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Optimization of Multi-Cloud Workload Placement for
Performance and Cost Efficiency

Rishabh Sinha
X21171203

Abstract

This research project aims to optimize the performance and cost efficiency of
deploying multiple application components on various cloud providers in a multi-
cloud environment. The project proposes a solution based on Stochastic Hill Climb-
ing and Simulated Annealing algorithms to search for cost-efficient and optimal
configuration parameters in Azure and AWS cloud environments. The solution re-
trieves current pricing and instance-specific configuration data from AWS and Azure
APIs, and searches configuration parameters for up to 20 application components.
The project also conducts experiments with various advanced machine learning al-
gorithms to predict the optimal CPU and memory requirements of a workload for
optimal performance. In addition, the project implements a simulation script for
the new workload to be tested by executing the workload on a Docker container
and estimating the CPU and memory requirement of the workload based on applic-
ation characteristics. Both of these are implemented for performance optimization.
The proposed solution suggests which application components should be deployed
to which cloud service provider, and aims to provide an optimal solution for cost
optimization in a real-world scenario.

1 Introduction

Current organizational production workloads often include diverse application compon-
ents running on varied infrastructures, each with distinct computational parameters
tailored to the workload’s memory or compute requirements. For example, a workload
can consist of ”web_server”, ”database_server”, "monitoring_server”, ” cache_server” and
many other application components. These application components are integrated with
various monitoring capabilities that provide insights into application usage which is a
useful data asset that enables estimation of optimal workload performance.

The use of Containers as a service for executing such application components makes it
easy to select desired underlying infrastructure on any given CSP(Cloud Service Provider)
platform given the application portability advantages |Liu et al.| (2023)).

In the current landscape of organizational modernization, there’s a significant emphasis
on adopting Cloud services, containerization, and orchestration. This involves configur-
ing specific parameters such as instance types, allocating CPUs, and memory (In this
project we term it as configuration parameters), which is important for optimizing the
underlying infrastructure to ensure efficient workload execution. According to Gartner’s
forecast, global spending on public cloud services is projected to surge by 21.7%, reaching
a total of $597.3 billion, a notable increase from the $491 billion recorded in 2022 Gartner



(2023)DeLisi and Howley| (2023)). Effectively harnessing the offerings of CSPs’ cloud ser-
vices and laaS(Infrastructure as a service) resources while minimizing costs and optimal
workload performance emerges as a significant challenge in this evolving landscape.

1.1 Research Background/ Objective

The main objective of this research is to thoroughly compare the offerings of Azure and
AWS, aiming to understand the cost differences between these two cloud platforms and
use them to formulate a solution. The objective is to develop a solution that helps users
choose the best configuration parameters, considering both cost and performance for the
various application components of a workload. The study explores different types of al-
gorithms, focusing on predictive and search-based, to come up with practical solutions.
The aim is to efficiently pick the right configuration settings for multiple application
components of a workload in less time. This approach allows users to estimate the
configuration parameters of multiple application components of a workload collectively,
making it easier to estimate pricing and deploy different parts of an application across
various cloud providers, like Azure and AWS. This not only addresses concerns about
being tied to a specific provider but also helps in reducing costs. The overall object-
ive is to improve both performance and cost-effectiveness by choosing the most suitable
cloud service provider (CSP) with the best configuration settings for running various ap-
plication components. The research tackles challenges related to avoiding vendor lock-in,
reducing costs, and optimizing performance in the context of placing workloads with mul-
tiple application components across multiple cloud environments. These issues can all
fall under the umbrella of ”problems related to placing workloads in multi-cloud environ-
ments” which will be referred to here as "multi-cloud workload placement problems”|Chen
et al|(2021). The objective is to provide a real-world practical guide for decision-making
when selecting cloud providers and configuration settings based on the specific needs of
a workload.

1.2 Research Question

The growing dependence of enterprises on cloud services from major providers like AWS
and Azure highlights the need for careful selection of cloud service providers and config-
uration of multiple application components. Through the use of search-based algorithms
and prediction techniques, this research aims to remove the complexities surrounding the
allocation of workloads across multiple cloud environments by answering the research
question, ”How can search-based algorithms and predictive methods be used
to select the cloud service provider and optimal configuration for multiple
application components of a complex workload in the multi-cloud settings?”
that directs this research project.

1.3 Document/Report Structure

Each section of the research project is thoughtfully structured to offer an exhaustive
overview: Section 2, Related Work, explores existing practices, predictive and search-
based strategies, and challenges in optimizing multi-cloud workloads. Section 3, Meth-
odology, defines the approach to tackle the multi-cloud workload placement problem by
clearly defining the issue, specifying data requirements, and introducing predictive and



search algorithms. Section 4, Design Specification, provides a detailed two-phased solu-
tion design, providing a clear roadmap for the realization of research objectives. Section
5, Implementation, guides through tools and software, presenting a systematic process
for implementing predictive and search phases. Section 6, Evaluation assesses and valid-
ates the proposed solution. Finally, Section 7, Conclusion and Future Work, summarizes
findings, and contributions, and outlines future research directions.

2 Related Work

There are several various algorithms and approaches implemented to solve the problem of
optimal configuration parameter selection and this paper explores them in two phases to
propose a two-phase solution in selecting optimal CSP for better workload performance
at less cost.

2.1 Prediction-based Machine Learning strategies

This research explores predictive strategies utilizing statistical models to estimate work-
load performance across diverse cloud settings. By projecting workload performance
based on input cloud computation requirements (vCPU, RAM), these predictive models
facilitate the identification of optimal cloud computational parameters. Some literature
proposes predictive algorithms leveraging offline data from benchmarking various frame-
works, enhancing prediction accuracy and reducing time and cost for model training.
Venkataraman et al. [Venkataraman et al. (2016) introduce the framework Ernest, fore-
casting large-scale analytics systems in multi-tenant setups. Despite scalability issues,
Ernest accurately predicts execution time, demonstrating high accuracy on Amazon EC2.
In a related study [Hou et al.| (2022), predictive models for HPC systems are presented,
utilizing random forests, SVM, neural networks, and decision trees for forecasting task
performance, and optimizing resource allocation. Witt et al.| (2019) addresses distributed
batch processing systems using random forest-based models for performance forecasting,
aligning with Mahgoub et al.| (2020). In Mohapatra and Oh| (2023), Smartpick predicts
query completion time and cost, comparing favorably to Cocoa and SplitServe. |[Mahgoub
et al.| (2020) predicts VM performance using a random forest model, considering con-
straints for optimal resource utilization. Newaz and Mollah (2023)) employs a two-stage
technique for high-memory jobs, reducing prediction errors and training costs. The paper
by De Gooijer and Hyndman| (2006]) explores ARIMA and ANN models, while |Devi and
Valli (2023) introduces a hybrid ARIMA-ANN model, both for cloud workload predic-
tion. In Saxena et al. (2023), cloud workload prediction models are systematically eval-
uated, and categorized into quantum learning, ensemble learning, hybrid learning, deep
learning, and evolutionary neural networks, with key performance indicators assessed.
The literature review highlights diverse approaches, emphasizing predictive models’ role
in workload performance prediction based on existing workload usage data, optimizing
cloud configurations, and resource allocation.

2.2 Challenges in Predictive-based Machine Learning strategies

Predictive techniques offer cost-effective assessments using historical data but have limit-
ations of potential noise from substantial offline data Mahgoub et al.| (2020). In a survey
by Masdari and Khoshnevis| (2020), AdaBoost and Random Forests stand out for their



accuracy and stability in handling noisy data. This project will access similar predictive
models to predict CPU and Memory requirements of a workload, comparing methods like
Gradient Boosted, Linear Regression, SVM, Random Forest, ARIMA, and an ensemble
model. The results guide pricing decisions through search-based algorithms on publicly
available datasets from CSPs like Azure and AWS.

Algorithms Type Paper
Linear Regression | Predictive Venkataraman et al.| (2016)
Random Forest | Predictive | [Mahgoub et al|(2020), [Witt et al| (2019) |
ARIMA Predictive Devi and Valli (2023) |
SVM Predictive Hou et al.| (2022)
Ensemble Predictive Masdari and Khoshnevis| (2020)

Table 1: Summary of Predictive Algorithms and Related Papers

2.3 Search Based Black box strategies

In the study by Alipourfard et al. |Alipourfard et al.| (2017), CherryPick is introduced
as a search-based black-box methodology for iterative assessing cloud configurations. It
effectively combines optimization strategies, such as genetic algorithms and hill climb-
ing, and adapts the exploration budget dynamically. CherryPick outperforms strategies
used in Venkataraman et al.’s work |Venkataraman et al.| (2016), which relies on pre-
dictive models based on historical data. Bilal et al. Bilal et al. (2020) extend Bayesian
Optimization to cloud deployment parameters, evaluating eight black-box optimization
algorithms. Their focus on gradient-boosted regression trees (GBT) in conjunction with
Bayesian Optimization showcases the efficiency of this approach in determining optimal
cloud computational requirements. They also compare their method with simulated an-
nealing, a stochastic hill-climbing algorithm that probabilistically accepts worse solutions
to escape local optima. Hsu et al. |Hsu, Nair, Freeh and Menzies (2018) address the VM
selection challenges with the Arrow strategy, using Bayesian optimization and low-level
performance data. The experiments reveal that Arrow outperforms other optimization
strategies in terms of cost-effectiveness. Arrow also incorporates simulated annealing to
improve the exploration of the search space and avoid premature convergence. In a related
context, Hsu et al. [Hsu, Nair, Menzies and Freeh| (2018b) introduces SCOUT, leveraging
previous data and low-level performance parameters to improve search performance and
reduce costs. SCOUT outperforms Random Search and CherryPick |Alipourfard et al.
(2017). SCOUT employs a stochastic hill-climbing algorithm that iterative selects the
best neighbor of the current solution until no improvement is possible. Hsu et al. |Hsu,
Nair, Menzies and Freeh| (2018a)) formulate the cloud instance selection challenge as a
multi-armed bandit problem and propose the Micky collective optimization technique.
Micky achieves near-optimal solutions with significantly reduced measuring costs com-
pared to state-of-the-art methods like CherryPick |Alipourfard et al.| (2017). Micky also
uses simulated annealing to balance the exploration and exploitation trade-off in the
multi-armed bandit setting.

In Ansari Shiri et al.| (2023) the author introduces the Filter-Wrapper Binary Equilibrium
Optimizer Simulated Annealing (FWBEOSA) method for feature selection, showcasing
enhanced performance in classification accuracy, selected features, and convergence speed
compared to the Binary Equilibrium Optimizer (BEO) and other algorithms. whereas
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in [Yan et al. (2023) the author focuses on intelligent scheduling algorithms, revealing
that Simulated Annealing surpasses genetic algorithms in terms of runtime and total re-
source cost, aligning better with user needs for cloud services. Similarly in [Sa’ad et al.
(2023) the author proposes a Cuckoo-based Discrete Symbiotic Organisms Search (C-
DSOS) strategy for task scheduling, where Simulated Annealing enhances convergence
and solution quality within the Symbiotic Organisms Search (SOS) algorithm. C-DSOS
outperforms the Simulated Annealing Symbiotic Organism Search (SASOS), especially in
mitigating the degree of imbalance for large-scale tasks. Collectively, the reviewed literat-
ure underscores the effectiveness of Simulated Annealing across diverse cloud computing
challenges, emphasizing its robustness and superiority.

In the comparative exploration of dynamic resource allocation strategies in cloud comput-
ing, two distinct papers, Singh and Choudhary| (n.d.) and |Achar (2023), present innov-
ative approaches employing various optimization algorithms. The Singh and Choudhary
(n.d.) introduces a dynamic priority-based spill-over technique and short life/long life
containers to tackle fragmentation challenges, incorporating algorithms such as round
robin, AMLB, TLB, ant colony, honey bee, firefly, and notably, stochastic hill climbing
(SHC). The study highlights stochastic hill climbing as a local optimization algorithm
that outperforms others in resource utilization, response time, and throughput, emphas-
izing its stability and ability to evade local optima traps. Experimental evaluations,
utilizing the CloudSim simulator and Google workload trace data, affirm the effective-
ness and efficiency of this approach. Similarly |Achar| (2023) introduces Neural-Hill, a
novel algorithm that integrates a Deep Neural Network (DNN) with a Random Restart
Hill Climbing (RRHC) approach for scheduling IoT-Cloud resources with scalability in
mind. The DNN predicts VMs’ computational loads in the upcoming scheduling cycle,
while RRHC optimizes task allocation based on the predicted state space landscape.
RRHC’s application successfully identifies underloaded and overloaded VMs, contribut-
ing to effective load balancing and improved service quality. Comparative experiments
showcase substantial enhancements over existing solutions concerning optimal solution-
finding time, execution time, routing overhead, and throughput. Both studies contribute
valuable insights into resource allocation challenges, the emphasis on stochastic hill climb-
ing in Singh and Choudhary| (n.d.) underscores its significance as a local optimization
technique with superior performance characteristics. This comparison highlights the dis-
tinctive strengths and applications of stochastic hill climbing in the context of dynamic
resource allotment in cloud computing.

2.4 Research Niche

Upon reviewing the literature, it becomes evident that optimization methods, notably
simulated annealing, and stochastic hill climbing, hold great promise in efficiently ad-
dressing the intricate challenges associated with optimizing cloud setup parameters. It
is important to note that a significant portion of past research has primarily focused on
single-cloud scenarios and with a focus on single application components. In such cases,
search-based strategies, particularly those employing simulated annealing, prove to be
highly effective. The study underscores the effectiveness of these strategies over pre-
dictive methods, showcasing substantial benefits in terms of both cost and performance
efficiency.

There is a noticeable research gap, as the majority of studies have concentrated on single-
cloud providers, leaving multi-cloud deployment scenarios underexplored. This gap em-



phasizes the need for further investigation and advancement in optimizing multi-cloud
environments, specifically for multiple application components of workloads across vari-
ous cloud platforms.

This research aims to bridge this gap by introducing and utilizing optimal algorithms in
2 phase solution (Evaluating Predictive Algorithms for workload performance estimation
and Search based algorithms for selecting cloud service providers with optimal configur-
ation parameters), specifically simulated annealing and stochastic hill climbing, to select
optimal cloud configurations in a multi-cloud environment. The significance of these
algorithms lies in their robustness and adaptability, essential attributes for addressing
the distinctive challenges inherent in complex and dynamic multi-cloud settings. Des-
pite advancements in single-cloud optimization and the predominant focus on Bayesian
Optimization in existing work, the clear conclusion drawn from this research is that, for
selecting the best computational parameters and cloud service providers for various ap-
plication components, search-based black-box strategies outperform predictive strategies
in terms of both cost and performance efficiency.

3 Methodology

This section will outline the proposed methodological approach to address the multi-
cloud workload placement problem by adapting promising Predictive and search-based
black-box optimization algorithms from single-cloud environments to multi-cloud envir-
onments and solving the problem of vendor lock-in, Cost Optimisation, and Performance
Optimisation.

3.1 Problem Formulation:

Achieving the best performance and cost efficiency for a workload involves understand-
ing its computational needs. This is influenced by factors like whether the workload
runs in parallel or serial, adding a layer of complexity. Predicting these performance
requirements is a challenge and depends on cases like predicting the performance with
the help of past available usage data of the workload and alternative cases like newly
introduced applications/workloads that have never been evaluated need to be evaluated
on a simulation environment for performance estimation. Once we can predict how a
workload will perform, the next challenge is choosing the right configuration parameter
from multiple cloud providers (like Azure and AWS). This involves finding the optimal
cloud configuration from the large CSP offering data sets that align with the estimated
performance requirement of the workload, ultimately reducing the cost of running that
workload while providing better performance.

The complexity and wide variability of available options in a cloud environment make
multi-cloud performance and costs even more challenging. Several virtual machines with
diverse instance types are available on public cloud platforms, dispersed across multiple
locations and operating systems. Determining the best location to distribute workloads
gets more challenging. For instance, for applications requiring a large number of applic-
ation components, the conventional ”"brute force” approach of evaluating all options and
selecting the least expensive one is ineffective and needs to employ algorithms that can
overcome the given issue.

This research uses two approaches to address these issues. First, to achieve optimal
performance, the project uses historical workload utilization data to estimate CPU and



Memory usage. This paper uses a variety of prediction models, such as Random Forest,
SVM Models, Gradient Boosting Tree, Linear Regression, and Ensemble Learning, and
finds the best algorithm for estimating CPU and Memory consumption percentages by
doing a comparative analysis. We also investigate performance estimation for recently in-
troduced workloads for which there is no available historical data. This involves running
workloads on the Docker engine in a container while taking into account variables such
as the number of tasks, the number of instructions per task, the elements of the parallel
part of the application programme, processes, and threads per CPU.

Finding the ideal cloud configuration using multi-cloud pricing data is the next step after
obtaining the CPU and Memory utilization requirements. To create a search database
gathered from several cloud providers’ public APIs and endpoints, the research assesses
price and different instances across Azure and AWS cloud environments. A compre-
hensive analysis of search-based algorithms is carried out in the study, which includes
traditional Brute Search, tuned, Greedy Search, Stochastic Hill Climbing, and Simulated
Annealing algorithms. This analysis determines the most efficient algorithm, which is
then integrated into the research’s ICT solution. This exhaustive method allows us to
effectively control expenses in the ever-changing multi-cloud environment while also fore-
casting workload performance, including newly introduced workloads hence answering
the proposed research question.

3.2 Data Requirements
3.2.1 Historical Data for CPU and Memory Requirement Prediction

This study uses a dataset sourced from Bitbrains IT Services Inc. to assess various
predictive algorithms using historical workload data [Shen et al.| (2015). The dataset
encompasses performance metrics from virtual machines (VMs) within Bitbrains’ dis-
tributed data center. The dataset features 500 VMs designated as the Rnd trace. The
Rnd directory categorizes files into three sub-directories based on the month of metric
collection [Shen et al. (2015). The dataset comprises metrics related to the number of
CPU cores, supplied CPU capacity (measured in MHz), CPU utilization (measured in
MHz), and CPU usage percentage. Memory-related metrics encompass provided memory
(measured in kilobytes) and currently used memory (measured in kilobytes). Disk-related
metrics include disk read and write throughput, both measured in kilobytes per second
(KB/s). These metrics play a fundamental role in the research, aiding in the accurate
selection of algorithms for performance forecasting based on various features.

3.2.2 AWS and Azure (Multi-Cloud) Pricing Data

This paper constructs the AWS and Azure dataset using the Price List Bulk API [
utilizing the AWS Bulk API for AWS services and the Azure Retail API for Azure
services. The AWS Price List Bulk AP]E] is accessed through the endpoint https:
//api.pricing.us-east-1.amazonaws.com, offering a means to efficiently gather sub-
stantial pricing information for EC2 services. Similarly, the Azure Retail API, accessible
through https://shorturl.at/fgzE2. These APIs facilitate the exploration of prices for

'AWS  Bulk API:  https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/
using-the-aws—-price-list-bulk-api.html
?Azure Retail APL: https://shorturl.at/1wCFU
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Azure services in different regions and SKUs, offering programmatic examples for seam-
less integration. This dataset forms a crucial component in the decision-making process
for selecting the most cost-effective and performance-oriented cloud configurations for
specific workload demands. These acquired data are parameterized into categories such
as family, type or size, physical processor, processor architecture, spot price, and other
pertinent details. The inclusion of these low-level details is crucial for accurately selecting
cloud configuration parameters that align with desired workload requirements, ensuring
optimal cost and performance. The resulting dataset, encompassing a comprehensive
exploration of available cloud configurations and SKUs, is analyzed by a custom function
incorporating the available APIs and saved in JSON format for utilization by the ICT
solution.

3.3 Algorithms in consideration
3.3.1 Predictive Algorithms

This research uses a comprehensive set of time-series analysis and advanced regression
techniques, employing Python with the sklearn library, to discover resource usage pat-
terns and identify crucial predictive features. On the BitBrains Inc dataset [Shen et al.
(2015), the approach includes initial modeling with popular time-series models such as
ARIMA, SARIMAX, and Holt-Winters (smoothing). To enhance model performance,
standardization is employed using the standard scaler from sklearn, and stationarity
tests are conducted to ensure data stability. For the predictive analysis of CPU and
Memory usage, this paper explores a variety of regression models. Linear Regression,
GradientBoostingRegressor, Support Vector Machine (SVM), and Random Forest are
individually explored to note their efficiency. Ensemble techniques are implemented,
combining RandomForestRegressor, AdaBoostRegressor, and VotingRegressor. These
varieties of models have their unique advantages and suitability for time series data. A
foundational understanding of the linear relationships in the data is provided by linear
regression. GradientBoostingRegressor adapts to the subtleties of the information and
does a fantastic job of capturing intricate patterns and correlations. SVM is very helpful
in managing non-linear relationships, and Random Forest’s ensemble of decision trees
adds robustness. The goal of the ensemble approaches, which combine models, is to max-
imize the combined strengths of separate algorithms. A comprehensive analysis is done
to compare and validate these models’ performance. For time series data, the study eval-
uates how effective they are in predicting CPU and Memory utilization, offering insights
into the best models for precise workload predictions.

3.3.2 Search Algorithms

For searching the best cloud configuration based on the required CPU and RAM this
paper uses various heuristic search algorithms for solving combinatorial optimization
problems, with a focus on placing multiple application components of a workload in a
multi-cloud environment. The algorithm uses a combination of strategies, including sim-
ulated annealing, Stochastic hill-climbing, and greedy selection, to explore and exploit
the solution space. The optimization problem involves finding the best configuration of
components and considering various requirements. The proposed solution employs a hy-
brid approach, combining brute-force and local search algorithms to address the complex
problem of optimizing multiple application configurations. The brute-force algorithm is



utilized for its ability to exhaustively explore the entire solution space by generating all
possible combinations of groups of components. This approach ensures that every poten-
tial configuration is considered, contributing to the identification of potentially optimal
fleet offers. The algorithm meticulously evaluates each combination, taking into account
affinity and anti-affinity conditions, and subsequently sorts and presents the results. The
search algorithms based on simulated Annealing[l| and Stochastic Hill Climbing?] intro-
duce efficiency into the optimization process |[Delahaye et al. (2019) Stubbs et al.| (2020).
Beginning with an initial solution, the local search iteratively refines it by exploring
nearby solutions. The optimization process is driven by parameters such as the number
of desired results, a price calculator function, and the initial separated parameters. This
algorithmic strategy is particularly advantageous for large-scale problems where exhaust-
ive exploration of all possibilities becomes impractical. It adapts to the solution space,
continually seeking improvements in the fleet offer configurations.

Algorithm 1 Simulated Annealing

Initialize (i := igtart, k := 0, ¢ = co, Lk := Lo);
repeat
for [ =0 to L do

Generate j from S;; {Neighborhood of i}
if f(j) < f(¢) then i := j;

. o [@)=FG)
else j becomes ¢ with prob. e %

end if
end for
k:=k + 1; Compute(Lg, ct);
until ¢, <0

3.4 Tools/Softwares Used

Computational scalability benefits for executing large datasets and applying predictive
algorithms with changing demands are offered by AWS Cloud9. The main programming
language used was Python3, for developing ICT solutions. BitBrains Inc., Azure, and
AWS datasets were used to explore machine learning techniques in the Jupyter Notebook
environment. Scalable analysis on large VM SKUs and Pricing datasets from Azure and
AWS APIs were made possible in large part by PySpark. Docker Desktop was utilized
as an alternative tool to forecast CPU and Memory consumption in highly complex
workloads by taking advantage of its containerization characteristics. These tools are
useful for solving the multi-cloud workload placement problem

4 Design Specification

This solution to the research objective of this paper is designed in two phases, which we
will discuss in the section below:



Algorithm 2 Hill Climbing Procedure
procedure HILLCLIMBING(S)

for each ey € E do ncov(ep) < 0;
end for{Initialize coverage count}
for each e € S do
for each eg € Path(e) do ncov(ey) < ncov(eg) + 1;
end for{Update coverage counts}
end for
while not all edges e € S are processed do
Select a yet unprocessed edge e € S;
if Ve € Path(e) : ncov(ep) > 2 then
S < S\ {e}; {Remove edge e from S}
for each ey € Path(e) do ncov(eg) < ncov(ep) — 1;
end for{Update coverage counts}
end if
end while

end procedure

4.1 Predictive Phase

4.1.1 Predicting CPU and Memory requirement based on Historical Data

The first phase of the paper makes use of the VM traces dataset from Bitbrain INC [Shen
et al.| (2015)) by downloading and unzipping rnd zip file in any Jupyter environment on
Jupyter Notebook to understand the available data characteristics for workload perform-
ance estimation. This phase as mentioned in the Figure (1] is centered on thorough data
preparation, exploratory analysis, and creating predictive models for workload forecast-
ing in a multi-cloud setting. First, the solution imports necessary packages, leveraging
well-known Python libraries like NumPy, Pandas, Matplotlib, Seaborn, and scikit-learn.
After importing and analyzing several CSV files, a cohesive data frame is produced in the
final stages. In the feature engineering phase, similar relevant information is extracted
from the timestamp column, such as the 'weekday, weekend, month, and day’ features.
Over time, these characteristics help to provide a more complex picture of workload pat-
terns. To improve the model’s capacity to represent temporal relationships, the research
additionally produces new features based on the variations between successive values in
the dataset. The study carefully considers data quality by using methods like mean-based
imputation and z-score normalization to standardize characteristics and impute missing
values. The algorithm moves on to model training and evaluation after preprocessing the
dataset and feature engineering. The study uses a variety of machine learning algorithms,
including ensemble methods like the combination of Random Forest and AdaBoost, and
other advanced algorithms like Support Vector Machines, Linear Regression, and Gradi-
ent Boosting. Every model is evaluated, and one important metric for judging how well
a model predicts is its Root Mean Squared Error (RMSE). A bar graph, which is a visual
depiction of the RMSE values across various models, makes it easier to compare them and
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offers insightful information about the relative effectiveness of each model. Preprocessing,
feature engineering, and model evaluation are carefully integrated to guarantee that the
research is prepared to tackle the complexities of workload performance prediction and
hence predicts the compute configuration requirement of the different application com-
ponents of the workload. This predicted configuration parameter is useful in the next
phase to apply which can help in cost optimization and for searching for the optimal
configuration and the suitable cloud service provider for every application component of
a workload. This is one of the methods that has been implemented to explore the pre-
dictive algorithms and the type of time-series data that can be available in any existing
infrastructure environment of an organization with various monitoring capabilities.

Gradient Boosting
Regressor
DataPreprocessing on e - ’ CPU Usage & Memory
Start H BitBrains Inc Data H FeatureEngineering H ModelTraining H ModelEvaluation H GenerateBarGraph H usage Predicted

SVM
Ensemble
(Random Forest +
i]
Adaboost Random Forest

Figure 1: Analysing different Predictive models in Predicting CPU and Memory Usage
requirement of a workload based on past Grid Workload trace data made available by
BitBrain Inc.

4.1.2 Predicting CPU and Memory requirement of a new workload by pro-
filing method

The implemented research introduces an innovative approach utilizing the Docker engine
and containerized environments Figure 2 The core of this method involves a Python
script designed to emulate a custom workload, with a primary focus on evaluating resource
utilization metrics through the integration of the psutil library for comprehensive system
monitoring within the Dockerized environment. The script encompasses two fundamental
functions: complex_task(task_id, instructions) and custom_workload(...). The former is
responsible for simulating a task with intensive computational demands using the NumPy
library, while the latter orchestrates a workload featuring a specified number of tasks, both
in parallel and serial, through a combination of threading and multiprocessing. During the
execution of parallel tasks, the script employs a ThreadPoolExecutor, and for serial tasks,
it utilizes a ProcessPoolExecutor. Systematic collection of resource metrics, encompassing
CPU usage per CPU, memory usage, disk I/O, and network 1/0, occurs throughout the
execution of tasks. The script undertakes a comprehensive analysis of these metrics,
facilitated by dedicated functions such as analyze_cpu_metrics, analyze_memory_metrics,
analyze_disk_io_metrics, and analyze_net_io_metrics. The final component of the script,
the print_resource_usage() function, retrieves and prints information regarding the system
load. In the main function, main(), crucial workload parameters are defined, the workload
simulation is executed, and resource usage information is printed. This Docker-based
Python script serves as a valuable tool for profiling and gaining insights into the intricate
resource demands of a workload within a containerized system other various functions
can be added to the script based on different workload requirements and can be helpful in
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profiling and estimating the workloads execution characteristics that will enable us with
performance optimization of a specific workload.

Result

. container ) l
| Application | #
Specification docker

| Engine | ‘ | |

CPU and Memaory
estimation

Input Characterstics workload execution Resulting "Metrices

Figure 2: Analyzing New Workload Characteristics on Docker Container for Estimating
CPU and Memory Requirements.

4.2 Search Phase: Searching for the Optimal Cloud Configura-
tion and Cloud Service Provider

4.2.1 Analysing Azure/ AWS Dataset,

This research project aims to provide a comprehensive understanding of the intricate
pricing structures and Stock Keeping Unit (SKU) details within AWS and Azure cloud
services. The project leverages Jupyter Python notebooks to conduct an in-depth analysis
of AWS and Azure datasets, resulting in a comprehensive dataset encompassing low-level
Virtual Machine (VM) parameters. This dataset offers transparent insights into selected
configurations, enhancing resource utilization efficiency. The project generates a .json
file containing vital parameters like onDemandPrice, spot_price, region, CPU, family,
memory, network, operating system, instance type, storage, architecture, discounts, and
more, categorized region-wise for both AWS and Azure cloud environments.

To tackle challenges caused by dynamic pricing updates from cloud service providers, the
project designs a function employing botod to fetch existing cloud data. It introduces a
data parser module that functions as a tool for handling calls and parsing data related
to EC2 instances from AWS Price List Bulk API and Azure Retail API. This module
interacts seamlessly with these APIs, retrieving crucial information on instance pricing
and SpotAdvisor data. This contains essential functionalities for collecting and processing
data, aligning with the research project’s goals of comprehending cloud service pricing
dynamics and optimizing configurations in multi-cloud environments.

The analysis effectively addresses configuration optimization challenges by extracting
detailed information, resulting in the creation of valuable Python functions and classes.
This offers significant insights to make informed decisions regarding cloud service provider
selection that takes the instance type, region, and pricing model (on-demand or spot) as
inputs and returns the corresponding price. These functions and classes can be used to
optimize cloud configurations and reduce costs.

4.2.2 Searching for best Cloud Service Provider Solution Design

In this research, the algorithm is designed to help find the best cloud service provider and
configuration parameters at the lowest cost. It works by breaking down the process into
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smaller parts called epochs, each of which has two phases. In the first phase, the algorithm
searches for the best combination of cloud service provider and configuration parameters
by using two techniques called Simulated Annealing and Stochastic Hill Climbing. These
techniques help the algorithm explore different options and find the best solution. In
the second phase, the algorithm selects the next starting point for the search and intro-
duces an element of randomness to prevent getting stuck in suboptimal solutions. During
the searching phase, the algorithm starts with an initial node and develops its “children
partitions” based on a decision on the proportion of children to develop. The algorithm
then splits the child into two groups based on whether they improve or deteriorate the
start node’s price. A critical decision point follows, determining whether to improve. If
yes, the algorithm selects one of the good nodes stochastically, weighted by the difference
in performance; if no, it selects one of the bad nodes stochastically based on the same
criteria. The selected node then becomes the starting point for the next iteration of the
search process, contributing to the overall refinement of the algorithm.

Parallely the algorithm employs various hyperparameters to fine-tune its performance.
These hyperparameters include the Candidate List Size, representing the maximum ca-
pacity of the Candidate list from the Reset Selector. Additionally, the Time per Region
hyperparameter sets the maximum time (in seconds) the algorithm is allowed to run on
each region. Another crucial hyperparameter is the Proportion of node child to Develop,
defining the initial proportion to develop at each epoch. The algorithm’s decision-making
process is influenced by two bias factors: Exploitation Score Price Bias, determining the
proportion between price score and subtree score, and Exploration Score Depth Bias,
indicating the proportion between depth score and uniqueness score. The Exploitation
Bias hyperparameter establishes the proportion between the exploitation score and the
exploration score. These hyperparameters collectively govern the algorithm’s behavior,
allowing for flexibility and adaptability in selecting the best cloud configuration paramet-
ers for the given set of application components of a workload.

In Figure [3| the optimization algorithm, focuses on selecting cost-effective cloud ser-
vice configurations. The process begins with the initialization of the initial node. The
algorithm then moves to the decision phase, where it determines the proportion of nodes
to develop. These children represent potential configurations of cloud service compon-
ents. In the development phase, a proportion of nodes is developed. This leads to a
split in the group of nodes, differentiating between those that improve the start node’s
price and those that deteriorate it and a decision is made to improve the start node.
If the decision is negative, the algorithm selects one of the "bad” nodes stochastically,
weighted by the difference in their characteristics. In parallel, if the decision is positive,
the algorithm selects one of the "good” nodes stochastically. The process then evaluates
whether a node is selected. If no node is selected, the algorithm concludes the search. If
a node is selected, the algorithm either finishes the search or continues from the selected
node, creating a loop back to the decision phase. This search-based algorithm is iterative
and dynamic in nature of the optimization process, where the algorithm explores vari-
ous configurations, makes decisions based on their impact on the objective function, and
refines the search over multiple epochs. The use of the term ”children” emphasizes the
cloud configuration and exploration of potential solutions in the algorithmic process.
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Figure 3: Cloud Configuration Selection Algorithm Flow Chart

5 Implementation

5.1 Implementing Predictive Phase:
5.1.1 Predciting CPU and Memory usage based on historical data

For predicting CPU and memory usage based on historical data, a Jupyter notebook
with a Python3 runtime and T4 GPU hardware accelerator was employed. The analysis
included various predictive machine learning algorithms, including an ensemble method
combining Random Forest and AdaBoost, and advanced models like Support Vector Ma-
chines, Linear Regression, Random Forest, and Gradient Boosting from the sklearn mod-
ule. The experimentation took place on Google Colab, a cloud-based Jupyter environment
providing memory-optimized computational power for model performance testing. To
facilitate the training of predictive machine learning models, the dataset from the GWA-
T-12 Bitbrains [Shen et al.| (2015) workload trace was utilized. To align the data with the
desired inputs and outputs criteria for predicting CPU and memory utilization based on
past resource utilization trends, a series of filters were applied to the raw input data. The
initial step involved an averaging filter applied to the raw data, computing the 9-second
(30 rows) average resource utilization. The selected CSV files are then concatenated into
a unified Pandas DataFrame for file selection based on a predefined pattern. After data
cleaning and conversion steps the 'Timestamp [ms]’ column is converted into a datetime
format and all columns are converted to numeric types. Feature engineering operations
are conducted, including the extraction of weekdays, the creation of a binary 'weekend’
column indicating weekends, and the derivation of additional features related to 'month’
and 'day’ from the 'Timestamp’ column. The 'Timestamp’ is set as the index of the
DataFrame. The creation of additional features involves generating new columns based
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on the differences between consecutive values, including CPU usage, network received
throughput, and network transmitted throughput. The training columns 'CPU capacity
provisioned [MHZ|’, "Memory capacity provisioned [KB|’, 'Memory usage [KB]’, 'Disk
read throughput [KB/s]’, 'Disk write throughput [KB/s]’, 'Network received through-
put [KB/s|’, 'Network transmitted throughput [KB/s]’, ’'CPU usage prev’, 'CPU_diff’,
‘received_prev’, 'received_diff’, transmitted_prev’ are selected and column ’CPU usage
[MHZ] is selected as a column to be predicted. A similar method can be implemented in
the prediction of Memory utilization by selecting the "Memory usage [KB] as the column
to be predicted and including the 'CPU usage [MHZ]" column in the training columns.
These preprocessing steps were essential to transform the dataset, align it with the de-
sired predictive model criteria, and prepare it for the application of machine learning
algorithms in predicting CPU and memory usage based on historical data. For Linear
Regression, Gradient Boosting, SVM, Ensemble, and Random Forest models, the dataset
was split into training and testing sets. Missing values were handled using Simplelmputer
for features and the target variable, followed by standardization using StandardScaler.
The RMSE value was then calculated for each model, providing a measure of predictive
accuracy. Linear Regression involved fitting the model to training data, predicting the
test set, and evaluating RMSE. Gradient Boosting utilized 100 base learners, a learning
rate of 0.3, and a random seed for initialization. SVM applied a linear kernel, trained
on the provided data, predicted on the test set. Random Forest involved initializing
and fitting the model with 100 decision tree estimators. Ensemble techniques combined
RandomForestRegressor and AdaBoostRegressor models into a VotingRegressor. The
ensemble model was trained on the data, predicted on the test set, and evaluated us-
ing RMSE. The bar graph comparing RMSE values for all models was generated using
Matplotlib, offering a visual comparison of predictive accuracy across different machine
learning models applied to CPU and memory usage prediction enabling performance
optimisation of workload by estimating its configuration requirements.

5.1.2 Implementing Docker Profiling method: New Workload

In this docker profiling method for profiling and estimating the memory and CPU con-
sumption this paper used Docker Engine to run a container and execute the workload.
In this research an executable python script is created that assumes applications com-
plex scenarios. This Python script has been developed to simulate a custom workload,
facilitating an in-depth analysis of resource usage during the execution of parallel and
serial parts of a workload. The script incorporates essential libraries such as os, time,
psutil, numpy, and memory_profiler. Two key functions, complex_task that simulates
a computationally intensive task through matrix operations and custom_workload, have
been defined that orchestrate the parallel and serial execution of tasks, collecting met-
rics on resource usage. The @profile decorator from memory_profiler enables the pro-
filing of memory usage during function execution, offering insights into the memory
footprint of the tasks. The workload simulation begins by determining the number of
parallel and serial tasks based on user-specified percentages. Parallel tasks are then
executed using threading Classes (concurrent.futures.ThreadPoolExecutor), and met-
rics such as CPU and memory usage are recorded. Serial tasks are also executed us-
ing multiprocessing (concurrent.futures.ProcessPoolExecutor), and corresponding met-
rics are collected. Metrics contain various aspects, including CPU usage per CPU,
memory usage, disk /O (read and write), and network I/O (sent and received). The
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analyze _metrics function processes and prints these metrics, providing a detailed over-
view of resource utilization. Resource usage analysis is further detailed through subfunc-
tions such as analyze_cpu_metrics, analyze_memory_metrics, analyze_disk_io_metrics, and
analyze net_io_metrics. These subfunctions calculate average usage metrics and present
the results and the print_resource_usage function fetches and prints system load met-
rics, including 1-minute, 5-minute, and 15-minute averages. The main function defines
parameters for the workload, such as the number of tasks, instructions per task, parallel
percentage, threads, processes, and iterations that can be defined as workload character-
istics to fetch the CPU and Memory usage details.

Dockerfile is specified that create a Docker image for running a Python script that
simulates a workload. An official Python runtime environment based on the OpenJDK 11
slim image is used. The image is configured with necessary build dependencies, including
gce, python3-dev, python3-pip, and openjdk-11-jre. This Docker image is designed to
provide an environment for executing the specified workload simulation script with its
dependencies. this implementation help in estimating CPU and Memory requirement of
a new workload that has no previous usage data therefore a useful tool for performance
optimisation.

5.2 Implementing Search Phase

In this phase of implementation and experimentation, this research project employs the
AWS Cloud9 Environment. The objective is to develop a solution capable of taking a
list of application components as input and delivering optimal results in terms of pri-
cing, region, and Cloud Service provider for deploying each application in a multi-cloud
environment, considering workload requirements. Users provide input in JSON format
through the appcluster_offer.json file, specifying details such as the operating system, pri-
cing preference (spot/on-demand), region choices, and application specifics. The output
is presented in a JSON file and contains configurations, each denoting an application
component placed on multiple cloud environments. This output includes information like
total price, instance specifications, cloud service provider, and assigned components. The
implementation offers flexibility and customization, enabling users to fine-tune optimiza-
tion parameters and choose their preferred cloud provider. This research project aims to
empower users to make informed decisions about deploying applications in a multi-cloud
environment based on their unique requirements while optimizing cost.

The solution introduces essential functions, including fetching historical spot prices using
Boto3, serializing groups and instances for analysis, and running an optimizer to obtain
optimal configurations. The use_boto3 function employs Boto3 to retrieve spot price his-
tory, while serialize_group and serialize_instance focus on structuring data for readability.
The run_optimizer function orchestrates the optimization process, parsing input para-
meters, processing application details, and calling the Application Cluster optimizer to
provide a list of recommended configuration parameters. A Component class is defined to
represent individual application components, capturing details such as memory, vCPUs,
network, affinity rules, behavior, and storage specifications.

The GroupedParam class aggregates parameter values within a group, summing vCPUs,
memory, and network values while calculating overall behavior and interruption frequency
within the group. A get_info method is created to retrieve group parameters. The Grou-
pedInstance class represents an offer for each combination of instances, encompassing spot
prices, discounts, components, and total prices. It calculates the total price considering

16



either spot or on-demand pricing and includes a get_info method to retrieve component
information. The Offer class is created that encapsulates an overall offer, considering mul-
tiple partitions and their respective sizes, tracking remaining partitions, total prices, and
instance groups. This class includes methods like get_info for obtaining information about
remaining partitions and copy_group function for creating a deep copy of the group. The
Calculation Class serves as the core component for fleet calculations, featuring methods
for calculating CPU and memory limits for a given region, creating component offers, and
matching instances to groups of components. The get_offers method generates appcluster
offers based on the provided parameters.

Several helper functions are dveloped, such as price_calc_lambda, check_anti_affinity,
check_affinity, affinity, anti_affinity, and compare_sublists, are employed to perform checks
and calculations within the cost calculation process. CombOptim class is created that
represents the main optimization algorithm that includes stochastic hill climbing and sim-
ulated annealing, initializing with various parameters like the number of results, candidate
list size, and price calculation function which are configurable after the experimentation.
The run method executes the optimization algorithm. The Node class represents a node
in the search space, used to denote different configurations. The hashCode method gen-
erates a hash based on the partitions of the node. OptimumSet method keeps track of
the best nodes seen so far based on their prices. The resetSelector function is respons-
ible for selecting a node to start the next run, maintaining a list of candidate nodes,
and calculating scores based on exploration and exploitation. SearchAlgorithm defines
the search algorithm used to explore the solution space, including methods for calculat-
ing scores, distance, and selecting nodes within the ResetSelector and SearchAlgorithm
classes. There are some database-related methods created (finish_stats_operation, in-
sert_stats, create_stats_table) for storing results during optimization, and enumeration
classes (DevelopMode, GetNextMode, and GetStartNodeMode) defining different modes
used in the algorithm.

This comprehensive implementation provides a fully-fledged solution for selecting optimal
cloud configuration parameters and cloud service providers based on given specifications
answering the research question.

6 Evaluation

The evaluation of the proposed solution is carried out for both the Predictive phase and
the search phase.

6.1 Case Study 1: Comparing different predictive models in
predicting CPU and Memory Utilisation based on historic-
ally available data.

In the predictive phase, the Root Mean Square Error (RMSE) value is fetched from all
the models to compare their performance and select the suitable predictive algorithm that
can be used to find the CPU and Memory usage estimates from the past usage data of the
workload. This research employs various predictive algorithms such as Linear Regression,
GradientBoostingRegressor, Support Vector Machine (SVM), and Random Forest, which
are individually explored to note their efficiency. The ensemble technique is implemented
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by combining RandomForestRegressor, AdaBoostRegressor, and VotingRegressor. The
experimentation was performed on an extensive dataset from BitBrains Inc. The dataset
highlights differences in the types of VMs based on their usage. It’s a valuable resource
for understanding how different VMs perform in terms of speed and storage requirements.
Standard Scaler is used for the standardization of the dataset.

The result in Figure [4 showcases that Random Forest performed well in comparison to
other models to predict the optimum CPU and Memory usage of the workload based on
the past usage time-series data.

Random Forest achieves close to an optimum solution with the Root Mean Square
(RMSE) of ’0.07770" with n_estimators set to 100. n_estimators hyperparameter
set to 100 is chosen to due to the large dataset size and to provide Computational
performance and accuracy.

Linear Regression achieves an RMSE value of ’0.13523’.

Gradient Boosting Regressor also achieves an RMSE value of 0.13523’ with n_estimators
set to 100 and learning rate of 0.3.

Support Vector Machine (SVM) achieves an RMSE value of '0.23813" with a 'linear’
kernel setting due to the large number of feature columns than training data.

Ensemble method by combining RandomForestRegressor, AdaBoostRegressor, and
VotingRegressor achieves the worst RMSE of '1.02034” with n_estimator of both the
combining model of 100.

RMSE Values of Different Models
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0.6

RMSE

0.4
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0.0
Linear Gradient SVM ensemble R Forest

Models

Figure 4: Comparison of different predictive algorithms on Bitbrains Inc dataset.
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For predictive modeling tasks like regression and classification, Random Forest is a pop-
ular machine learning technique. When working with structured data sets, such as the
historical consumption data of a workload, it is especially useful. Time series forecasting
can also be done with Random Forest, however, it has to convert the time series dataset
into a supervised learning issue first.

This experimentation proves that the Random Forest model works well in analyzing time
series workload usage data for the prediction of CPU and Memory Usage and has proved
to be a crucial algorithm for the performance optimization of the specific workload.

6.2 Experiment: Evaluating the performance of the proposed
search-based solution for selecting cloud service provider

The experimentation Python script is developed for conducting systematic experiments
to assess the performance of a search-based local optimization algorithm under diverse
configurations. It consists of a series of functions and procedures designed for experi-
mentation within a larger project focused on optimizing cloud configuration parameters.
The code primarily revolves around implementing and testing a search-based optimiz-
ation algorithm. A generic creator function is created that constructs instances of an
Experiment class with specified parameters. The gen_ function for generating a list of
experiment creators that iterates through sets of algorithm parameters such as experi-
ment names, and other configurations, utilizing the GenericCreator for each combination.
Functions, such as restart_algs and develop_proportion, tailor algorithm parameters for
experiments involving algorithm resets and proportional development, respectively. The
trail function amalgamates configurations from restart_algs and develop_proportion, in-
troducing a "brute_force” configuration. The experimentation script sets specific values
for multiprocessing processes (mp), and the target region (region), and generates exper-
iments for two scenarios with different application component counts of a workload to
test the effectiveness of the search algorithm in case of multiple application component
workload. The gen_exp function is employed to create experiment instances, and the
Series class, along with the run method, orchestrates the execution of these experiments.
The experimentation setup for evaluation and optimization of a workload with nine and
twenty application components of a workload to evaluate the effectiveness of fewer and
more application components using different algorithmic approaches to the evaluate ef-
ficiency of selecting a cost-efficient configuration parameter and cloud service provider
for multiple application components scenario. The parameters are outlined for three dis-
tinct modes: ”Develop Proportion,” ”Brute Force,” and specific modes named ” Random
Reset,” ”Greedy,” and "Root.” Each mode is configured with control parameters, search
algorithm parameters, and reset algorithm parameters.

Each Experimentation phase consists of a total 60 random input samples which consist of
the configuration requirement of each application component, this sample input is evalu-
ated against brute force search and the combination of Simulated annealing and stochastic
hill climbing algorithm. The restart_algs function is defined as a part of the experimenta-
tion framework and defines configurations for restarting optimization algorithms. It sets
up three distinct algorithm configurations during evaluation: ”Random_Reset,” ” Greedy,”
and "Root.” Each configuration includes reset algorithm parameters, specifying factors
like candidate list size, exploitation score bias, exploration depth bias, and exploitation
bias. The search algorithm parameters are also defined, determining the optimization ap-
proach, and include parameters such as development mode, proportion amount of node
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children to develop, the mode for getting the next node, and the mode for selecting the
starting node.

For the "Develop Proportion” mode, the experiment is conducted with different pro-
portions and the associated parameters include the component count, time per region,
significance, develop mode, proportion amount, get next mode, get starting node mode,
candidate list size, exploitation scores, and various biases. The ”Brute Force” mode
represents a straightforward exhaustive search with a longer time per region. The main
focus centers on the ”Develop Proportion” parameter, which undergoes variations ran-
ging from 0.1 to 100. The experiment maintains consistent control parameters, such as
a fixed component count of 9, a time allocation of 4 units per region, and a significance
level of 1 during the experimentation phase. Within the search algorithm parameters,
the ”"Develop Mode” is set to 2, while the ”"Proportion Amount Node to Develop” is
systematically adjusted. The ”Get Next Mode” remains constant at 1, and the ”Get
Starting Node Mode” varies between 1 and 3. The reset algorithm parameters include a
fixed candidate list size of 64, with exploitation and exploration biases set at 0.5. The
experiment introduces distinct scenarios, including a brute force approach with an ex-
tended time per region (10000 units) and various modes like Random Reset, Greedy, and
Root, each configured with their unique settings. This compared algorithmic behaviors
under diverse conditions analyzing the impact of the ”Develop Proportion” parameter
and other influencing factors on system performance. Similar parameters have been used
in experimentation performance with twenty application components simulating a larger
workload with different configuration requirements.

The experimentation found that when dealing with a small number of application com-
ponents in this case 9 application components, the proposed search algorithm can’t find
the best solution within five seconds, the straightforward method of Brute search takes
less than a second. There is a 0.1 costing gap difference between the two methods Fig-
ure [f} When similar experimentation was conducted with 20 application components,
the search algorithm performed better than the brute search method producing better
results in less than two seconds and achieving results twice as good within five seconds.
These results evaluate that the search algorithm is more practical when dealing with a
larger number of parts in predicting the desired configuration parameter and cloud ser-
vice provider given various application components of a workload for cost optimization
and optimum cloud service provider selection.Figure [6]
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Figure 5: Algorithm Performance with different Application Components
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Figure 6: Experimentation Result table

6.3 Discussion

In the first case study evaluating predictive models for estimating CPU and Memory
Utilization, various machine learning algorithms, including Linear Regression, Gradient-
BoostingRegressor, Support Vector Machine (SVM), Random Forest, and an ensemble
method, were applied to historical workload data. The evaluation metric, Root Mean
Square Error (RMSE), was utilized to compare their performance. The findings revealed
that Random Forest outperformed other models, achieving an RMSE of '0.07770’ com-
pared to Linear Regression (’0.13523"), Gradient Boosting Regressor (’0.13523"), SVM
(’0.23813"), and the ensemble method (’1.02034"). This suggests that Random Forest is
a robust algorithm for predicting CPU and Memory Usage in the given workload. This
aligns with previous research emphasizing Random Forest’s effectiveness in handling time
series data for predictive modeling. However, it’s essential to note that model evaluation
is a continuous process, and future work could explore additional algorithms or fine-tune
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parameters to enhance predictive accuracy further.

The second case study focused on evaluating the performance of a search-based local op-
timization algorithm in selecting a cloud service provider. The experimentation involved
various configurations, including different modes like " Develop Proportion,” ” Brute Force,”
”"Random Reset,” ”Greedy,” and ”Root.” Based on the evaluation, the search algorithm
found the optimal solution after five seconds when dealing with nine application com-
ponents, whereas the brute force method found the solution in less than a second, albeit
at a minor cost difference of 0.1. The search algorithm beat the brute force approach
when there were twenty application components involved. It produced better results in
two seconds and doubled the efficiency in five seconds.Figure

These findings provide valuable insights into the practicality of the search algorithm for
larger workloads. The observed performance gap between the two methods underlines
the importance of considering the scale of the workload when choosing the optimization
approach. While the brute force method may excel in scenarios with a limited number
of components, the search-based algorithm proves more efficient and scalable for larger
workloads. It’s important to acknowledge the limitations of the search algorithm for
smaller configurations and explore potential modifications or alternative algorithms for
further improvements. Future research could investigate the algorithm’s behavior under
different cloud environments and service providers, considering the evolving landscape of
cloud computing.

The result evaluation aligns with the general understanding that the choice of optimiz-
ation algorithm depends on the specific characteristics and scale of the problem. While
search-based algorithms have demonstrated effectiveness in various optimization scen-
arios, their performance can vary based on the complexity and size of the workload.
The research findings add to the continuing conversation on the necessity of flexibility
and scalability in optimization techniques by highlighting the complex interplay between
algorithmic choice and workload parameters.

7 Conclusion and Future Work

This research project effectively addresses the research question ”How can search-based
algorithms and predictive methods be employed to select the cloud service provider and
optimal configuration for multiple application components of a complex workload in the
multi-cloud setting?” The project involves analysis with predictive algorithms designed
for workload performance prediction, utilizing historical workload usage data. A simu-
lation script has been developed, configurable and extensible based on workload char-
acteristics, enabling the execution of workloads in the Docker engine. This simulation
provides insights into the overall required CPU and memory usage by an application dur-
ing test runs of the workload hence helpful in accessing the workload performance. The
core of this research project lies in the implementation of a solution based on Stochastic
Hill Climbing and Simulated Annealing. This solution aims to search for cost-efficient
and optimal configuration parameters and CSP in a multi-cloud environment, specifically
Azure and AWS. By retrieving current pricing and instance-specific configuration data
from AWS and Azure APIs, the implemented solution can search configuration paramet-
ers for up to 20 application components. In a real-world scenario, the project proposes
a practical approach to suggest the deployment of specific application components on
suitable service providers. The solution further accommodates various filters that can
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be adjusted based on application or workload requirements. The key findings underscore
the project’s success in achieving performance and cost optimization in a multi-cloud
environment. There is a further need for exploration into the dynamic nature of cloud
environments and the potential challenges associated with real-time data accuracy. For
future work, the integration of reinforcement learning techniques, such as Trust Region
Policy Optimization or Deep Deterministic Policy Gradient algorithms, holds promise
for enhancing the optimization process, also terraform automation can be further em-
ployed to extend the functionality of the proposed solution that will be able to deploy
the application components of the workload to the selected cloud service provider.
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