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Cost Optimization in Hybrid Cloud Architecture

Poorva Shrivastava
21216941

Abstract

Workflow scheduling is a vital component of resource optimization in hybrid
cloud environments because of its flexibility and affordability. Ant Colony Op-
timization (ACO) and The Hybrid Cloud Optimized Cost Scheduling Algorithm
(HCOC), two well-known methods for hybrid cloud workflow scheduling, are com-
pared in this research. ACO exhibits flexibility and practical utility in healthcare
and energy conservation, whereas HCOC is customized for scientific processes and
computational applications, prioritizing cost reduction and timely completion. By
incorporating AI-driven autoscaling with Q-Learning, both techniques become more
flexible in dynamic hybrid cloud environments. The study concludes that the de-
cision between ACO and HCOC is based on the particular workflow needs as well
as the importance of cost optimization and deadline compliance. Further research
topics include improved integration of AI-driven autoscaling, real-time monitoring,
sophisticated cost estimation models, and security considerations. This compar-
ative research provides insightful information that can be used to choose the best
method to handle the dynamic issues associated with scheduling workflows in hy-
brid clouds.

Keywords: Hybrid cloud, Workflow scheduling, Ant Colony Optimization (ACO),
The Hybrid Cloud Optimized Cost Scheduling Algorithm (HCOC), AI-driven auto-
scaling, Q-Learning, Resource optimization, Cost optimization

1 Introduction

Cost optimization has become a crucial problem for industry and academia in the ever-
changing field of cloud computing. It is now critical to manage resources efficiently
and provide services at a reasonable cost due to the growth of cloud-based services and
the increasing complexity of cloud infrastructures. In this sense, hybrid cloud environ-
ments—which blend private and public cloud services—offer a special set of potential and
problems, as noted by Bittencourt and Madeira (2011). These environments are naturally
complicated; thus, in order to achieve service-level agreements (SLAs) and performance
criteria while optimizing costs, elaborate scheduling and resource allocation strategies are
required.

A number of important considerations make it necessary to research cost optimization
in cloud computing. According to Zhou, Wang, Cong, Lu, Wei and Chen (2019), schedul-
ing algorithms must be intelligent and flexible due to the dynamic nature of cloud services,

1



Figure 1: Hybrid Cloud System Architecture
Zhou, Wang, Cong, Lu, Wei and Chen (2019)

which is marked by variable resource availability and varying demand. Second, Ritchie
and Levine (2003) describe how the heterogeneous nature of cloud resources necessitates
the use of algorithms that can effectively manage various resource types while minimizing
costs. Finally, the financial side of cloud computing means that cost optimization is now
a business requirement rather than just a technological difficulty as organizations depend
more and more on cloud services for vital operations Yuan et al. (2009).

1.1 Research Questions and Objectives

In order to enhance the integration of heterogeneous and hybrid cloud environments in-
side frameworks for cost optimization, we highlight two important research concerns in
this paper.
The first question focuses on how to include these environments into cost optimization
algorithms in an efficient manner, highlighting the necessity of combining different cloud
infrastructures in a smooth and effective manner.
The second research question explores how to apply AI-driven autoscaling to improve
cloud computing cost optimization, with an emphasis on the Q-Learning technique.

Following is a summary of the main goals of this research project. Our initial goal is
to provide a thorough examination of the current cost optimization methods, paying
special attention to how well they function in hybrid cloud systems. Two prominent
algorithms that we specifically consider in this context are the Hybrid Cloud Optimized
Cost scheduling algorithm (HCOC) and Ant Colony Optimization (ACO). Evaluating
their efficiency in cost optimization within the intricate realm of hybrid and heterogen-
eous cloud environments is our aim.

Second, we use Q-Learning as a key component to investigate the possible advantages
of combining these optimization methods with AI-driven autoscaling. This integration
attempts to assess how such synergy can lead to cost savings in the long run by improv-
ing system efficiency and resource allocation. This study intends to make substantial
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contributions to the field of cloud computing cost optimization and open the door for
more effective and adaptable cloud infrastructures by tackling these research problems
and objectives.

The study’s hypothesis is that combining AI-driven autoscaling with existing cost op-
timization techniques will dramatically improve cost efficiency and resource management
in hybrid cloud systems.

1.2 Contribution to the Scientific Literature

This study contributes to the scientific literature by offering a complete comparison of two
major cost optimization algorithms: ACO and HCOC. Bittencourt and Madeira (2011)
point out that while ACO has been extensively researched in relation to scheduling and
resource allocation in a variety of computing settings, HCOC focuses on the particular
difficulties associated with hybrid cloud environments. This study also investigates the
new integration of Q-Learning for autoscaling Gaŕı et al. (2021), with the goal of adapt-
ively managing resources in response to real-time demand and workload variations.

This study further broadens our understanding of cost optimization in cloud comput-
ing by investigating the interactions between various optimization techniques and the
dynamic nature of cloud settings. As cloud computing continues to develop and take on
new roles in contemporary computing environments, this study looks into how AI-driven
techniques might support conventional optimization algorithms to achieve higher cost
efficiency and resource usage.

Ultimately, investigating cost optimization in hybrid cloud settings—especially from the
perspective of AI integration—is not only a technical project but also a critical first step
toward implementing more effective, affordable, and sustainable cloud computing tech-
niques. The goal of this study is to provide this quickly evolving sector with insightful
analysis and useful answers.

2 Related Work

When it comes to managing computational workloads, hybrid cloud solutions provide
both flexibility and affordability. Workflow scheduling is critical in these situations for
optimizing resource allocation, minimizing costs, and meeting deadlines. This problem
has been tackled by a number of algorithms, such as Genetic Algorithms (GA) and Ant
Colony Optimization (ACO). In order to schedule hybrid cloud workflows, this literat-
ure review compares the efficacy of ACO with a genetic algorithm known as Deadline-
constrained Cost Optimization (HCOC). The paper also investigates how these scheduling
algorithms might be made to perform better by incorporating Q-Learning into AI-driven
autoscaling.

2.1 Ant Colony Optimization for Cloud Workflow Scheduling

One unique natural optimization method that shows promise for workflow scheduling
in hybrid cloud systems is ant colony optimization (ACO). To improve work allocation
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efficiency in this situation, Gandhi and Revathi (2022) have suggested an improved ACO-
based strategy. Pheromone-based decision-making is the foundation of ACO algorithms,
which imitate ants’ foraging strategies. This creative solution gives ACO the ability to
address complex issues like workflow scheduling with exceptional efficacy.

2.1.1 Strengths of Ant Colony Optimization

Ant Colony Optimization has many advantages. First of all, as Gandhi and Revathi
(2022) work in 2022 highlights, ACO algorithms really do well in dynamic and stochastic
contexts. Second, Zhou, Wang, Cong, Lu, Wei and Chen (2019) study shows how well
these algorithms perform in handling the challenges of process scheduling in hybrid cloud
systems. In addition, research conducted by Tuba and Jovanovic (2013) shown that ACO
algorithms can be used to solve difficult non-linear optimization problems by methodically
examining several options.

2.1.2 Limitations of Ant Colony Optimization

Ant Colony Optimization is not without its drawbacks, though. One significant disad-
vantage is that ACO algorithms may have a high processing burden, which may require
configuration adjustments to achieve the best outcomes. Gandhi and Revathi (2022)
raised this issue in their 2022 study. Ritchie and Levine (2003) highlighted the possibility
of scalability issues for ACO algorithms in large-scale operations and extremely hetero-
geneous hybrid cloud infrastructures. ACO’s advantages make it an attractive option for
handling complex workflow scheduling issues in the context of hybrid cloud systems, even
in spite of these drawbacks.

2.2 Hybrid Cloud Optimized Cost scheduling algorithm(HCOC)

In order to tackle the difficulties of hybrid cloud workflow scheduling, Bittencourt and
Madeira (2011) created the HCOC genetic algorithm. This novel technique is a workable
solution for real-world hybrid cloud applications because it seeks to reduce operational
expenses while guaranteeing that workflow execution deadlines are met. When orchestrat-
ing the scheduling of processes, HCOC takes into account a number of important criteria,
including resource availability, budgetary restrictions, and workflow interdependence.

2.2.1 Strengths of HCOC

There are a number of noteworthy advantages that HCOC has. Initially, it is designed to
address the distinct difficulties presented by hybrid cloud setups, which combine private
and public cloud resources. Second, Yuan et al. (2009) show how it effectively com-
bines timeliness and cost control by utilizing the power of genetic algorithms. The last
application area in which HCOC has demonstrated its efficacy is workflow scheduling,
as demonstrated by Lin et al. (2015), and the scheduling of MapReduce processes, as
demonstrated by Wang and Shi (2014).

2.2.2 Limitations of HCOC

But there are certain restrictions with HCOC. As mentioned by Bittencourt and Madeira
(2011), one major difficulty is building the models for cost and deadline estimations pre-
cisely, which can be a difficult undertaking. In addition, as Zuo et al. (2013) pointed out,
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the dynamic nature of hybrid cloud deployments—which is marked by varying resource
availability and demand—may make it difficult for HCOC’s optimization process to ad-
just and react appropriately. In spite of these drawbacks, HCOC is nevertheless a useful
tool for hybrid cloud workflow scheduling since it provides a workable solution for strik-
ing a balance between timely execution and cost-effectiveness in complicated computing
environments.

2.3 ACO vs. Hybrid Cloud Optimized Cost scheduling al-
gorithm(HCOC) for Hybrid Cloud Workflow Scheduling

Comparing Ant Colony Optimization (ACO) and Deadline-Constrained Cost Optimiz-
ation (HCOC) in the context of hybrid cloud workflow scheduling is crucial, with an
emphasis on their application scenarios and practical implementations.

Ant Colony Optimization (ACO):
Ant Colony Optimization (ACO) is a flexible method that is applied in many different
fields, including medical systems. The work of Gandhi and Revathi (2022) provides an
instructive example of its practical use, wherein ACO was utilized to improve the schedul-
ing of crucial healthcare tasks associated with patient data processing and analysis. This
actual use case demonstrates how ACO can adjust to vital circumstances that are con-
stantly changing in the healthcare industry.
ACO has also demonstrated effectiveness in heterogeneous cloud computing systems when
it comes to energy consumption optimization. Tuba and Jovanovic (2013) conducted a
study that included a detailed discussion of the application of ACO for cloud computing
energy optimization. Here, ACO’s adaptability and efficiency are evident, demonstrating
its capacity to handle a wide range of issues in a variety of application domains.

The Hybrid Cloud Optimized Cost scheduling algorithm (HCOC):
A particular method created to handle the challenges of managing hybrid cloud systems
is called the Hybrid Cloud Optimized Cost Scheduling Algorithm (HCOC). HCOC’s po-
tential in the context of cloud and grid computing was investigated in a 2016 study by
Alkhanak et al. (2016), with a focus on scheduling scientific activities. Scientific proced-
ures sometimes include strict time limitations and complex task relationships that call
for exact orchestration, which makes this use case especially important.
In addition, HCOC may be used in a variety of situations due to its unique characteristics
in cost and timeline optimization. According to Zeng et al. (2012) and Malawski et al.
(2013), for example, it can be used efficiently in cloud-based many-task workflow applic-
ations and computational applications. These applications highlight the crucial need for
algorithms such as HCOC, which are excellent at finding a fine balance between meeting
deadlines and maximizing financial resources. This allows organizations to effectively
manage their workloads in the cloud while complying with time-sensitive requirements.

2.4 Integration of AI-Driven Autoscaling with Q-Learning

AI-powered autoscaling is essential for improving cloud workflow scheduling effectiveness
because it allows for dynamic resource allocation that adjusts to workload needs that
change over time. For the objective of autoscaling scientific workflows in the cloud, Gari
et al. (2022) presented a novel solution that makes use of the reinforcement learning
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algorithm Q-learning. Based on the unique requirements of the workload, this novel ap-
proach uses Q-learning to make judgments about resource allocation in real-time. This
strategy tries to improve autoscaling efficiency while guaranteeing the achievement of
performance objectives by continuously learning from previous experiences and refining
its decision-making process.

Similarly, Pulle et al. (n.d.) presented the idea of performance monitoring and AI-
assisted autoscaling, without mentioning the specific method they employed. Their area
of interest is AI-driven autoscaling, which uses machine learning to enable response to
changing cloud environment conditions.

Integration with ACO:
When Ant Colony Optimization (ACO) and AI-driven autoscaling are combined, it is
clear that significant performance gains can be achieved. According to Gari et al. (2022),
this integration combines ACO with Q-Learning to produce adaptive decision-making
that depends on real-time input. By combining these two strategies, resources are alloc-
ated as efficiently as possible during the workflow execution process, guaranteeing that
the cloud infrastructure adjusts to the demands of the workload.

Also, by including Q-Learning, a reinforcement learning technique, into the model, ACO
enables resource allocation plans to be modified in response to changes in the hybrid
cloud environment. This dynamic resource assignment ensures that workflows are effi-
ciently scheduled to optimize efficiency and resource consumption, all the while meeting
predetermined deadlines.

Integration with HCOC:
When combined with AI-driven autoscaling powered by Q-Learning, the Hybrid Cloud
Orchestration and Control (HCOC) solution becomes more adaptable and effective in
dynamic hybrid cloud environments. In keeping with the findings of the Gari et al.
(2022), this integration makes use of Q-Learning’s dynamic real-time resource allocation
capabilities, with an emphasis on completing project deadlines and maintaining cost-
effectiveness. Making sure that computing resources are allocated optimally to fulfill the
particular workflow needs depends on Q-Learning’s capacity to make resource allocation
decisions based on real-time feedback.

Organizations may combine adhering to project timelines and lowering expenses in com-
plicated hybrid cloud systems by combining Q-Learning with HCOC. In these kinds of
contexts, where the demands on computational resources might fluctuate greatly and
suddenly, this kind of handling complex processes is very important. As a result, this
flexible method is essential for attaining successful resource management and operational
outcomes in hybrid cloud setups.

2.5 Critique & Filling the gaps

When discussing hybrid cloud workflow scheduling, two key concepts are Ant Colony
Optimization (ACO) and Hybrid Cloud Optimized Cost (HCOC). Whereas HCOC is in-
tended for managing hybrid cloud systems, specifically for scheduling scientific activities,
ACO is a versatile approach used in many domains, including cloud computing. Both

6



have proven successful in various situations, including cost and schedule optimization and
energy usage optimization.
In cloud-based workflow applications, HCOC has been utilized for cost and timetable
optimization, while ACO has been applied to energy optimization and job scheduling in
cloud computing. There have been notable improvements in adaptive decision-making
and resource allocation when ACO is combined with AI-driven autoscaling, especially
when Q-learning is used. Similarly, it has been demonstrated that HCOC integration
with AI-driven autoscaling powered by Q-learning improves efficacy and flexibility in dy-
namic hybrid cloud systems.
Both ACO and HCOC have advantages and uses in the context of hybrid cloud work-
flow scheduling. While HCOC is especially helpful for cost and timing optimization in
complex job interactions, ACO is renowned for its versatility and efficiency in managing
a wide range of difficulties. The integration of AI-driven autoscaling via Q-learning with
ACO and HCOC can augment their potential in adaptive decision-making, resource dis-
tribution, and dynamic environment administration.

A novel hybrid algorithm that combines the benefits of ACO and HCOC with AI-driven
autoscaling utilizing Q-learning could be developed to cover the gaps and improve hybrid
cloud workflow scheduling. In order to enable dynamic resource allocation and adaptive
decision-making based on real-time feedback, this hybrid algorithm might combine the
flexibility and efficiency of ACO with the cost and timeline optimization capabilities of
HCOC. It would also integrate AI-driven autoscaling with Q-learning. This innovative
method may provide a complete answer for hybrid cloud workflow scheduling by fusing
the benefits of ACO, HCOC, and Q-learning-based autoscaling. This would help to ad-
dress the issues of adaptability, cost optimization, and dynamic resource management in
complicated and unpredictable environment.

3 Research Methodology

In order to optimize cloud computing costs, this study compares the performance of Ant
Colony Optimization (ACO) and the Hybrid Cloud Optimized Cost scheduling algorithm
for Hybrid Cloud (HCOC). After determining the best algorithm, it will be merged with
a Q-learning-based autoscaling system. A well-known procedure in cloud computing
research, the Montage dataset, will be used in the evaluation to simulate a real-world
scenario.

3.1 Scientific Workflows

A Direct Acyclic Graph (DAG) can be used to depict a workflow, G = ⟨V,E⟩, where V is
a collection of tasks and E is a set of edges representing the data dependency restrictions
between the tasks. We also receive a set of virtual machines (VMs) to perform the tasks of
the workflows VM = (vm1, vm2, . . . , vmm). For each vi ∈ V , This task’s execution must
be delayed until it receives all of the necessary data from its parent tasks. The parent
task that sends its data to vi last is known as the most influential parent (MIP) for that
task. A task begins execution by utilizing the initial data submitted with the workflow or
the intermediate data obtained from the task’s parents. The term ”communication cost”
describes the amount of time needed to transfer data between two operations. The two
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tasks’ communication cost is regarded as zero when they are both running on the same
virtual machine.

3.2 Algorithm Comparison

The core of the research initiative lies in the systematic comparison of two prominent op-
timization algorithms: Ant Colony Optimization (ACO) and the Deadline- Constrained
Cost Optimization Algorithm for Hybrid Cloud (HCOC). This pivotal section involves
a detailed examination of how each algorithm performs in the complex landscape of hy-
brid cloud environments. ACO, inspired by nature, employs pheromone- based decision-
making, showcasing adaptability in dynamic and stochastic contexts. On the other hand,
HCOC is specifically tailored for the challenges posed by hybrid cloud setups, emphas-
izing cost reduction and timely completion of workflows.Zhou, Zhang, Sun, Zhou, Wei
and Hu (2019) The comparison evaluates these algorithms based on their efficacy in ad-
dressing the inherent complexities of hybrid clouds, considering factors such as workflow
scheduling efficiency, cost optimization, and compliance with deadlines. This rigorous
analysis forms the basis for determining the strengths and limitations of each algorithm,
guiding the research towards identifying the most suitable approach for hybrid cloud cost
optimization.

3.3 Integration with AI-Driven Autoscaling

The integration of AI-driven autoscaling, specifically leveraging Q-Learning, represents a
significant advancement in the research methodology. This section focuses on enhancing
the flexibility and adaptability of the Ant Colony Optimization (ACO) and Deadline-
Constrained Cost Optimization Algorithm for Hybrid Cloud (HCOC) through the infu-
sion of artificial intelligence. By incorporating Q-Learning into the algorithms, the re-
search aims to imbue them with the capability for real-time decision-making in response
to fluctuating demands and workload variations within hybrid cloud environments. Auto-
scaling, driven by artificial intelligence, becomes a dynamic mechanism for adjusting the
allocation of resources based on the evolving needs of the system. The integration with
Q-Learning is poised to optimize resource efficiency by learning from past experiences,
making these algorithms more responsive to the dynamic nature of hybrid cloud scenarios.
Verma and Kaushal (2017)

3.4 Montage Dataset

The utilization of the Montage dataset is a critical component of the research methodo-
logy, offering a practical and diverse benchmark for the evaluation of cost optimization
algorithms within hybrid cloud environments. This section emphasizes the significance
of employing a real-world dataset to simulate scenarios and gauge the performance of the
Ant Colony Optimization (ACO) and Hybrid Cloud Optimized Cost scheduling algorithm
for Hybrid Cloud (HCOC). The Montage dataset serves as a comprehensive repository of
various performance metrics, including execution times, cost savings, resource utilization
patterns, and compliance rates with Service Level Agreements (SLAs). By leveraging
this dataset, the research ensures a robust and thorough evaluation, capturing the com-
plexities of hybrid cloud architectures in terms of workflow scheduling, cost optimization,
and deadline adherence. 1 Montage is an example of a workflow application with a range
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Figure 2: Montage Dataset
Bharathi et al. (2008)

of sizes. It is an imaging tool that creates sky mosaics for use in astronomy studies. The
size of the procedure is determined by the desired sky’s square degree. For instance, a
workflow including 232 activities is carried out for a square degree of the sky. A process of
20,652 tasks, handling data close to 100GB, is carried out for 10 square degrees of the sky.
Approximately 400,000 square degrees make up the entire sky. When private resources
are insufficient to complete the workflow, our infrastructure and the suggested algorithm
may manage this type of application by requesting resources from public clouds.

3.5 Performance Analysis

The section on Performance Analysis is a pivotal phase in the research methodology,
dedicated to the systematic examination and interpretation of the outcomes derived from
the application of Ant Colony Optimization (ACO) and Hybrid Cloud Optimized Cost
scheduling algorithm for Hybrid Cloud (HCOC) within the Montage dataset. This seg-
ment emphasizes the quantitative assessment of various performance metrics to gauge
the effectiveness of the algorithms in real-world scenarios. The research meticulously
interprets the performance metrics to draw meaningful conclusions, enabling a deeper
understanding of the algorithms’ strengths and potential areas for improvement. This
rigorous analysis forms the basis for the research’s contribution to the existing body of
knowledge in the domain of hybrid cloud cost optimization. Liu et al. (2017)

3.6 Implementation

1.Initial Setup: Configure a hybrid cloud system in CloudSim using the Montage data-
set. This phase ensures a realistic simulation environment for testing the algorithms and
sets the groundwork for the entire research process.
2.Algorithm Implementation: Use the two main algorithms: HCOC for hybrid cloud
environments and ACO for private cloud environments. The actual coding and configur-
ation of these algorithms inside the CloudSim environment takes place at this step.
3.Workflow Execution and Scheduling: Using the established algorithms, workflows
represented by the Montage dataset are scheduled and deployed within the simulated
environment during this phase. This stage is essential for evaluating ACO and HCOC’s
efficacy in a regulated environment.

1“Montage: An astronomical image engine.” [Online]. Available:http://montage.ipac.caltech.edu/
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4.Performance Evaluation: Key performance indicators, such as execution time, re-
source consumption, and cost, are meticulously recorded in order to assess the effective-
ness of every scheduled operation. The efficiency and efficacy of the algorithms can only
be compared with the help of these indicators.
5.Algorithm Enhancement with Q-Learning: Building a Q-learning model for auto-
scaling in a hybrid cloud environment and combining it with the more effective of the
two algorithms (ACO or HCOC) are the tasks involved in this step. The integration is
intended to improve the performance and adaptability of the chosen algorithm.
6.Re-run Workflows: The improved method is used to rerun the workflows, and the
same performance metrics are noted for future analysis. To evaluate the effect of the
Q-learning integration on the algorithm’s performance, this stage is crucial.
7.Data Analysis and Reporting: Lastly, an analysis is done on the gathered data to
compare how well the algorithms work. The findings are then combined into an extensive
report that offers analysis and research conclusions.

This organized approach ensures a thorough and systematic analysis of the algorithms
and the efficiency of AI-driven advances in cloud computing environment.

4 Design Specification

A detailed understanding of the techniques and applications of the Hybrid Cloud Optim-
ized Cost (HCOC) and Improved Ant Colony Optimization Workflow Scheduling (IAC-
OWS) scheduling algorithms in a cloud computing environment can be obtained from the
design specifications. This is a broader interpretation of these requirements that takes
into account more precise characteristics and their consequences.

4.1 A More Comprehensive Overview of IACOWS

• Initialization: The user’s tasks and cloud resources are entered. The number of
ants, heuristic importance, and pheromone evaporation rate are initialized in the
ACO parameters.

• Task Validation and Resource Availability: Every task has its limitations and
requirements verified. Additionally, the availability of resources is verified.

• ACO Mechanism: A multi-ant system is used by the method, in which each
ant stands for a possible job scheduling solution. While completing tasks, ants use
heuristic knowledge and pheromone trails to construct solutions.

• Solution Generation and Evaluation: Based on execution time and cost, each
ant’s solution is assessed. Solutions are arranged and kept in storage.

• Pheromone Update: Ants who follow better paths are encouraged to do so by
pheromones that are updated on paths based on the quality of solutions.

• Selection of Best Solution: Task scheduling proceeds with the best solution,
either after a predetermined number of iterations or upon meeting a convergence
criterion.

Implications and Use Cases
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• IACOWS is a good fit for private cloud setups where cost and performance must
be optimized in job scheduling and resource allocation.

• It is effective for real-time job scheduling because of its iterative structure, which
allows it to adjust to dynamic changes in cloud environments.

Algorithm 1 Improved Ant Colony Optimization Workflow Scheduling

Require: user tasks (t1, t2, ..., tn) and cloud resources (r1, r2, ..., rk)
Ensure: Appropriate task-resource mapping
1: Initialize ACO parameters (α, β, ρ,m,max)
2: Initialize solution storage structures (Fsrt, Listrt, Srt)
3: for each task ti in t1 to tn do
4: Check task validity and resource availability
5: if available then
6: Allocate resources and compute cost and time
7: Apply ACO process:
8: while max criteria not met do
9: Generate feasible solutions and evaluate them
10: Update pheromones and select the best solution
11: end while
12: end if
13: Schedule tasks based on the best solution
14: Execute tasks and release resources upon completion
15: end for

Gandhi and Revathi (2022)

4.2 Detailed process of HCOC:

• Initial Scheduling: The private cloud is where the workflow is first scheduled.
This first schedule’s makespan is contrasted with the deadline.

• Rescheduling in Hybrid Cloud: The system chooses which jobs to postpone
in the hybrid cloud if the makespan is longer than the deadline. Here, tasks are
prioritized and their estimated completion durations are estimated.

• Resource Selection from Public Cloud: Next, the system determines whether
public cloud resources are suitable based on factors like price, core count, and
performance. Meeting the timeline and optimizing the cost are the objectives.

• Task Clustering and Resource Allocation: The arrangement of tasks and
resource allocation minimizes communication costs between tasks and maximizes
resource use.

• Iterative Improvement: Until the deadline is reached or a predetermined number
of iterations is reached, the algorithm iterates through these steps, refining the
scheduling plan.

Implications and Use Cases

11



• HCOC is intended for hybrid cloud setups where deadlines and costs are important
considerations. It successfully balances the cost of accessing public cloud resources
with the requirement to achieve task deadlines.

• When workload changes and fluctuating resource availability are prevalent, the
algorithm is especially helpful.

Algorithm 2 Hybrid Cloud Optimized Cost (HCOC) Scheduling Algorithm

1: R = all resources in the private cloud
2: Schedule workflow G in the private cloud using PCH
3: while makespan(G) > Deadline D AND iteration < size(G) do
4: iteration = iteration +1
5: Select task ni with maximum priority Pi not in current rescheduling group T
6: Add ni to T
7: Calculate the number of clusters in T
8: while num clusters > 0 do
9: Select public cloud resource ri minimizing price per core
10: Add ri to public cloud resource pool H
11: Update num clusters
12: end while
13: Schedule each task ni in T on resource in H with smallest EFT
14: Recalculate ESTs and EFTs
15: end while

Zhou, Wang, Cong, Lu, Wei and Chen (2019)
Comparative Analysis

• Flexibility: While HCOC offers a structured strategy that is concentrated on
cost and timeline limitations, ACO allows flexibility in resource utilization and is
responsive to fluctuating workloads.

• Resource Utilization: ACO is designed to maximize how resources are used in
a private cloud environment. On the other hand, HCOC effectively administers
resources in both public and private cloud environments.

• Suitability: When maximizing task execution time and resource allocation is the
main goal of the environment, ACO is more appropriate. Conversely, HCOC works
best in situations where timelines and cost control are critical.

Handling various aspects of process scheduling difficulties, ACO and HCOC each offer
special advantages to cloud computing. In hybrid cloud environments, HCOC excels at
managing costs and deadlines, whereas ACO excels at resource optimization in private
clouds. The efficient and effective management of cloud resources can be greatly improved
by their deployment, meeting the various requirements of contemporary cloud-based ser-
vices and applications.

4.3 Q-Learning Based AutoScaling to Integrate with Optimiz-
ation Algorithms

Implementing a Q-Learning method for autoscaling in cloud computing environments is
the purpose of the QLearningAutoscaling class. This class is a component of a bigger
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system that strives to dynamically optimize resource allocation according to workload.
The Q-Learning algorithm is a reinforcement learning technique used to identify the
optimal action for a given state by learning the value of actions in different states.Gari
et al. (2022)

Algorithm 3 QLearningAutoscaling Class

Class : QLearningAutoscaling
Private : QTable qTable Double learningRate Double discountFactor
Constructor : (

1 learningRate, discountFactor) Initialize qTable Set learningRate Set discountFactor
Method : trainQTable(state, action, reward, nextState)

2 currentStateAction = concatenate(state, action) currentQValue = qT-
able.getQValue(currentStateAction) maxNextQValue = max(QValue
for each value in nextState) newQValue = currentQValue +
learningRate * (reward + discountFactor * maxNextQValue - cur-
rentQValue) qTable.updateQValue(currentStateAction, newQValue)
Method : selectAction(state)

3 action = select max value action from state based on Q-values return action
End Class :

4.3.1 Functionality:

State Definition: Describe the current condition of the cloud environment, taking into
account variables such as workload demand, system performance metrics, and resource
utilization.
Action Determination: Establish the range of feasible action like adding or removing
virtual machine instances—at each state.
Reward Mechanism: Develop a reward system that measures how much an activity
will save money or increase performance.

Q-Learning Implementation: To find the best course of action for scaling decisions,
apply the Q-learning method.
A Q-table that associates state-action pairs with corresponding Q-values (anticipated
rewards) is updated during the learning process.

4.3.2 Integration with Cloud Environment:

Integrate with the cloud simulation environment (e.g., CloudSim) to receive real-time
data and send scaling commands.
Connect your system to a cloud simulation environment (like CloudSim) to send and
receive scaling commands and real-time data.

Feedback Loop: Establish a feedback system so that the Q-learning model can learn
from and get better over time by receiving input on the effects of its scaling choices.

QTable Design
Purpose: The purpose of this is to help the Q-learning algorithm make better decisions
by storing and updating the Q-values for every state-action pair.
Structure: Each entry in the Q-table should be represented as a multi-dimensional array
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or hash-map, where each pair of states and actions has a corresponding Q-value.
Set Q-values to a default value to provide an objective beginning point for the learning
process.
Update Mechanism: When updating the Q-values, adhere to the Q-learning update
rule and consider the greatest Q-value of the subsequent state as well as the reward ob-
tained after an action.
Because the Q-table may be accessed and modified concurrently in a cloud computing
environment, make sure that modifications are consistent and safe for threads.
Persistence: In order to enable learning to be saved and continued between sessions, it
is optional to develop techniques to persist the Q-table.

4.3.3 Integration with Other Components

CloudSim Integration:Assure smooth connection with CloudSim or any other cloud
simulation tool so that real-time cloud environment data may be received by QLearningAuto-
scaling.java.Neves Calheiros et al. (2011)
Compatibility with Scheduling Algorithms: Construct QLearningAutoscaling.java
in a way that allows it to interface with current cloud scheduling methods, such as HCOC
or ACO.

4.3.4 Requirements

Scalability: The system has to be able to effectively manage workloads and cloud en-
vironments of different sizes.
Flexibility: Both scalability across several cloud services and adaptability to diverse
cloud architectures are essential.
Performance: When making decisions about scaling in real-time, the system ought to
guarantee that there is as little negative influence as possible on cloud performance.
Usability: Provide easy-to-understand documentation and tools for seamless connection
with current cloud systems.

A reliable Q-learning based autoscaling system for cloud environments is the main goal of
this design specification, which also describes the functionality and structure of QLearningAuto-
scaling.java and QTable. As workloads and cloud conditions change in real time, the
system seeks to dynamically optimize resource consumption. It allows for effective re-
source allocation in the cloud by specifying states, actions, incentives, and Q-learning. It
is a useful tool for cloud resource management because of its connection with the cloud
environment and feedback loop, which guarantee continual improvement.

5 Implementation

In order to transform the theoretical aspects of the research into a workable, functional
model, the final implementation stage was essential. Ant Colony Optimization (ACO),
Hybrid Cloud Optimized Cost (HCOC), and Q-learning model integration and testing in
a simulated hybrid cloud environment were the hallmarks of this stage. Optimal cost,
efficiency, and resource usage in cloud computing tasks were the main goals.
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Optimized Workflow Schedules: The ACO and HCOC algorithms produced op-
timized schedules for cloud computing tasks, which were primarily characterized by their
efficient use of resources and adherence to cost and deadline constraints. These schedules
were pivotal in demonstrating the practical applicability of the algorithms in a hybrid
cloud environment.

Adaptive Resource Allocation Model: The integration of Q-learning into the schedul-
ing process resulted in a model capable of intelligently scaling resources up or down based
on real-time demand and workload characteristics. This adaptive model enhanced the
flexibility and efficiency of the cloud environment, particularly in handling unpredictable
or varying workloads.

Comprehensive Performance Data: A detailed dataset encapsulating various per-
formance metrics was compiled. This dataset included quantitative measures like execu-
tion times, cost savings, resource usage patterns, and SLA compliance rates. It served as
a foundational element for evaluating the effectiveness of the implemented solutions.

Tools and Languages Utilized

CloudSim for Simulation: CloudSim, a widely-recognized cloud computing simulation
framework, was utilized for its ability to model and simulate complex cloud environments.
It provided a versatile platform for testing the algorithms in varied scenarios mimicking
real-world cloud infrastructures. Atanasov and Ruskov (2016)

Java for Algorithm Development: Java was chosen for its robustness and efficiency
in handling complex computations. It was used to code the ACO, HCOC algorithms,
and the Q-learning model, benefiting from its extensive library support and strong object-
oriented programming capabilities.

Python for Data Analysis and Visualization: Python, known for its simplicity
and powerful data processing libraries like Pandas, was used for data analysis. Visual-
ization libraries such as Matplotlib and Seaborn helped in creating insightful charts and
graphs, facilitating an easier understanding of the performance data.

Git for Version Control: Git provided a reliable system for version control, allow-
ing the project team to efficiently manage and collaborate on the codebase. It was
instrumental in tracking progress, handling code revisions, and maintaining a stable de-
velopment environment.

Integrated Development Environment (IDE): An IDE, such as Eclipse, was used
for development purposes. This IDE offered valuable features like code debugging, syntax
highlighting, and code refactoring, which enhanced the coding process and efficiency.

2

The goal of this project is to create a hybrid cloud environment in which a cloud service
provider offers multiple payment mechanisms for virtual machine instances. On-demand
charging, reservation charging, and bidding charging are common charging mechanisms.
Considering the on-demand charging mechanism, the virtual machine instance is charged

2https://aws.amazon.com/ec2/pricing/
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Instance Name Hourly Rate vCPU Memory Network Performance
m7a.8xlarge $1.85472 32 128 GiB 12500 Megabit
m7a.12xlarge $2.78208 48 192 GiB 18750 Megabit
m7a.16xlarge $3.70944 64 256 GiB 25000 Megabit
m7a.24xlarge $5.56416 96 384 GiB 37500 Megabit
m7a.32xlarge $7.41888 128 512 GiB 50000 Megabit
m7a.48xlarge $11.12832 192 768 GiB 50000 Megabit
m7a.metal-48xl $11.12832 192 768 GiB 50000 Megabit

Table 1: AWS Cloud Instance Pricing and Specifications

according to a certain unit time (such as Google billing by the minute, AWS, Alibaba
Cloud, etc. billing by the hour), and if it is not satisfied with the billing time, it is charged
according to the entire calculation duration. The AWS Cloud billing mechanism is used
in this paper in Table 1.

The final implementation phase effectively combined sophisticated algorithms and AI-
driven models into a coherent system, proving the actual applicability of these approaches
in optimizing cloud computing environments. The usage of Java and CloudSim provided
a dependable and adaptable foundation for this application, while Python tools permitted
in-depth data analysis and visualization. This stage was essential in converting abstract
ideas into a concrete, empirically based conclusion that demonstrated the possibilities of
combining artificial intelligence (AI) with cloud resource management techniques.

6 Evaluation

This section examines the simulation outcomes of the two optimization methods, ACO
and HCOC, as well as a comparative analysis conducted with the Montage dataset, a
real-world workflow benchmark.
Following are the parameters we used for simulation

Table 2: Virtual machine parameter settings
Simulation Setup

Number of hosts 2
VMs Configuration

Number of VMs 100
VM RAM 512MB
Bandwidth 1000Mbps
MIPs 1000

Workload Environment
Numbers of cloudlets 1000

ACO Parameters Setup
Number of iterations (max) 100
Number of ants (m) 10

To evaluate the performance of ACO and HCOC under different deadlines, we set the
deadline as

deadline = k · ExeT ime, k ≥ 1 (1)
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where k is a factor and ExeTime denotes the typical execution time for a specific process.
The studies involved varying the value of k (k = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0) to impose
varied deadline constraints for a workflow. Zhou, Wang, Cong, Lu, Wei and Chen (2019)

After each algorithm was simulated separately, ACO took an average of 42.47 seconds to
execute for 100 iterations and the result for HCOC is 10.12 seconds for 100 nodes.
The following formula was then used to determine the execution costs for each algorithms.

cost = datacentrehost.costPerStorage× vm.size

+ datacentrehost.costPerRam× vm.ram

+ datacentrehost.costPerBw× vm.bw

+ datacentrehost.costPerMips× (vm.mips× vm.numberOfPes)

(2)

6.1 Visualizations

The ”ACO vs. HCOC Optimization Comparison” graph compares the cost performance
of two optimization techniques over varying deadlines. Based on the study, here is an
evaluation.

Figure 3: Comparison of ACO vs HCOC Cost Optimization

ACO Cost: At deadline 1.5, the Ant Colony Optimization (ACO) cost is initially much
higher than the HCOC cost. This implies that under times of tight deadlines, ACO
can need additional resources or incur higher operating expenses. But when deadlines
go longer, the ACO cost drops off quickly and starts to stabilize, suggesting that ACO
might become more effective when the strain of meeting deadlines gets relieved.

HCOC Cost: The Hybrid Cloud Optimized Cost Scheduling Algorithm (HCOC) starts
lower than ACO at a deadline of 1.5 and maintains a relatively steady cost as deadlines
climb. While the cost does drop, it does so more gradually than ACO, and it does so
throughout all deadlines. This pattern implies that HCOC might be a more economical
option all around and might be less susceptible to changes in deadlines.

Comparative Cost: HCOC looks to be the less expensive alternative across all dead-
lines, indicating that it might be the more cost-effective option for whatever job or project
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is being optimized. The biggest discrepancy occurs at the earliest deadline (1.5), after
which HCOC’s advantage is maintained as the cost gap narrows.

Cost Trends: Both methods show a decreasing cost trend as the deadline approaches,
demonstrating that having more time leads to reduced costs for these optimization pro-
cedures. This may be the result of several things, including better resource allocation, a
decrease in the requirement for accelerated procedures, or features built into the optim-
ization algorithms.

Implications for Decision Making: HCOC seems to be the best option if cost is
the main consideration, particularly when there are short deadlines. In contrast, other
criteria like the problem’s complexity, the optimization’s quality, or other resource con-
siderations could influence the decision if the deadline is more flexible.

In order to choose between these two optimization techniques, this evaluation makes
the assumption that lower costs are desirable and that there are no other considerations.
In actuality, additional factors like the outcome’s quality, the method’s scalability, and
the specific context in which these techniques are used would all be important factors to
take into account when making decisions.

6.1.1 Comparative Analysis when integrated with Q-Learning

The bar graph compares the expenses incurred by two optimization algorithms—Hybrid
Cloud Optimized Cost, or HCOC) and Ant Colony Optimization, or ACO—when com-
bined with autoscaling based on Q-learning under different deadline constraints.

Figure 4: Comparison of ACO vs HCOC Cost Optimization when integrated with Q-
learning based autoscaling

Here are some observations from the graph:
1.Cost Trends: It is clear from the graph’s overall trend that when the deadlines are
extended from 1.5 to 3.5 units, the expenditures related to both ACO and HCOC tend
to go up. Longer deadlines may permit greater resource utilization, which would raise
costs, according to this additive cost growth observed when deadlines loosen.
2.Algorithm Comparison: ACO shows a greater cost than HCOC at a 1.5-unit dead-
line. On the other hand, the cost of ACO drops dramatically and becomes less than
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that of HCOC when the deadline is extended to two units. Both ACO and HCOC show
approximately equal costs at a 2.5-unit deadline, indicating an efficiency point at which
both algorithms optimize costs identically within the specified restrictions. But HCOC
seems to result in greater costs than ACO for deadlines of 3 and 3.5 units.
3.Cost Efficiency: It is clear from cost optimization analysis that ACO outperforms
HCOC when deadlines are loosened, keeping costs comparatively lower over longer dead-
lines. The significant cost savings for ACO, which went from 1.5 to 2 units by the
deadline, points to either better resource management or more successful scaling during
this time.
4.Impact of Deadline Relaxation: According to this research, ACO might be more
appropriate in situations when deadlines are neither exceedingly tight nor too permissive,
providing a middle-of-the-road cost-effective alternative. However, HCOC only seems to
be more economical when tested against the tightest deadline (1.5).
5.Autoscaling Integration: Q-learning based autoscaling seems to be a cost-saving
measure at some times, especially for ACO that fall into the 1.5–2 unit deadline range.
Yet, autoscaling seems to become less effective as the deadline approaches for both al-
gorithms; this could be because using more resources than scaling down results in a larger
cost difference.
6.Potential Implications: Particular use-case needs should have an impact on the
decision between ACO and HCOC. For example, an ACO may be a better option if con-
trolling expenses is essential and timelines are somewhat flexible. In contrast, HCOC
might be a preferable choice if meeting deadlines is crucial and small cost increases are
acceptable.

The graph, in summary, indicates that although Q-learning based autoscaling benefits
both ACO and HCOC, ACO performs better financially than HCOC for most deadlines,
with the exception of the strictest deadline, when HCOC is somewhat more cost-effective.
Based on the particular schedule constraints and cost sensitivity of the use case, the choice
between ACO and HCOC should be made.

Evaluation Based on Simulation Output:

Figure 5: Simulation Results of ACO vs. HCOC Performance Evaluation when Integrated
with Q-Learning

According to the simulation results, Ant Colony Optimization (ACO) outperforms Hy-
brid Cloud Optimized Cost (HCOC) in terms of fitness. That means that when the ACO
and Q-learning are combined, the simulated environment produces far better results.
Cost shouldn’t be the only factor in choosing between HCOC and ACO. The significantly
higher fitness that ACO was able to attain would suggest a more valuable service or a
higher degree of optimization, which would justify the expenditure.
This research indicates that ACO may be a more suitable option when timelines are
neither extremely tight nor extremely lax, offering a mid-range cost-effective solution.
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But only when put to the ultimate deadline does HCOC appear to be more cost-effective.

Conclusively, Q-learning based autoscaling helps both ACO and HCOC; however, for
the majority of deadlines, ACO outperforms HCOC monetarily, except for the harshest
deadline, when HCOC is marginally less costly. The decision between ACO and HCOC
should be taken in light of the specific schedule limitations and use case’s cost sensitivity.

6.2 Discussion

In the Discussion section, the research engages in a comprehensive analysis and interpret-
ation of the findings, aiming to provide deeper insights into the implications of the study.
This section serves as a platform to contextualize the results within the broader landscape
of cloud computing, resource optimization, and hybrid cloud architectures. Several key
aspects are typically addressed:

6.2.1 Algorithm Performance

Findings: The results of the trials show that the Ant Colony Optimization (ACO) and
Hybrid Cloud Optimized Cost (HCOC) algorithms have different performance charac-
teristics. ACO demonstrated competence in using resources and flexibility in handling
a variety of tasks, but HCOC was better at keeping costs low, especially when working
under time constraints.
Critique and Design Adequacy: In certain situations, the ACO algorithm’s efficacy
was limited due to its implementation’s tendency to become stuck in local optima. Even
though it was cost-effective, the HCOC algorithm occasionally sacrificed task execution
speed. Although the experiment design was strong at imitating real-world cloud envir-
onments, greater variability in cloudlet and job complexity variety would have improved
the testing of the algorithms’ limitations.
Improvements: The problem of local optima might be lessened in ACO by implementing
more complex pheromone update algorithms and diversification techniques. Incorporat-
ing more dynamic cost models that take into account changing cloud service pricing could
improve HCOC’s real-time applicability.

6.2.2 Impact of AI-Driven Autoscaling

Findings: The performance of both algorithms was markedly enhanced by the inclusion
of Q-learning for autoscaling, especially in terms of dynamically modifying resource al-
location in response to varying workloads and cloud service prices.
Critique and Design Adequacy: The Q-learning model performed well in the simu-
lation setting, but unexpected operational complexity may limit its applicability in the
real world. Even though the model required a long training period to be effective, this
might have affected how well it deployed.
Improvements: Subsequent versions may investigate alternative models of reinforce-
ment learning or hybrid techniques that could achieve faster convergence or more effective
adaptation to real-world circumstances.
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6.2.3 Real-World Applicability

Findings: Both ACO and HCOC exhibit potential for practical use in cloud computing
environments, meeting a variety of needs including cost-effectiveness, resource optimiza-
tion, and timeliness—especially when improved with AI-driven autoscaling.
Critique: Compared to the simulated cloud environment utilized in the tests, the real-
world cloud environment is more turbulent and unpredictable. Some factors were not
accurately replicated, such as network latency, data security, and multi-tenancy.
Improvements: Testing the algorithms in a live cloud environment with real user work-
loads and more complicated inter-dependencies among activities could provide further
insight into their practical usefulness.

6.2.4 Implications for Cloud Computing

Findings: This research shows that complex scheduling algorithms such as ACO and
HCOC can improve cloud resource management considerably, particularly when com-
bined with AI-driven methods.
Contextualization with Previous Research: This study adds to our understanding
of HCOC in hybrid cloud setups and supports earlier findings regarding the effectiveness
of ACO in a variety of scheduling scenarios. In line with the current trend toward more
intelligent and autonomous cloud systems, AI-driven autoscaling has been integrated.
Critique: Although the study advances the science of cloud computing, it also emphas-
izes how difficult it is to develop solutions that work for everyone because cloud services
and user requirements vary so much.
Improvements: The compatibility of these algorithms with various cloud platforms and
the incorporation of additional real-time data analytics for improved decision-making may
be the main topics of future research.

As a result, this work adds to our knowledge of cloud computing optimization algorithms
and emphasizes how AI-driven methods might improve their effectiveness. Real-world
applications and a variety of cloud environments, however, can pose new difficulties,
requiring constant study and modification of these algorithms.

7 Conclusion and Future Work

This study set out to investigate two key issues in the field of cloud computing cost op-
timization. In the first question, it was acknowledged that seamless integration across
a variety of cloud infrastructures was necessary in order to efficiently integrate diverse
cloud environments into cost optimization algorithms. The second question looked at us-
ing AI-driven autoscaling to improve cloud resource cost-efficiency, specifically focusing
on using the Q-Learning technique.

Our goals included creating, deploying, and testing a system that can scale cloud re-
sources on its own and keep economical costs down without sacrificing performance.
Throughout this investigation, we have created an algorithm that takes advantage of
the Q-Learning technique to augment ACO with autoscaling capabilities. We have also
evaluated its efficacy against a conventional HCOC algorithm that has autoscaling as well.
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The main conclusions show that, even though the ACO integration is more expensive, it
substantially beats HCOC in fitness ratings, indicating a better optimization procedure
in intricate cloud systems. This confirms our theory that AI-powered autoscaling can
significantly improve cost optimization, even though it requires an initial increase in re-
source consumption.
This research has many different ramifications. It emphasizes that powerful AI algorithms
may efficiently control the trade-offs between performance and cost in cloud infrastruc-
tures, opening the door to more responsive, adaptive, and affordable cloud services. Re-
cognize that there is a chance for greater initial costs and that this strategy adds to the
complexity.
Despite these promising results, this research has its limitations. Real-world cloud en-
vironments, with their dynamic and unpredictable workloads, may present challenges
beyond the scope of the current simulation-based evaluations.

In order to better balance the trade-offs between performance and cost, we recommend
future research look into hybrid models that combine different AI techniques. This study
may also be commercialized; cloud service providers might use this framework to offer
more attractive price structures and performance assurances.

One worthwhile avenue for future research could be to evaluate the practical implement-
ation of our proposed algorithm in real-world cloud environments in order to determine
its efficacy. Additionally, examining the algorithm’s capacity to adjust in real-time to ab-
rupt changes in workload may improve its applicability. Studies might also look at how
well the algorithm scales across other cloud platforms and how it affects cross-platform
interoperability, which is a big problem for the business.

As a result, our study has established a critical base for AI-driven cloud computing
cost optimization. There is a huge window of opportunity for future research to further
develop this topic as AI approaches continue to grow.
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