~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Shubham Singh
Student ID: 22170341

School of Computing
National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Shubham Singh
Student ID: 22170341
Programme: Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Shaguna Gupta
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 1699
Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shubham Singh

Date: 13th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Shubham Singh
22170341

1 Introduction

This document provides the steps to create and install the required softwares, tools
and files to perform the research mentionted in research report with title “Enhancing
Microservices Resilience: Chaos Engineering with Istio Service Mesh on Kubernetes”.

2 Deploying Kubernetes Cluster on Google Kuber-
netes Engine

To deploy a Kubernetes cluster on GKE, first we create a kubernetes cluster using the
UI of Google Cloud as in figure 1 and 2. We will select the standard creation and provide
the necessary details like cluster name, location, zone, type and memory Google Cloud
(2023).

Cluster basics

The new cluster will be created with the name, version, and in the location you specify
here. After the cluster is created, name and location can’t be changed.

Create cluster
Select the cluster mode that you want to use. To experiment with an affordable cluster, try My first cluster in the Cluster
set-up guides

Autopilot: Google your cluster (| N
lame
A pay-per-Pod Kubernetes cluster where GKE manages your nodes with CONFIGURE
minimal configuration required. Learn more (2 cluster-1
Cluster names must start with a lowercase letter followed by up to 39 lowercase letters,

numbers, or hyphens. They can't end with a hyphen. You cannot change the cluster's name
once it's created

Standard: You manage your cluster

A pay-per-node Kubernetes cluster where you configure and manage your CONFIGURE

nodes. Learn more (4 .
Location type

Resource prices may vary between certain regions. Learn more [

@ Compare cluster modes to learn more about their differences. COMPARE ® Zonal
O Regional
- Zone
CANCEL ‘us—centrah—c - @ 1
Figure 1: Cluster Modes Figure 2: Cluster Configurations

3 Microservices application creation and deployment

3.1 Building the Microservices

Two microservices named test-app-hello and test-app-employee are created using python
FastAPI as in figure 3.

, description=app_name, swagger_ui_paramete

)

(a) test-app-employee main.py (b) test-app-hello main.py

Figure 3: Application Code

3.2 Application Ul
The application looks like as in figure 4.

hello ®®
hello
default ~
/ Root av
/api/vl/hello Helo v
/api/vl/fallible/{pass_weight}/{fail_weight} Falibie Helo v
/api/v1/employee/{employee_id} GetEmployee v
/api/vl/httpbin/headers Get Employee v
Schemas ~
HTTPValidationError > object
ValidationError > object

Figure 4: Application Ul

3.3 REDIS Deployment

apiVersion: apps/vl
kind: Deployment
metadata :
name: redis
namespace: test—app
labels:
app: redis
spec:
selector :
matchLabels:
app: redis

replicas: 1
strategy:
rollingUpdate:
maxSurge: 25%
maxUnavailable: 25%
type: RollingUpdate

template:
metadata :
labels:
app: redis
spec:
containers:

— name: redis
image: docker.io/redis/redis—stack—server:latest

resources :
limits :
memory: 128Mi
requests:
memory : 128Mi
livenessProbe:
tepSocket :
port: 6379

initialDelaySeconds: 3
timeoutSeconds: 2
successThreshold: 1
failureThreshold: 3
periodSeconds: 10
readinessProbe:
tcpSocket :
port: 6379
initialDelaySeconds: 3
timeoutSeconds: 2
successThreshold: 1
failureThreshold: 3
periodSeconds: 10

ports:
— containerPort: 6379
name: redis

restartPolicy: Always

3.4 Deploying the application

Docker image is created for the microservices and pushed to docker as in figure 6. The
same image name is used in YAML file for the deployment. The microservice will be
deployed by running below command.

apiVersion: vl
kind: Service
metadata:
name: test-app-hello-int
labels:
app: test-app-hello
spec:
type: ClusterIP
selector:
app: test-app-hello
ports:
- name: http
port: 80
targetPort: 8000

apiVersion: vl
kind: Service
metadata:
name: test-app-hello
spec:
type: LoadBalancer
selector:
app: test-app-hello
ports:
- name: http
port: 80
targetPort: 8000

Figure 5: Exposing test-app-hello

#kubectl apply —f test—app—hello.yaml

shubham4294singh@cloudshell:~$ kubectl get pods --all-namespaces -o=jsonpath='{range .items[*]}{.spec.containers[*].image}{"\n"}{end}' | sort | unig
docker.io/hihellobolke/test-app-employee:2 docker.io/istio/proxyv2:1.20.0

docker.io/hihellobolke/test-app-hello:2 docker.io/istio/proxyv2:1.20.0

Figure 6: Docker Image

For exposing the application to outside world a service of type load balancer named
test-app-hello-ext is created and exposed to outer world on 1P-34.134.225.91 as in figure
5.

#kubectl apply —f test—app—hello—ext.yaml

Once this is done our both microservices are up and running having 1 pod each. But
as we will be injecting failures in later stage we need more number of pods. For this edit
the deployment yaml file and changed the replica count to 5 for both the microservices.

4 Installation and Configuration of Locust on AWS

Locust is installed on AWS EC2 instance, so first create an EC2 instance by logging
into AWS account and the configurations of instance is visible in figure 7 Amazon Web
Services (2023).

Now connect to created EC2 instance from the local command prompt using SSH.

Instance summary for i-012b47d27ff01b4ca (x22170341_RIC) info C | Connect || Instance state v H Actions ¥

Updated less than a minute ago

Instance ID Public IPv4 address Private IPv4 addresses

i-012b47d27ff01b4ca (x22170341_RIC) 15.229.83.80 |open address [4 172.31.35.78
IPv6 address Instance state Public IPv4 DNS
@ Running ec2-15-229-83-80.sa-east-1.compute.amazonaws.com

|open address [4

Hostname type Private IP DNS name (IPv4 only)

IP name: ip-172-31-35-78.sa-east-1.compute.internal ip-172-31-35-78.sa-east-1.compute.internal

Answer private resource DNS name Instance type Elastic IP addresses

IPv4 (A) t2.large -

Figure 7: AWS Instance

#ssh —i "ric —2.pem” ubuntu@ec2—-15—-229—-83—80.sa—east —1.
compute.
amazonaws . com

Now first install the python on EC2 instance and after that set up a Python virtual
environment using Python 3.10.

#sudo apt install python3 — installing python

#sudo apt update //Update the package lists to get the

latest available versions

#sudo apt install python3.10—venv //Install Python 3.10
venv package

python3.10 —m venv .venv //Create a virtual environment
named .venv

using Python 3.10

Now activate the virtual environment using the below command.

#source .venv/bin/activate //Activate the virtual
environment

After running these commands in order, a virtual environment called.venv will be
created, activated for usage, and the Python 3.10 venv package will be installed. Any
installation or execution of Python-related software will be contained within the virtual
environment when it has been activated.

Now install locust using command

#pip3 install —r requirements.txt

pip reads the requirements.txt file, locates each package mentioned along with its version,
and installs them into your Python environment.

Once the installation is complete verify the installation by running the below command
as in figure 8.

ubuntu@ip-172-31-35-78: $ locust --version

locust 1.4.3

Figure 8: Locust

5 Installation & Configuration of Chaos Engineering

In the GKE cluster create a directory called chaos and inside it write a bash script to
inject the failure in the system as in figure 9.

In a Kubernetes cluster, the script restarts a selected number of pods from the test-
app-employee deployment. After retrieving a list of ready pods, it chooses a certain
number at random and restarts them at a set period of time. The absence of pods is
logged for a restart if none of the pods satisfy the requirements.

shubham4294singh@cloudshell:~/chaos$ cat restart-pods-randomly.sh
#!/bin/bash

#set -euo pipefail

max_pods_to_kill="${1:-3}"
kill _interval="${2:-5}"
#set -x

while true; do

pod_list="$ (kubectl -n test-app get pods \
--selector "app in (test-app-employee)" \
-0 custom-columns=POD:metadata.name,READY-true:status.containerStatuses[*].ready \
--no-headers \
| grep true \
| awk '{print $1}' \
| shuf -n "${max pods_to_kill}" \
| xargs echo
)"

if [["x${pod list}" == "x"]1; then
echo "$ (date +% S) - no pods to kill"
else
echo "$(date +% %$M%S) - deleting pods: ${pod list}"

kubectl -n test-app delete pod ${pod list} 2>&l1 | sed 's/"/ /"

fi
sleep "${kill interval}"

done

Figure 9: Chaos Engineering Bash Script

6 Installation & Configuration of Service Mesh Istio

To install Istio first create a separate namespace called istio-system. Now install Istio
and create an ingress gateway and a service called VirtualService as in figure 10 and 11.
Istio Documentation (2023).

#istioct]l install —set values.pilot.env.
PILOT_ENABLE STATUS=true —set values. pilot.env.
PILOT_ENABLE_CONFIG_DISTRIBUTION_TRACKING=true —set

values . global.istiod .enableAnalysis=true

Now istio-ingressgateway will be exposed on an external IP at 35.202.105.8. Create
Istiod service as type of ClusterIP as in figure 12.

apiVersion: networking.istio.io/vlalpha3

kind: VirtualService
metadata:
name: test-app-hello
spec:
hosts:
- iy
gateways:
- test-app-hello-gateway
http:
- match:
- uri:
prefix: /
route:
- destination:
host: test-app-hello.test-app.svc.cluster.local
port:
number: 80
retries:
attempts: 3
perTryTimeout: 2s
retryOn: gateway-error,connect-failure,refused-stream,500,501,502,503

Figure 10: Virtual Services

apiVersion: networking.istio.io/vlalpha3
kind: Gateway
metadata:
name: test-app-hello-gateway
spec:
selector:
istio: ingressgateway
servers:
- port:
number: 8080
name: http
protocol: HTTP
hosts:
g

Figure 11: Ingress Gateway

shubham4294singh@cloudshell:~/test-app-employee/k8s$ kubectl get services -n istio-system
NAME TYPE CLUSTER-IP EXTERN. B PORT (S) AGE

istio-ingressgateway LoadBalancer 10.100.8.232 35.202.105.82 15021:32478/TCP,80:31924/TCP, 443:32653/TCP 11d
istiod ClusterIP 10.100.9.173 <none> 15010/TCP,15012/TCP, 443/TCP,15014/TCP 1ld

Figure 12: istio-system Services

7 Simulating Load on Microservice

To start load testing and hitting the microservice with large user requests a bash script

is written as in figure 13.
Now to run this bash script first make sure the virtual environemnt is activated. After
that navigate to path having the bash script. We can run it using ./test-employee.sh

7

ubuntu@ip-172-31-35-78:
#!/bin/bash

export _now="$(date +%y%md¥%d-

$ cat test-employee.sh

PoM%6S) "

export _ip="${1-34.134.225.91}"
export _locustfile="employee.py"

locust --headless \
--users 400\
--spawn-rate 100 \
--run-time 3600s \
--reset-stats \
--locustfile "locustfiles/${_locustfile}" \
--host http://${_ip} \
--html "reports/${_locustfile}-$Chostname)-${_now}.html"

Figure 13: Bash Script-Load Testing

/api/vl/employee/709:
/api/vl/employee/938:
/api/vl/employee/711:
/api/vl/employee/559:
/api/vl/employee/513:
/api/vl/employee/764:
/api/vl/employee/366:
/api/vl/employee/919:
/api/vl/employee/406:
/api/vl/employee/163:
/api/vl/employee/457:
/api/vl/employee/863:
/api/vl/employee/124:

BadStatusCode('http:
BadStatusCode("http:
BadStatusCode("http:
BadStatusCode("http:
BadStatusCode("http:
BadStatusCode("http:
BadStatusCode("http:
BadStatusCode("http:
BadStatusCode("http:
BadStatusCode("http:
BadStatusCode("http:
BadStatusCode("http:
BadStatusCode("http:

//34.
//34.
//34.
//34.
//34.
//34.
//34.
//34.
//34.
//34.
//34.
//34.
//34.

Figure 14: Locust Execution

Locust Test Report

During: 26/11/2023, 19:28:38 - 26/11/2023, 19:38:36

Target Host: http://34.134.225.91

Script: employee.py

Request Statistics

Method

GET

GET

GET

GET

GET

GET

GET

The system searches the current directory for a file called test-employee.sh when you
type ./test-employee.sh, then tries to launch it using the default shell interpreter Locust

Name # Requests
lapiv1/employee/1 65
/api/v1/employee/10
lapiiv1/employee/100
[apifvi/employee/101

lapilv1/employee/102

lapiv1/employee/103

lapi/v1/employee/104

Fails

Average (ms) Min (ms)

225 146
179 146
169 146
164 145
164 145
260 147

205 145

Max (ms)
4392

442

610

421

386

Average size (bytes)

341

345

353

359

91/api/vl/employee/709",

.91/api/v1l/employee/938",
.91/api/vl/employee/711",
.91/api/v1l/employee/559",

91/api/vl/employee/513",
91/api/vl/employee/764",

.91/api/vl/employee/366",
.91/api/vl/employee/919",
.91/api/vl/employee/406",
.91/api/vl/employee/163",

91/api/vl/employee/457",
91/api/vl/employee/863",
91/api/vl/employee/124",

Failures/s
0.0
0.0
0.0
0.0
0.0
0.0

0.0

Figure 15: Locust Test Execution Result

code=500)
code=500)
code=500)
code=500)
code=500)
code=500)
code=500)
code=500)
code=500)
code=500)
code=500)
code=500)
code=500)

Documentation (2023).

Once the test run completes will get the result in the form of a .html file as in figure
15 and 16.

Charts

@ RPS @ Failures/s
Total Requests per Second

120
100
80
680
40
20

0

19:28:41 19:20:26 19:30:11 19:30:56 19:31:41 19:32:26 19:33:11 19:33:56 19:34:42 19:35:27 19:36:12 19:36:57 19:37:42 19:38:27

@ 50th percentile @ 95th percentile
Response Times (ms)

6,000
5,000
4,000
3,000

2,000

1,000 ! p ntile: 150
| 95th percentile: 220

o Users: 290 e)
19:28:41 19:29:26 19:30:11 19:30:56 193141 19:32:26 19:33:11 19:33:56 19:34:42 193527 19:36:12 19:36:57

19:37:42 19:38:27

Number of Users

19:28:41 19:29:26 19:30:11 19:30:56 19:31:41 19:32:26 19:33:11 19:33:56 19:34:42 19:35:27 19:36:12 19:36:57 19:37:42 19:38:27

Figure 16: Locust Test Execution Result

8 Injecting the Failures

To inject the failure run the restart-pods-randomly.sh bash script.

Keep changing the max_pods_to_kill and kill interval. Observe the behaviour of mi-
croservice everytime the numbers are changed as in figure 17.

#max pods to_kill="§{1:-3)"
#kill interval="$(2:—-5)"

shubham4294singh@cloudshell:~/chaos$ cat restart-pods-randomly.sh
#!/bin/bash

#set -euo pipefail

max_pods_to_kill="${1:-3}"
kill_interval="${2:-5}"
#set -x

while true; do

pod_list="$ (kubectl -n test-app get pods \
--selector "app in (test-app-employee)" \
-0 custom-columns=POD:metadata.name, READY-true:status.containerStatuses[*].ready \
--no-headers \
grep true \
awk '{print $1}' \
shuf -n "${max pods_to_kill}" \
xargs echo

if [["x${pod_list} ; then
echo "$ (date +%y%m% - no pods to kill"

else
echo "$(date +%y%m%d-%H%M%$S) - deleting pods: ${pod_list}"
kubectl -n test-app delete pod ${pod list} 2>&1 | sed 's/"/ /"

fi

sleep "${kill interval}"

done

Figure 17: Bash Script to Inject Pod Failure

k test-app-employee-5458b

g4 test-app-employ

56-55nbf test-app-emp:

Figure 18: Failure Creation

9 Running the Istio

To run the locust first we need to enable the istio injection. Open the all.yaml file and
comment out the line mentioning istio-injection disabled as in figure 19.
After that delete the deployment for test-app-employee, test-app-hello, and Redis.

kubectl delete deployment test—app—employee test—app—
hello redis

#kubectl apply —k.

Execute the above command. The command kubectl apply -k will read the instruc-
tions included in the kustomization.yaml file and apply the appropriate resources to the
Kubernetes cluster in accordance with the configurations specified in it.

apiVersion: kustomize.config.k8s.io/vlbetal
kind: Kustomization

namespace: test—app

resources:

10

— deployments/all .yaml

— ns/all.yaml

— servicemonitor/all.yaml
— sve/all . yaml

— istio/all.yaml

After the deployment are available the test can be run with Istio enabled.

vl
Namespace

disabled
test-app

Figure 19: Istio-Injection

References

Amazon Web Services (2023). Amazon ec2 user guide for linux instances. Retrieved
November 29, 2023.
URL: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

Google Cloud (2023). Deploy an application to a cluster — kubernetes engine document-
ation. Retrieved November 29, 2023.
URL: https://cloud.google.com /kubernetes-engine /docs/deploy-app-cluster

Istio Documentation (2023). Installing istio — istio documentation. Retrieved November
29, 2023.
URL: https://istio.io/latest/docs/setup /install/istioctl/

Locust Documentation (2023). Writing a locustfile — locust documentation. Retrieved
November 29, 2023.
URL: https://docs.locust.io/en/stable /writing-a-locustfile. html

11

	Introduction
	Deploying Kubernetes Cluster on Google Kubernetes Engine
	Microservices application creation and deployment
	Building the Microservices
	Application UI
	REDIS Deployment
	Deploying the application

	Installation and Configuration of Locust on AWS
	Installation & Configuration of Chaos Engineering
	Installation & Configuration of Service Mesh Istio
	Simulating Load on Microservice
	Injecting the Failures
	Running the Istio

