 ms 428.47 ms 10.71 ms
49 3000 1463.91 ms 1318.56 ms 145.35 ms
49 4000 2236.82 ms 2101.71 ms 135.11 ms
49 4000 2869.23 ms 2590.59 ms 278.64 ms
96 1000 764.29 ms 573.93 ms 190.36 ms
96 2000 1275.18 ms 1140.76 ms 134.42 ms
96 3000 1854.42 ms 1727.82 ms 126.60 ms
96 4000 2453.27 ms 2334.81 ms 118.46 ms
96 4000 3007.05 ms 2933.32 ms 73.73 ms

Table 6: Read 24, 49, and 96 KB Workloads.

Figure 9: Read intensive workload 24 KB

Similarly, the experiment was also conducted on 49 KB and 96 KB. The results
tabulated tables 6 prove that latencies were improved when the DynamoDB table was
provisioned with an additional 30 percent of RCU units. The graphs 10 and 11 display the
same positive results. The graph 12 shows the highest latency difference observed when
comparing default configurations with novel configurations from all sets of workloads.

20



Figure 10: Read intensive workload 49 KB

Figure 11: Read intensive workload 98 KB

Figure 12: highest latency difference across all values

21



6.3 Experiment 3: Multi-output Regression Models

After collecting the information and data analysis, the Multi-output Regression Model
was chosen as the appropriate one for this dataset. The focus shifted towards exploring
the efficiency of multi-output regression models in predicting DynamoDB throughput
settings. The model was trained on the data set. This allows the models to simultaneously
provide insights into multiple facets of DynamoDB configuration. These models are
capable of predicting multiple dependent variables simultaneously from the same set
of independent variables. Since this is a regression model, common evaluation metrics
include Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and R-squared (R²). After training and testing the models, the results are
shown in the table 7. The results can be interpreted as, MSE of 0 means that the model
is perfect and makes no errors. The other two have small MSE values (0.00476184 and
0.00602573), suggesting that the model’s predictions are quite close to the actual values
for these outputs as well. RMSE values close to 0 indicate excellent model performance.
MAE values close to 0, in this case (0.04088449 and 0.04984964 for the non-perfect
outputs), suggest that the model is highly accurate on average. R² values are very high
(0.99146074 and 0.98581457 for the outputs with nonzero errors), indicating that most
of the variance in those outputs is explained by the model.

Mean Squared Error for each output 0 0.00564636 0 0.0045467

Root Mean Squared Error for each output 0 0.07514225 0 0.06742924

Mean Absolute Error for each output 0 0.05191444 0 0.04371381

R-squared for each output 1 0.9907814 1 0.99323315

Table 7: Model Evaluation Metrics.

6.4 Discussion:

As mentioned in the earlier sections, this research aimed to improve latencies in both
write-intensive and read-intensive workloads. After the tests, as observed in the test
results, the write-intensive workloads did not show any improvement in terms of latency
with additional provisioning. At the same time, the improvement in latencies observed
as a result of provisioning additional read capacity units fulfills the aim of this research.
Further additional provisioning to obtain higher lower latencies will have a trade-off with
high costs but in this case, with only a 30 percent surplus the rise in the cost is also found
to be around a 25-30 percent increase. This research did not go beyond provisioning an
additional 30 percent to receive low latency. The decision to limit the experiment to 30
percent was influenced by limitations involving the resources available and was stopped
at the first sight of significant improvement which is around 30 percent higher than the
results obtained with default settings. Allocating excessive capacity units may result

22



in over-provisioning and underutilized resources, leading to financial losses. The study
focused on finding a balance between having low latencies and not having to spend a lot
of money on underutilized resources. The model trained as part of this research has been
trained on a limited number of data records. A model trained on a large data set and a
variety of factors would be desirable.

7 Conclusion and Future Work

The main aim of this research was to investigate, how cloud database infrastructures can
be further improved through novel configurations for optimal performance in a serverless
environment. The research began with the aim to investigate and enhance latencies in
both read and write-intensive workloads. However, after performing the experiments, and
through the data collected and its analysis, it has been demonstrated that write-based
workloads did not exhibit any improvement in latency with additional throughout provi-
sioning. This finding had a huge impact on the research, moving the focus from predicting
throughput settings for both read and write to exclusively addressing read-intensive work-
loads. Despite some major changes in the expected outcomes of the research, the research
turned out to be insightful and successful in enhancing latencies for read-intensive work-
loads. Users can quickly look up this solution to understand or predict the throughput
settings that they need to provision it with, or at least it equips users with information
before making their judgments. Due to the limited resources, this research could only
experiment with a few payload sizes, and experiment with the scenarios only in one AWS
available region.

This research can be further improved by conducting experiments on various AWS
regions, with different and varying workloads, by collecting huge amounts of data to
enhance and diversify the accuracy of the model.

References

Andreoli, R. and Cucinotta, T. (2021). Differentiated performance in nosql database
access for hybrid cloud-hpc workloads, pp. 439–449. https://link.springer.com/

chapter/10.1007/978-3-030-90539-2_30.

Andreoli, R., Cucinotta, T. and De Oliveira, D. B. (2023). Priority-driven differentiated
performance for nosql database-as-a-service, IEEE Transactions on Cloud Computing
11(4): 3469–3482.
URL: https:/doi.org/10.1109/TCC.2023.3292031

Chawathe, S. S. (2019). Data modeling for a nosql database service, pp. 0234–0240.
URL: https:/doi.org/10.1109/UEMCON47517.2019.8992924

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P. and Vogels, W. (2007). Dynamo: Amazon’s highly
available key-value store, 41(6): 205–220.
URL: https://doi.org/10.1145/1323293.1294281

Dineva, K. and Atanasova, T. (2021). Design of scalable iot architecture based on aws
for smart livestock, Animals 11(9).
URL: https://www.mdpi.com/2076-2615/11/9/2697

23

https://link.springer.com/chapter/10.1007/978-3-030-90539-2_30
https://link.springer.com/chapter/10.1007/978-3-030-90539-2_30


Eismann, S., Scheuner, J., van Eyk, E., Schwinger, M., Grohmann, J., Herbst, N., Abad,
C. L. and Iosup, A. (2021). Serverless applications: Why, when, and how?, IEEE
Software 38(1): 32–39.
URL: https://doi.org/10.1109/MS.2020.3023302

Elhemali, M., Gallagher, N., Tang, B., Gordon, N., Huang, H., Chen, H., Idziorek,
J., Wang, M., Krog, R., Zhu, Z. et al. (2022). Amazon {DynamoDB}: A scalable,
predictably performant, and fully managed {NoSQL} database service, pp. USENIX
ATC ’22 Full Proceedings, 1037–1048.
URL: https://www.usenix.org/conference/atc22/technical-sessions

Filip, P. and Čegan, L. (2020). Comparison of mysql and mongodb with focus on per-
formance, pp. 184–187.
URL: https://doi.org/10.1109/ICIMCIS51567.2020.9354307

Gomes, C., Borba, E., Tavares, E. and Junior, M. N. d. O. (2019). Performability model
for assessing nosql dbms consistency, pp. 1–6.
URL: https://doi.org/10.1109/SYSCON.2019.8836757

Gunawan, R., Rahmatulloh, A. and Darmawan, I. (2019). Performance evaluation of
query response time in the document stored nosql database, pp. 1–6.
URL: https:/doi.org/10.1109/QIR.2019.8898035

Idziorek, J., Keyes, A., Lazier, C., Perianayagam, S., Ramanathan, P., III, J. C. S.,
Terry, D. and Vig, A. (2023). Distributed transactions at scale in amazon DynamoDB,
pp. 705–717.
URL: https://www.usenix.org/conference/atc23/presentation/idziorek

Kumar, M. S. et al. (2018). Comparison of nosql database and traditional database-an
emphatic analysis, JOIV: International Journal on Informatics Visualization 2(2): 51–
55.
URL: https://joiv.org/index.php/joiv/article/view/58

Mvondo, D., Bacou, M., Nguetchouang, K., Ngale, L., Pouget, S., Kouam, J., Lachaize,
R., Hwang, J., Wood, T., Hagimont, D., De Palma, N., Batchakui, B. and Tchana, A.
(2021). Ofc: An opportunistic caching system for faas platforms, p. 228–244.
URL: https://doi.org/10.1145/3447786.3456239

Palepu, S. C., Chahal, D., Ramesh, M. and Singhal, R. (2022). Benchmarking the data
layer across serverless platforms.
URL: https://doi.org/10.1145/3526060.3535460

Pelle, I., Czentye, J., Dóka, J. and Sonkoly, B. (2019). Towards latency sensitive cloud
native applications: A performance study on aws, pp. 272–280.
URL: https:/doi.org/10.1109/CLOUD.2019.00054

Preuveneers, D. and Joosen, W. (2020). Automated configuration of nosql performance
and scalability tactics for data-intensive applications, Informatics 7(3).
URL: https://www.mdpi.com/2227-9709/7/3/29

Seghier, N. B. and Kazar, O. (2021). Performance benchmarking and comparison of nosql
databases: Redis vs mongodb vs cassandra using ycsb tool, pp. 1–6.
URL: https:/doi.org/10.1109/ICRAMI52622.2021.9585956

24



Tantiphuwanart, S., Tuaycharoen, N., Wanvarie, D., Pratanwanich, N. and Suchato, A.
(2023). Performance improvement on a learning assessment web application using aws
dynamodb as a cache database, pp. 303–308.
URL: https:/doi.org/10.1109/JCSSE58229.2023.10201973

Wang, S., Valluripally, S., Mitra, R., Nuguri, S. S., Salah, K. and Calyam, P. (2019).
Cost-performance trade-offs in fog computing for iot data processing of social virtual
reality, pp. 134–143.
URL: https:/doi.org/10.1109/ICFC.2019.00025

25


	Introduction
	Background And Motivation
	Research Question
	Objectives
	Contribution

	Related Work
	Basis of the Research Idea
	Influence of Database Performance on Serverless Applications
	DynamoDB capacity units and their impact
	Provisioned Mode: 
	Impact of Read and Write Capacity Units:

	Evolution of DynamoDB

	Methodology
	How are throughput settings calculated: 
	For Read Capacity units:
	For Write Capacity Units: 

	Scenario With Theoretical Calculation
	Data Collection Procedure
	Further Improvement
	Test Scenarios

	Data Analysis
	Data Collected
	Machine Learning Model for Predictions


	Design Specification
	Collecting Data
	Web Application:
	Latency Data Logging:
	Requirements:

	Predicting Capacity Units:
	Functionality: 
	Requirements:


	Implementation
	Data Collection:
	Prediction Phase:
	Data set, Model and Implementation:

	Evaluation
	Experiment 1: Write-Intensive workloads
	Test Case: 

	Experiment 2: Read-Intensive workloads
	Experiment 3: Multi-output Regression Models
	Discussion:

	Conclusion and Future Work

