
Enhancing Microservices Resilience: Chaos
Engineering with Istio Service Mesh on

Kubernetes

MSc Research Project

MSc Cloud Computing

Shubham Singh
Student ID: 22170341

School of Computing

National College of Ireland

Supervisor: Shaguna Gupta

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Shubham Singh

Student ID: 22170341

Programme: Cloud Computing

Year: 2023/2024

Module: MSc Research Project

Supervisor: Shaguna Gupta

Submission Due Date: 14/12/2023

Project Title: Enhancing Microservices Resilience: Chaos Engineering with
Istio Service Mesh on Kubernetes

Word Count: 7463

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shubham Singh

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Enhancing Microservices Resilience: Chaos
Engineering with Istio Service Mesh on Kubernetes

Shubham Singh
22170341

Abstract

Microservices cloud-native architectures are gaining popularity for deploying
applications, employing small modules, and each of these modules handles specific
tasks. They have various advantages, such as scalability, improved maintainability,
and elasticity. However, the architecture’s complexity rises with multiple separate
modules, posing challenges. Microservices running on Kubernetes platforms often
face failures that degrade application performance and availability. This research
report explores bolstering microservice resilience within cloud-native setups through
chaos engineering using Istio Service Mesh on Kubernetes. Evaluating Istio’s impact
on microservices performance, the research reveals substantial resilience improve-
ments and performance enhancements. Istio performs consistently under severe
loads and for extended periods of time, highlighting its important role in bolstering
microservices against failures. The methodology emphasises the configuration of
Istio features such as circuit breaking, retries, and traffic control. These ensure
the resilience of microservices and infrastructure. The results illustrate the efficacy
of Istio in identifying disruptions, limiting their scope, and restoring application
performance with minimal impact on users. We have collected metrics such as re-
sponse time, error rate, and total requests per second to assess the impact of Istio
on the recovery and resilience of microservices. The experiment results proved that
the proposed design performs significantly better as compared to the traditional
architecture by offering stability, faster response time, and persistence in failures.

Keywords: GKE, Kubernetes, Chaos Engineering, Resilience, Istio service mesh

1 Introduction

Cloud Computing has become the widely accepted platform for deploying web applic-
ations. Its on-demand infrastructure, platform, and software availability support mi-
croservices. The ability to scale resources dynamically to match the demand allows
microservices to run independently.

Many companies are migrating to a microservices architecture as they are good for
scalability, fault isolation, and continuous integration and deployment Balalaie et al.
(2018). Additional to this they also provide extensibility and maintainability. From
Figure 1 we can see that microservices is an application build as a collection of small
services, each running in its own process and deployed independently whereas the mono-
lithic application, including its user interface, business logic, and data access layers, is
built and deployed as a single unit. Microservices are mostly deployed using containers
to avoid problems with deployment and management of it. Kubernetes is one of the

1

many available container orchestration platforms in the industry. It helps us to achieve
automated deployment, and horizontal scaling and provides built-in security features
Bernstein (2014). The complexity of microservices ecosystems also poses challenges. The
expansion of services and containers across dynamic infrastructure increases the risk of
pod failures Monteiro et al. (2017).

Figure 1: Monolithic Architecture & Microservices

In today’s world, a single failure has the power to disrupt the whole platform and the
applications running on it. It’s important to observe and keep the application functional.
Making copies of pods and checking on their health daily is an important cornerstone.
This makes sure that if one pod fails, there is always another one ready to take its place.
It’s like having a backup pod ready to deploy in case one pod fails because the application
should be up and running in all cases. Service meshes have become a crucial element
in the microservices framework. Istio, a widely used open-source service mesh, plays a
key role in overseeing traffic patterns, implementing policies, and consolidating telemetry
data among microservices. It serve as a facilitator to make sure that services can talk
to each other easily. It has features like circuit breaking and a retry mechanism to make
sure there’s a backup in case some services go down.

But it’s not always about defence, sometimes we need to fake chaos to get ready for
what might happen. This is where chaos engineering comes in. It’s like stress-testing our
system by making it fail on purpose to see how it responds. This practice helps us to
make our application ready for failure and makes our plan stronger in case something goes
wrong. Giving the system the ability to automatically scale and use smart techniques like
retries at the application level and the exponential backoff method also makes it much
more resilient.

To ensure success, it is crucial to design and set up the application environment while
considering the possibility of failure. The platform should be created in a manner that
can endure and bounce back from faults, all while ensuring that the end user remains
unaware of any disruptions. By incorporating strategies to anticipate and manage dis-
ruptions, the overall system gains increased reliability and resilience. Instead of simply
responding to problems, this approach guarantees that the system is strong enough to
sustain uninterrupted service and swiftly recover from challenges. Microservices like API
Gateway, Backend, Database, Messaging, Monitoring, and Authentication Microservices
can utilize the proposed architecture. It depends on the business and technical require-
ments of the application to determine which microservices to use. Basically mostly all

2

types of microservices can be used in our proposed application. A combination of different
types of microservices creates a scalable and resilient architecture.

1.1 Motivation

Applicant deployment in cloud-native environments is now recognised as an essential
component of modern computing in the current era of digital transformation. By virtue
of their exceptional adaptability, scalability, and resource management, cloud technologies
facilitate the implementation of microservices architectures. Nevertheless, the adoption
of microservices as a paradigm change presents challenges in effectively handling failures,
which can have a significant detrimental effect on the dependability and efficiency of
applications. One of the primary issues in modern computing regards to the vulnerability
of microservices architectures to single-point malfunctions. A single error occurring in
either a service or a module has a possibility for developing into a disruption that spans
the entire application ecosystem. Research into robust solutions is driven by the urgent
requirement to guarantee continuous functionality and resilience when confronted with
such failures.

The motivation behind this research is to strengthen the resilience of microservices in
frameworks that are associated to the cloud. The objective of this study is to investigate
the management of the Istio Service Mesh on Kubernetes. To achieve this, chaos engin-
eering will be utilised to simulate failures and assess the effectiveness of Istio in improving
system stability. Through an examination of the effects of Istio on the performance, re-
sponsiveness, and dependability of microservices in high-pressure situations, this research
attempts to identify approaches that eliminate interruptions and enhance the robustness
of the system. The primary objective is to identify practical strategies that enable mi-
croservices to withstand failures, thereby reducing periods of inactivity and maximising
the efficiency of applications. The findings obtained from this research have the poten-
tial to enhance the dependability and resilience of microservices architectures, making a
substantial contribution to the constantly evolving domain of cloud-native computing.

1.2 Research Question

How do different configurations of Istio control plane components affect the latency,
performance, and availability of microservices when evaluated under pod failures using
chaos mesh and increasing service requests?

Problem Statement: In real-world Kubernetes deployment, multiple challenges
emerge, such as network connectivity, robustness, and load handling. Network complex-
ities include pod-to-pod communication, managing service discovery, and addressing net-
work overhead. The traffic routing is also very difficult to achieve in Kubernetes. These
issues are significant because they directly impact an organisation’s ability to deliver re-
liable, secure, and high-performance applications in a microservices architecture. Failing
to address these issues can result in less reliable applications with frequent connection
issues, increased operational complexity, and negative impact on customer satisfaction.
The solution to these problems is service mesh, which resolves these critical challenges
in real-world Kubernetes deployments. It offers features such as retries, circuit break-
ing, and timeouts. Furthermore, it even handles and manages the load on the cluster
perfectly.

3

1.3 Structure of the Paper

There are six sections in this research report. In the first section, we introduce service
mesh and microservices and outline the motivation driving this study. In the second
section, an extensive review of the literature on the existing research done in this field is
discussed. The study’s instruments and methodology are described in Section 3. The ar-
chitecture of the system and the design parameters of our experimental setup are covered
in detail in the next section, section four. The proposed approach’s stepwise execution
is methodically presented in Section 5. Ultimately, a comprehensive examination of the
experiment data and implications is presented in parts six and seven.

2 Related Work

Understanding Kubernetes and microservices is required for researching and finding a
solution to achieve optimal performance. This section will discuss existing research pro-
jects in our domain. It will explain what has already been done to address microservices
issues and highlight the limitations of their work.

2.1 Monolith and Microservices

Monolith architecture is a development approach that was used by big companies like
Amazon and Netflix. In this traditional approach, all the functionality of an application is
packed into one application. Monolithic applications are easy to build and test. However,
as technology changes, the complexity and size of applications also increase. Making it
difficult to manage and scale the application. On the other hand, we have a microservices
architecture that is well-suited for large and complex applications that need scalability,
agility, and the ability to scale as required. Here, the application is divided into small
services that work together to provide the overall functionality of the applicationLauretis
(2019).

2.2 Analysing Microservices

MIPaRT is a platform to automate the testing of microservices for performance and reli-
abilityCamilli et al. (2022). The proposed platform offers easy integration into a DevOps
cycle, where it plays a critical role in supporting continuous testing and monitoring.
Firstly, the platform generates and executes performance-reliability ex-vivo testing ses-
sions. It then collects vital monitoring data to keep a watchful eye on the system’s
performance.

In his research, Pietrantuono et al. (2018) developed a new algorithm called Mi-
croservice Adaptive Reliability Testing-MART. The technique enables evaluation of the
reliability of a microservices-based application even when resources for testing are limited.
This assessment is conducted on-demand during the application’s operation, utilizing real-
world data pertaining to microservice utilization and the results of both successful and
unsuccessful requests. For the experimentation, a pet clinic microservice is used. They
conclude that the algorithm’s overall accuracy is high, but the time taken to evaluate
the results is high. Toffetti et al. (2015) proposed an architecture that provides self-
management of microservices. It monitors the application and the properties related to
the infrastructure of the application to provide on-time solutions to the failures. To test

4

the architecture of microservices, fault injection is being used by Meinke and Nycander
(2015). For the setup, a distributed microservice architecture known as triCalculate
is analyzed. The application was created by TriOptima AB for the OTC market. To
assess the robustness of software fault injection, such as restarting services, starting sev-
eral service instances, communication faults, and killing service instances are performed.
The experimentation resulted in limited accuracy as they were constructed from a small
sample size.

Alhamazani et al. (2014) research introduced cross-layer multi-cloud application mon-
itoring as a service-CLAMS, an application monitoring framework developed for multi-
cloud platforms. This framework collects QoS performance data for various cloud layers.
However, it has a constraint: it can solely monitor the performance of virtual machines,
and it’s constructed exclusively for monitoring web applications. Another framework
called PyMon is based on ”monit” and is an application built using Django to collect and
analyse the monitoring data collected. clusters. The setup is easy and collects a large
amount of data. However, it might not possess the capability to oversee VM perform-
anceGroßmann and Klug (2017). Camilli and Russo (2021) presents a new automated
modelling approach for analysing microservice resilience. It models the performance vi-
olations over time using growth theory and stochastic processes. The model provides
insights into recovery capabilities and degradation trends. However, a more varied study
is needed to predict accuracy and to look for wider applicability across domains.

2.3 Kubernetes

Kubernetes can be termed as a container orchestration platform that helps deploy the
containers to the Kubernetes cluster. Kubernetes is well known for some of its excellent
features, including scaling, high availability, fault tolerance, and flexibility. Karn et al.
(2022) Kubernetes helps in monitoring the health of services and the infrastructure. Also,
it helps in efficiently allocating and managing computing resources, ensuring that the ap-
plication runs smoothly. Another important feature of Kubernetes is self-healing. When
the container fails, Kubernetes automatically relaces failed containers and reschedules
them on healthy nodes, making sure that the application is up and running in case of
network failureFaticanti et al. (2021).

Dame and Michael (2022) mentioned that a cluster is a group of computers or ma-
chines that work together to run containerised applications and manage the entire Kuber-
netes environment. A Kubernetes cluster typically consists of two main components: the
master nodes and the worker nodes. The master node is responsible for controlling and
managing the cluster state, orchestrating tasks, and serving as the central point for all
operations within the cluster. The worker nodes are responsible for executing the work-
loads and providing the computational resources needed by the applicationsIslam et al.
(2022). The API server is the path for admin tasks and user communication, while etcd,
a distributed key-value store, preserves the configuration data. Kubernetes can be used
in the deployment of microservices and other web applications.

2.4 Service Mesh Istio

A service mesh is a dedicated infrastructure layer for handling service-to-service commu-
nication within a microservice architecture. It also monitors and manages network traffic
between microservices. Redirecting, granting, or limiting access to the traffic as needed

5

to protect the system. As per the discussion of Li et al. (2019), it has been noticed that
service mesh helps to control the requests of the services, and in addition, it balances the
load evenly across multiple instances of a service. This ensures proper resource utilisa-
tion and reliability. Istio service mesh is also very helpful to mitigate latency issues at
the edge. Ganguli et al. (2021) installed Istio on the Kubernetes cluster at the edge to
measure the ratio between latency and throughput. This is crucial in edge deployments
because the entire premise of edge deployment revolves around minimising latency. As in
canary deployment, we can route one portion of traffic to a new version of a service for
testing before a full rollout Ponomarev and Y. (2019). It also offers rate limiting, which
controls the number of requests that a service can accept within a specific time frame. It
helps to prevent attacks such as denial-of-service attacks on the microservices. According
to Calcote and Butcher (2019) Istio service mesh helps to address the challenges of a
distributed microservices architecture faced by the developers. Istio employs an exten-
ded iteration of the Envoy proxy, a high-performance proxy created in C++, to manage
the flow of both incoming and outgoing traffic for all services within the service mesh.
Istio harnesses Envoy’s capabilities, including dynamic service discovery, load balancing,
TLS decryption, support for HTTP/2 and gRPC Remote Procedure Call (gRPC) proxy-
ing, circuit-breaking mechanisms, health checks, phased deployment rollouts with traffic
distribution based on percentages, controlled introduction of faults, and comprehensive
metric collection. The Anjali et al. (2020) mentioned that the architecture of Istio helps
to secure the connection and monitor the authentication of the services. Malki et al.
(2019) have written in their paper that one of the prominent features of Istio is that it
facilitates secure service-to-service communication within clusters while providing robust
traffic control and automated load-balancing capabilities.

2.5 Chaos Engineering

Chaos engineering is a discipline where we proactively introduce chaos and failures into
a system to find the vulnerabilities, weaknesses, and potential points of breakdown. The
primary goal of chaos engineering is to improve system reliability and resilience by uncov-
ering problems before they happen in the real world. As per Torkura et al. (2020) chaos
engineering is injecting faults intentionally into the system to test its resilience. Monitor-
ing and observability tools are used to collect data from the experiments, showing how the
system performs in chaos. Research by Malik et al. (2023) suggested a chess framework,
where they have used two microservices called the Yelb. Here they are experimenting
with five fault injection scenarios focusing on the infrastructure as well as functional
faults. Many of the big companies use chaos engineering, such as Netflix, LinkedIn, Face-
book, and Google Rosenthal and Jones (2020). Utilising this application offers additional
advantages, such as ensuring stakeholder and end-user contentment, providing room for
the collaboration team’s progress, and elevating their confidence Simonsson et al. (2021).

2.6 Summary of Literature Review

Microservices architecture research thus far has explored a wide range of topics, from
monitoring frameworks to performance testing. Learning-based testing, multi-cloud mon-
itoring frameworks, and integrated performance testing approaches are just some of the
methods that have been the subject of research. However, our planned study will go
down a new path by deliberately injecting faults into Kubernetes clusters and then using

6

the Istio service mesh to fix them. Our work differentiates from the existing literat-
ure since we concentrate on chaos engineering tests and the effect Istio has on network
latency, robustness, and resilience. By simulating real-world network disturbances using
chaotic mesh, we want to comprehend how Istio affects the behaviour and performance
of microservices applications in Kubernetes clusters.

Our study’s significance comes in its examination of how service meshes, and in par-
ticular Istio, reduce network latency and improve resilience in microservices systems. No
prior research has delved deeply into how service meshes cope with deliberate defects and
network disturbances. With the knowledge gained from our work, Istio and other service
mesh tools may be optimised to better support microservice-based systems, making them
more resilient and responsive in the face of network difficulties. In Table 1, different re-
lated works done previously are compared on the basis of their framework, scenario, and
advantage. The different research summarised below focuses on monitoring microservices
and proposing different frameworks. Whereas we will be proposing a different framework,
which will be tuned according to the faults that we will be injecting into the system.

Author Framework Approach Advantage Limitation
Barakat (2017) Monitoring and

Analysis of Mi-
croservices Per-
formance

Used Kieker
framework to
monitor and
analyze mi-
croservices
applications

Kieker provides
monitoring
and analysis
capabilities for
microservices

Did not discuss
integration with
other tools or
dashboards

Seifermann
(2017)

Application
Performance
Monitoring in
Microservices-
Based Systems

Conducted in-
dustrial case
study with In-
stana, proposed
monitoring
concept with
Grafana

Evaluated
commercial
tool Instana,
provided mon-
itoring concept
with automation
and dashboards

Limited by
industrial envir-
onment, static
thresholds led to
false detections

Meinke and
Nycander
(2015)

Learning-based
Testing (LBT)
of Distributed
Microservice
Architectures

Used LBT to
evaluate cor-
rectness and
robustness of a
microservices
system

LBT enables
automated
blackbox test-
ing and fault
injection

Handling of dis-
tributed systems
and high latency
needs more re-
search

Alhamazani
et al. (2014)

CLAMS -
Cross-Layer
Multi-Cloud
Application
Monitoring
Framework

Proposed a
monitoring
framework using
manager-agent
approach across
cloud layers

Enables cross-
layer and
multicloud
monitoring

Further eval-
uation on
complex systems
needed

Großmann and
Klug (2017)

Monitoring Con-
tainer Services
at the Network
Edge

Developed Py-
Mon framework
to monitor
containerized
microservices on
edge devices

Low over-
head monit-
oring tailored
for resource-
constrained edge
devices

Future work
on automated
placement based
on monitoring
data

7

Noor et al.
(2019)

Multi-
microservices
Multi-
virtualization
Multi-cloud
(M3) monitoring
framework

Decentralized
agents-based
approach to
monitor per-
formance of
microservices
across platforms
and multi-cloud
environments

Cloud agnostic
can monitor
VMs and con-
tainers; flexible
centralized or
decentralized
architecture

Requires in-
stalling monit-
oring agents on
each VM over-
head caused by
communication
between agents
and manager

This Research Istio-Chaos
Engineering

Fault Injec-
tion

Improved
resiliency,
robustness,
traffic man-
agement and
security

Comprehensive
Setup & cost

Table 1: Summarising Previous Research Work

3 Methodology

This research contributes to the ultimate performance of micro-services with service mesh
Istio in Kubernetes clusters. The proposed idea will solve the concerns about resiliency,
robustness, and reliability. The suggested solution not only outperforms the traditional
microservices model installed on Kubernetes but also results in improved performance
and higher application uptime. To sum it up, this suggested approach addresses typical
challenges encountered within microservices and offers corresponding solutions to mitigate
these issues effectively.

3.1 Selected Methodology & It’s Justification

Several methodologies were considered and evaluated before arriving at the experimental
approach used for our experiments. One alternative approach was an analytical model-
based approach to predict the performance of microservices under different Istio settings.
However, the complexity of microservice communication limits the accuracy of analyt-
ical models. Another approach we considered was a controlled simulation where fixed
workloads and fault injections are executed in a fixed Kubernetes environment. But the
instability and dynamism that come with real-world deployments are not present in sim-
ulations. The goal is to strengthen resilience against real-life unpredictable disruptions.

Furthermore, we evaluated the considerations of choosing different tools for the ex-
periments. Among the approaches considered, one was to choose different service meshes
for the experiments, such as Linkerd or Consul. However, Istio was selected because of
its extensive integration within the Kubernetes ecosystem and its robust features. Also,
its world-wide popularity and acceptance as a service mesh were considered. Various
chaos engineering techniques and tools exist, like chaos monkey or chaos mesh, but to
decrease the complexity and cost, we have chosen to write a bash script to execute the
chaos engineering. We have also considered different load testing tools, such as JMeter,

8

but the locust’s flexibility, easy-to-use functions, and suitability for simulating various
user behaviours are helpful for our experiments.

The chosen approach was executed meticulously and rigorously to ensure it aligned
with our research objective. The selected approach also provides the right balance of
realism and, at the same time, allows us to control the different settings by deploying live
microservices in a real Kubernetes cluster while still allowing us to inject the failures. By
doing so, we are able to observe the actual system behaviour under chaotic conditions,
going beyond just theoretical models. The setup of the test environment is also done rig-
orously for reproducibility across different cloud platforms. Multiple iterations of control
with variable parameters like user loads, failure rates, and duration are needed to cover
an adequate range. Test runs are also executed for longer durations to find the cause of
failure when the application is exposed to extended load and time.

3.2 Research Flow

In this section we will explaining the research flow as shown in figure 2. To conduct the
setup, we have set up a multi-node Kubernetes cluster on the Google Kubernetes Engine.
The application for the experiment is called test-app-hello and test-app-employee, which
were created for this experiments using FastAPI, a Python-based high-performance web
framework, and the application is tailored as per the needs of our experiments. The test-
app-hello application has multiple endpoints. The hello endpoint is to check if our applic-
ation is working fine. The fallible endpoint utilises the path parameters “pass weight” and
“fail weight” to potentially influence the response behaviour based on specified weights.
Employee id endpoint relies on a path parameter, “employee id”, facilitating the retrieval
of specific employee details. Httpbin/headers endpoint accesses a URL and displays the
response.

Creation of
Kubernetes Cluster

on GKE

Install Istio

Fault Injection

Create a YAML
file for virtual

services

Create a YAML
file for istiod

restart-pods-
randomly.sh

Chaos Engineering

Locust

Deployment of
Application

test-app-
employee

test-app-
hello Generated

Report

Load Test

Locust Observing
Microservice
Application

Git Repo

Figure 2: Flow Diagram

This application is deployed on the Kubernetes cluster using the command line (kubectl
apply -f test-app-hello.yaml). After deployment of the application, we expose it to ex-
ternal traffic by making it of load balancer type with an external IP. Now we will install
Istio in the newly created istio-system namespace and create two services named istio-
ingress gateway and istiod. Lastly, we will install Locust on the AWS instance. On this

9

setup, we will be running the experiments, we will inject faults, hit the application with
multiple user requests, and observe application behavior. After this, we will install Istio,
run the same set of experiments, and observe the application’s performance. Afterward,
we will fine-tune Istio to ensure the application delivers optimal performance and rerun
the experiments.

3.3 Metrics for Evaluation

After running the experiment for all the combinations, we will be analysing the multiple
values:

• Total request per second: This indicates the number of requests our system is
handling within a second during the load test.

• Response time (ms): This indicates how long our system takes to respond to each
request in milliseconds.

• Failure rate: This represents the number of requests that occurred during the load
test. Failures could be due to various reasons, like timeouts, errors, or the system
being overloaded.

Based on these, we will be evaluating and judging the performance of the proposed
architecture.

4 Design Specification

Our implementation leverages cloud computing for its scalability, agility, and extensibility.
The cloud infrastructure provides us with the flexibility to scale resources dynamically,
respond to changing demands, and easily extend our system’s capabilities as needed.

The table 2 below shows the hardware specifications for the GKE & Kubernetes
cluster.

4.1 Cloud Specification

Design Specification

Cloud Platform GCP

Operating System Ubuntu Server

Containerization Orchestrator Software Kubernetes

Machine Type e2-standard-4

Number of Nodes 3

Version 1.27.3-gke.100

Number of vCPU 4

Total Memory 16 GB

Table 2: Required configuration for the GKE

The specification for AWS EC2 instance is as follows operating system is ubuntu,
instance type is t2 large, number of CPU is 2, total memory is 50GB, and locust is

10

installed on this EC2 instance. We are using the Google Cloud(GCP) and AWS Cloud,
on GCP we have Kubernetes available by default called Google Kubernetes Engine(GKE).
We have created a standard e2 cluster on GCP. AWS cloud is used to install and run the
locust software. Our test-app-hello application is deployed on Google Cloud using the
application image stored on docker. The application has multiple endpoints like fallible
where we can give pass weight and fail weight. Employee id where we can provide the
employee-id and fetch the employee records. The application will be bombarded with
multiple requests and the response will be captured and visualized.

4.2 System Architecture

In our system architecture as shown in figure 3, we have two microservices, test-app-hello
and test-app-employee. Both microservices are deployed on different pods on GKE. A
service is exposed for each microservice, which allows other microservices and clients to
access them. Test-app-employee is accessing the test-app-hello in the system. The Istio
control plane is deployed in a dedicated namespace called istio-system. The control plane
consists of a number of components:

Namespace: istio-system

GKE Ingress

User/Locust

test-app-employee

ISTIOD

test-app-hello

35.202.105.82

34.134.225.91

Figure 3: System Architecture

Istio-ingress gateway: This service acts as the entry point for external traffic into
the Istio service mesh. It manages incoming requests and routes them to the right services
in the mesh. The istio-ingress gateway is responsible for receiving incoming traffic, using
Istio features like security, tracking, and routing rules, and then sending the traffic to
services in the Istio mesh. It exposes services outside the cluster and handles traffic
routing based on rules and configurations set.

Istiod: This component is the control plane part of Istio and is responsible for setting
up and managing the whole service mesh. It organizes and manages how sidecar proxies
that are used with services work. Istiod is in charge of finding services, managing traffic,
setting security rules, and gathering data through monitoring. It ensures that all the
microservices in the mesh follow the policies, traffic rules, and settings that the admin

11

has set. It controls and makes sure that all the settings in the Istio service mesh are in
sync with each other. Istio-ingressgateway and istiod are both very important parts of
the Istio service chain. The istio-ingress gateway handles incoming data and routes it
within the service mesh. The istiod manages and controls the service mesh as a whole,
including how it acts and what it is set up to. A proxy is deployed in each pod. The proxy
intercepts all traffic to and from the microservice and sends it to the Istio control plane.
The control plane then decides how to route the traffic, based on the Istio configuration.
An ingress gateway is used to expose the microservices to the outside world. The ingress
gateway terminates incoming traffic and routes it to the appropriate microservice. The
Redis DB which operates on a key-value pair, is used to store the employee records. It is
connected to the test-app employee. The Locust is installed on AWS which will be used
to run the load test on test-app-employee.

5 Implementation

The microservices called test-app-hello and test-app-employee has been developed us-
ing the FastAPI, a modern Python web framework, used for creating high-performance
RESTful APIs. Here we have used the requests library for forwarding HTTP requests
to external microservices. The application is built to have logging capabilities, provid-
ing detailed information about each request, including request and response IDs. The
test-app-hello and test-app-employee both are running on the same namespace called
“test-app”. For both the microservices, we are having 5 pods each.

5.1 Kubernetes Cluster Setup

Kubernetes, often known as K8s, is an open-source system for automating containerised
application deployment, scaling, and management. For the experimentation, we have
used Google Cloud Kubernetes Engine to create and configure a cluster named “test1”
with a three-node setup. Within this cluster, we deployed our application, which is stored
in Docker as an Image. To manage and deploy the application a YAML file named test-
app-hello.yaml is written having the configuration details. Application is exposed by
creating an service of type LoadBalancer and exposed on external IP 34.134.225.91. As
in figure 4 our both microservices each have five pods running.

Figure 4: Kubernetes Pods

To deploy the application and make it accessible on the external IP a service has
been created named “test-app-hello-ext” of type LoadBalancer. Kubectl: The Kubectl
command-line utility helps us execute commands on the Kubernetes cluster. With this,
we can deploy our application, examine and do the admin tasks on the cluster, and access
log data.

12

5.2 Istio Installation

It is installed on the Google Cloud Kubernetes Engine. Istio extends Kubernetes by
creating a configurable, application-aware network that uses the robust envoy service
proxy. In Istio, sidecar proxies are deployed along with each microservice. They help
in many terms, such as traffic routing, where they intercept the incoming and outgoing
requests, authorising Istio’s control plane to dictate routing and other traffic policies for its
management. Whether it is about dealing with Kubernetes or traditional workloads, Istio
introduces cconsistent traffic management, telemetry, and security features to intricate
deployments. It also gives us control over the service mesh. For the installation of Istio, we
have created a new namespace named istio-system. In this namespace we have installed
Istio service mesh, installing Istio in a separate namespace allows for better management,
isolation, and organization of Istio resources. It helps keep Istio’s parts from clashing with
other resources in the cluster, which makes it easier to manage Istio-specific settings and
better at allocating resources. Here we have used yet another markup file, also known
as the YAML file, to explain how load balancing should work, how service-to-service
authentication will work, monitoring, and much more. A YAML file basically describes
how a pod should run and interact with other objects. YAML is popular because it is easy
to understand for humans and is far more flexible.The YAML file for ingress gateway has
main parameters as follows port-specifies the port information for the server and hosts-
specifies the hosts that this gateway will accept traffic for. In our case, the * indicates it
will accept traffic for any host.

5.3 Locust Installation

In our study, we use the powerful load testing tool Locust to examine the operation of
our Kubernetes-deployed microservice-based application. We mimic a spike in incoming
requests to the ’test-app-employee’ application using Locust. We can thoroughly assess
the Microservice behavior under elevated user traffic by employing our load testing tech-
nique. Our goals are to test the scalability of the application and its separate services,
comprehend how they react to increased request volumes, and locate any possible bot-
tlenecks or performance problems. Locust is installed on the AWS cloud using ”pip”(pip
install locust). This command will download and install Locust and its dependencies from
the Python Package Index (PyPI). We have preferred to install it on the cloud rather
than the Google Kubernetes Engine or our local machine because we aim to streamline
our processes to reduce the load on the system and minimize CPU usage. Because if
we run a test on the system and suddenly experiencing a spike in CPU usage it can
change the experiment results. This could happen because our system is running mul-
tiple processes in the background, and this can generate a sudden spike in CPU usage.
We have written a bash script file to execute locust testing. To run locust first, we have
to create a virtual environment and activate it. Once it’s activated, we can run our .sh
file(./test-employee.sh). In our bash script we will have three main components that we
have configured:

Users-The number of virtual users who will access the system under load test. This
parameter aids in simulating the expected traffic on our system in real-world scenarios.

Spawn Rate- The rate at which new virtual users will be spawned per second. High
spawn rate means more the load test’s ramp-up pace.

Run Time- Time for which the load test will run. This will control how long the
load on our system will be simulated.

13

Export locustfile=”employee.py”: Sets the locustfile variable to the name of the
Locust file (employee.py in our case).

Html ”reports/$ locustfile-$(hostname)-$ now.html”: Generates an HTML
report of the load test results with a file name based on the Locust file name, the host-
name, and the timestamp.

5.4 Chaos Engineering

The script is made to execute commands for Kubernetes, particularly for deleting pods
from a cluster. It is developed in the Bash scripting language. This script deletes a
predetermined amount of available pods at predetermined intervals inside a Kubernetes
cluster and searches continually for pods that match specific criteria. The script has
following parameters:

Max pods to kill=”$1:-3”: Sets the maximum number of pods to kill. It takes
the value passed as the first argument when running the script, defaulting to 3 if no value
is provided.

Kill interval=”$2:-5”: Specifies the time interval between pod kills. It takes the
value passed as the second argument when running the script, defaulting to 5 if no value
is provided.

5.5 GitHub

GitHub is open source repositories allowing us to make changes push it to Git and merge
those to earlier files. Also, when needed we can pull the code files on our local system to
work upon. We have stored project files and the locust reports on it.

5.6 Experiment Execution

The experiments are run first without Istio and fault injection checking the application
performance when load is applied using the locust. Again experiments are run now with
Istio enabled now noticing the change in performance of microservices. After that will
inject failures one test will be without Istio to note the impact on microservice and than
with Istio enabled to check the performance of our proposed system. To compare the
performance and collect the metrics we are getting the reports from Locust.

6 Evaluation

In this section, we will be performing multiple experiments to find the response time,
failures and total request per second for the proposed system as well as for the default
system. The proposed architecture will use GKE to run a three-node Kubernetes cluster
and the created microservices will be installed over it. The experiment will be run with
the same settings and configurations to get accurate results. Results will be calculated
and analyzed using the locust reports.

14

6.1 Experiment 1

6.1.1 Without Istio without Fault Injection

In this scenario we will run the experiment by load testing on test-app-employee without
enabling Istio and without the fault injection. Figure 5 showcases the total request per

Figure 5: Total requests per second without Istio & Pod failure

second and the failure rate is indicated by the red marking. Figure 6 is showing response
time(ms) for the user request. For load testing we ran Locust with settings: 290 users,
spawn rate 100, and runtime 300 seconds. Under stress, the microservice was stable.
Figure 6 the response time ranged between 200-325 ms, figure 5 total requests per second
remained constant around 120 RPS and the failure rate was zero as the fault was not
injected in this test.

Figure 6: Response time(ms) without Istio & Pod failure

6.1.2 With Istio without Fault Injection

In this scenario we will run the experiment by load testing on test-app-employee by
enabling the Istio and without the fault injection.

The experiment was kept similar to the previous experiment, but with Istio installed.
The microservice exhibited better stability compared to the previous experiment. Istio’s
tuned failure recovery mechanisms were active but not triggered due to the absence of
deliberate pod failures. The response time maintained consistency and hovered around
the 200 ms range as in figure 8, which is much better than the previous one. Also, the

15

Figure 7: Total requests per second without Pod failure(Istio Enabled)

Figure 8: Response time(ms) without Pod failure(Istio Enabled)

total requests per second remained stable at around 100 RPS as in figure 7, showcasing
the resilience of the proposed architecture even without encountering pod failures.

Inference: After enabling the Istio from figures 7 and 8, we conclude that the mi-
croservices show a significant improvement in response time (ms), whereas the total
request per second has dropped from 120 to 95 RPS.

6.2 Experiment 2

6.2.1 Pod Failure and without Istio

Figure 9: Total requests per second with Pod failure(Istio Disabled)

16

In this scenario, we will run the experiment by load testing on test-app-employee
without enabling the Istio and with the fault injection. For load testing, we ran locust
with the same configuration settings as mentioned in experiment 1. While under load,
the microservice are injected with pod failures. Response time and requests per second
were affected. Response time showed a wider fluctuation, peaking at 80,000 ms as in
figure 10. Total requests per second peaked at 70 RPS and failure rates showed a more
erratic pattern due to the concurrent pod failures, hovering between 5-31 as in figure 9.

Figure 10: Response time(ms) with Pod failure(Istio Disabled)

6.2.2 With Istio and Pod Failure

In this scenario we will run the experiment by testing on ’test-app-employee’ by enabling
the Istio and with the fault injection.

Figure 11: Total requests per second with Pod failure & Istio

The experiment was run with the same configurations but here we have done chaos
engineering by introducing pod failure. Istio’s tuned settings showcased resilience against
concurrent pod failures. The microservice maintained a response time range of 210-380
ms as in figure 12. Total requests per second were around 97 RPS as in figure 11. The
results show a clear improvement in response time from 80,000 ms to 380 ms. Despite
concurrent failures, requests per second remained relatively stable due to Istio’s recovery
actions.

Inference: After enabling the Istio with the fault injection (pod failures) from figures
11 and 12, we conclude that the microservices show a great improvement in response time
(ms), the total request has stabilised at 100 RPS, and the error rate is zero as the proposed
system is recovering from the error.

17

Figure 12: Response time(ms) with Pod failure & Istio

6.3 Experiment 3

6.3.1 Without Istio and with Pod failure for extended duration

Figure 13: Total requests per second with Pod failure & without Istio

Figure 14: Response time(ms) with Pod failure & without Istio

We replicated the experiment here, but for a large user base, and the duration of load
testing was also increased to 1 hour to test whether the proposed architecture works for
a large number of users accessing the microservices continuously for a long time.

The proposed system works exceptionally well, the response time for the pod failure
scenario (without Istio) reaches 200,000 ms as in figure 14 and the total request per
second peaked at 100 RPS as in figure 13.

18

6.3.2 With Istio and Pod Failure for extended duration

With pod failure and Istio enabled the response time hovers around 3800 ms as in figure
16 and total request per second was 120 RPS as in figure 15.

Figure 15: Total requests per second with Pod failure & Istio

Figure 16: Response time(ms) with Pod failure & Istio

Inference: After enabling the Istio with the fault injection (pod failures) from figures
16 and 15, we conclude that the microservices show a great improvement in response
time(ms), the total request has stabilised at 120 RPS, and the error rate is averaging out
to be zero as the proposed system is recovering from the error.

6.4 Discussion

The experiments provided valuable insights into the behavior of the system when sub-
jected to different loads. After carefully examining all of the experiments and assessing
them based on the research conducted by Flora et al. (2023), who have conducted studies
on the aging and fault tolerance of microservices in Kubernetes. They utilized a tuned
Kubernetes probe with fault injection on two microservice testbeds, and it is evident that
our study produced exceptional results, showcasing the advantages of incorporating Istio.
When Istio was not installed during the load testing without pod failures, the system
demonstrated major variations in response time, with values hovering around 300 ms,
as shown in figure 6. However, with the Istio enabled and referring to figure 8, the re-
sponse time remains consistently stable at approximately 200 ms, indicating a significant
improvement. The total request per second was approximately equal in both cases, at

19

around 100 RPS as shown in figures 7 and 5. When the application experienced a heavy
load, its performance took a significant hit. The response time increased dramatically
reaching a staggering 80,000 ms, as shown in figure 10. Additionally, the total number
of requests per second fluctuated unpredictably, with an average of around 70 RPS, as
depicted in figure 9.

These numbers indicate a lack of stability when subjected to a heavy load. These ex-
periments demonstrated the vulnerability of the system to concurrent pod failures when
Istio’s coordinated resilience features are not present. Nevertheless, by making certain
adjustments during the installation of Istio, the outcomes show a remarkable enhance-
ment. Despite experiencing pod failures, as shown in figure 9 and 12, the microservices
demonstrated a significant increase in requests per second, improving from 80,000 ms
to 350 ms. These numbers indicate a remarkable improvement. The total requests per
second remained relatively stable, hovering around 97 RPS, as shown in figure 11. In ad-
dition, the system experiences a significant number of failures when Istio is not present.
However, once Istio is enabled, the error rate drops to zero, as shown in figure 11. This
demonstrates how Istio handles the error. In general, it demonstrates how effective Istio
is at reducing the impact of pod failures. Even when subjected to high workloads and
a prolonged testing period, the proposed system consistently demonstrates superior per-
formance, as illustrated in figures 14, 13, 16, and 15. With Istio enabled, the response time
has significantly improved to 1500 ms and the total number of requests per second has
increased to 120 RPS. This is a significant improvement compared to the figures shown in
figure 14 and 16, where Istio was not enabled and the response time was 80,000 ms with
a total of 85 RPS. Highlight its ability to handle high user traffic and extended periods of
use. These findings demonstrate the effectiveness of Istio in ensuring consistent perform-
ance and stability, especially in demanding scenarios. They emphasize the important role
Istio plays in enhancing system resilience and mitigating pod failures. One aspect that
could be assessed in the future is the overall number of user requests achieved when Istio
is enabled, which is a potential limitation of its implementation. With the introduction
of Istio, additional components like sidecar proxies are brought into the mix. As a result,
this extra layer of functionality adds to the processing load. This can be examined and
further explored to determine how it can be eradicated. Another aspect that requires
additional investigation is the financial implications of deploying a service mesh. This
comprehensive setup has the potential to substantially raise the overall project expenses.

7 Conclusion and Future Work

The analysis of microservices performance, resilience, and stability under varying loads
and simulated failures highlighted the importance of Istio in improving system robustness.
The system demonstrated significant performance loss, emphasizing the exposure to mul-
tiple pod failures when the load testing was performed without enabling the Istio service
mesh. However, with Istio installed and fine-tuned, remarkable performance improve-
ments were observed. Not only during the normal user request period, but even under a
high number of user requests, the microservices showcased improved request processing
and reduced response times, showcasing Istio’s efficacy in mitigating the impact of pod
failures. Furthermore, when exposed to even higher loads and extended test durations,
the proposed system performed better than earlier, exhibiting stability, robustness, and
resiliency. The experiment results validate Istio’s effectiveness in maintaining improved

20

system performance and stability, especially under high user calls, highlighting its critical
role in strengthening containerised microservices resilience against failures.

One challenge of using Istio is the steep learning curve due to its complexity, per-
formance overhead from sidecar proxies, and increased resource usage. The study can
be continued further by analysing the effect of having extra component Istio on total
user requests and a study on cost performance to understand the trade-offs between the
improvement in performance achieved by Istio and the associated resource utilisation
costs.

Video Link-https://studentncirl-my.sharepoint.com/:v:/g/personal/x22170341 student ncirl ie/
ERTTSlR1qRxLhgh3mD9tt0kB0naB9Rf9dijB1ZpzxOAJiQ?email=Shaguna.Gupta

References

Alhamazani, K., Ranjan, R., Mitra, K., Jayaraman, P. P., Huang, Z., Wang, L. and
Rabhi, F. (2014). Clams: Cross-layer multi-cloud application monitoring-as-a-service
framework, x(x): 22–34.

Anjali, Khatri and Vishal (2020). Mastering Service Mesh: Enhance, secure, and observe
cloud-native applications with Istio, Linkerd, and Consul, Packt Publishing Ltd.

Balalaie, A., Heydarnoori, A., Jamshidi, P. and Lynn, T. G. (2018). Microservices mi-
gration patterns, Software: Practice and Experience 48(3): 298–306.

Barakat, S. A. (2017). Monitoring and analysis of microservices performance, x(x): 86–99.

Bernstein, D. (2014). Containers and cloud: From lxc to docker to kubernetes, IEEE
Cloud Computing 1(3): 81–84.

Calcote, L. and Butcher, Z. (2019). Istio: Up and running: Using a service mesh to
connect, secure, control, and observe, O’Reilly Media.

Camilli, M., Guerriero, A., Janes, A., Russo, B. and Russo, S. (2022). Microservices
integrated performance and reliability testing, Journal Name x(x): 41–69.

Camilli, M. and Russo, B. (2021). Modeling performance of microservices systems with
growth theory, Journal of Empirical Software Engineering pp. 505–514.

Dame and Michael (2022). The Kubernetes Operator Framework Book: Overcome complex
Kubernetes cluster management challenges with automation toolkits, Packt Publishing
Ltd.

Faticanti, F., Santoro, D., Cretti, S. and Siracusa, D. (2021). An application of kubernetes
cluster federation in fog computing, 2021 24th Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN), IEEE, pp. 89–91.

Ganguli, M., Ranganath, S., Ravisundar, S., Layek, A., Ilangovan, D. et al. (2021).
Challenges and opportunities in performance benchmarking of service mesh for the
edge, Journal Name x(x): 111–129.

Großmann, M. and Klug, C. (2017). Monitoring container services at the network edge,
Journal Name x(x): 44–66.

21

Islam, S. S., Gibson, J. A., Morrison, P. and Rahman, A. (2022). Benefits, challenges, and
research topics: A multi-vocal literature review of kubernetes, arXiv e-prints pp. arXiv–
2211.

Karn, R. R., Das, R., Pant, D. R., Heikkonen, J. and Kanth, R. (2022). Automated
testing and resilience of microservice’s network-link using istio service mesh, IEEE .

Lauretis, L. D. (2019). From monolithic architecture to microservices architecture,
Journal Name x(x): 26–44.

Li, W., Lemieux, Y., Gao, J., Zhao and Han, Y. (2019). Service mesh: Challenges, state
of the art, and future research opportunities, 2019 IEEE International Conference on
Service-Oriented System Engineering (SOSE), IEEE, pp. 122–1225.

Malik, S., Naqvi, M. A. and Moonen, L. (2023). Chess: A framework for evaluation of self-
adaptive systems based on chaos engineering, Simula Research Laboratory 170: 110798.

Malki, E., Amine, Zdun and Uwe (2019). Guiding architectural decision-making on
service mesh-based microservice architectures, Software Architecture: 13th European
Conference, Vol. 13, Springer International Publishing, pp. 3–19.

Meinke, K. and Nycander, P. (2015). Learning-based testing of distributed microservice
architectures: Correctness and fault injection, Journal Name x(x): 37–42.

Monteiro, L. A., Hazin, R. R., Lima, A. C. D. and Almeida, W. H. C. (2017). Survey on
microservice architecture - security, privacy and standardization on cloud computing
environment, Icsea 2017 1(3): Conference.

Noor, A., Jha, D. N., Mitra, K., Jayaraman, P. P., Souza, A., Ranjan, R. and Dustdar,
S. (2019). A framework for monitoring microservice-oriented cloud applications in
heterogeneous virtualization environments, x(x): 87–99.

Pietrantuono, R., Russo, S. and Guerriero, A. (2018). Run-time reliability estimation of
microservice architectures, Journal Name x(x): 57–77.

Ponomarev and Y., K. (2019). Attribute-based access control in the service mesh, 2019
Dynamics of Systems, Mechanisms and Machines (Dynamics), IEEE, pp. 1–4.

Rosenthal, C. and Jones, N. (2020). Chaos Engineering: System Resiliency in Practice,
O’Reilly Media.

Seifermann, V. (2017). Monitoring and analysis of microservices performance, x(x): 24–
47.

Simonsson, J., Zhang, L., Morin, B., Baudry, Benoit and Monperrus, M. (2021). Ob-
servability and chaos engineering on the system calls for containerized applications in
docker, Future Generation Computer Systems 122: 117–129.

Toffetti, G., Brunner, S., Blochlinger, M., Dudouet, F. and Edmonds, A. (2015). An
architecture for self-managing microservices, Journal Name x(x): 68–81.

Torkura, A., K., Sukmana, M. I., Cheng, Feng and Christoph, M. (2020). Cloudstrike:
Chaos engineering for security and resiliency in cloud infrastructure, IEEE Access
8: 123044–123060.

22

	Introduction
	Motivation
	Research Question
	Structure of the Paper

	Related Work
	Monolith and Microservices
	Analysing Microservices
	Kubernetes
	Service Mesh Istio
	Chaos Engineering
	Summary of Literature Review

	Methodology
	Selected Methodology & It's Justification
	Research Flow
	Metrics for Evaluation

	Design Specification
	Cloud Specification
	System Architecture

	Implementation
	Kubernetes Cluster Setup
	Istio Installation
	Locust Installation
	Chaos Engineering
	GitHub
	Experiment Execution

	Evaluation
	Experiment 1
	Without Istio without Fault Injection
	With Istio without Fault Injection

	Experiment 2
	Pod Failure and without Istio
	With Istio and Pod Failure

	Experiment 3
	Without Istio and with Pod failure for extended duration
	With Istio and Pod Failure for extended duration

	Discussion

	Conclusion and Future Work

