~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Cloud Computing

Ruksar Shaikh
Student 1D: X22174711

School of Computing
National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ruksar Shaikh
Student ID: X22174711
Programme: MSc in Cloud Computing
Year: 2023-24
Module: MSc Research Project
Supervisor: Shaguna Gupta
Submission Due Date: 31/01/2024
Project Title: Configuration Manual
Word Count: XXX
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 30th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Ruksar Shaikh
X22174711

1 Introduction

By using machine learning and deep learning learning models, this research project aims
to predict the resource utilisation in cloud computing system. This configuration manual
will help to understand the implementation process of the project. It also includes the
system setup used for installing the project’s required tools.

2 System Configuration Setup

2.1 Software Requirement

e Google Colab: free, cloud-based platform by Google that provides a Jupyter
Notebook environment allowing users to write, execute, and share Python code
interactively. Python version is 3.10.12.

e Email: Gmail account is required to access the drive.

e Browser: Google Chrome, Firefox and Safari.

2.2 Hardware Requirement

The following hardware are used for the implementation:
e Operating System: Windows 10 64-bit operating system.

¢ RAM/Processor: 12gh 5th Gen Intel Core i5

3 Project Implementation

3.1 Environmental Setup

Gmail account is a requited prerequisite to use Google Colaboratory. Once an account is
created, follow the below steps:

e Step 1: Go to drive folder where ipynb python notebook files and dataset files are
available.

e Step 2: Click on ipynp python notebook file to open refer figure

My Drive > Project_ Coding ~

| Type ~ | | Pecple ~ | | Modified ~ |
Mame ‘M Owner
B azure_dataset.csv me
CPU_Utilization.ipynb me
ResourceUtilisation.ipynb me
B Time.csv me

Figure 1: ipynb and dataset files in google drive

e Step 3: To connect the file to Google Colab, click on Run all in runtime. Mount
the drive using the code mentioned in the given figure |2/ and figure

£ ResourcelUtilisation.ipynb

File Edit View Insert Runtime Tools Help All changes saved

+ Code 4+ Text

o from google.colab import drive
drive.mount('/content/drive")

E Mounted at /content/drive

Figure 2: Google Drive Mounted in Google Colab for ResourceUtilization ipynb file

& CPU _Utilization.ipynb

File Edit View Insert Runtime Tools Help Allc

+ Code + Text

[] from google.colab import drive
drive.mount{'/content/drive")

Drive already mounted at /content/drive;

Figure 3: Google Drive Mounted in Google Colab for CPU_Utilization ipynb file

3.2

Packages/Libraries Used

After successfully mounting the drive in Google Colab, all the libraries are imported
before starting with the code implementation. The following are the libraries used for
execution of models refer figure [}

NumPy: Fundamental package for numerical operations and array manipulation
in Python.

Pandas: Data manipulation and analysis tool for handling structured data with
DataFrame structures.

Scikit-learn (Sklearn): Machine learning library offering various tools for clas-
sical ML algorithms.

Seaborn: Statistical data visualization library based on Matplotlib, simplifying
complex data visualizations.

Plotly:Interactive visualization library for creating web-based interactive plots.

Matplotlib: Comprehensive plotting library for static, interactive, and animated
visualizations.

TensorFlow: Open-source deep learning framework for building and training
neural network models.

Keras: High-level neural networks API for quick neural network prototyping and
development.

e Adam: Optimization algorithm for training deep learning models by adapting
learning rates.

e Sequential, Dense, Dropout, LSTM, Bi-directional: Components and layers
in Keras for building neural network architectures.

e Min-max Scaler: Sklearn tool for feature scaling to a specified range for machine
learning models.

e EarlyStopping: Keras callback for stopping training when a monitored metric
stops improving.

e LinearRegression, GradientBoostingRegressor, SVR, DecisionTreeRegressor:
Sklearn regression algorithms for predicting continuous values based on input fea-
tures.

O #importing all libraries
import pandas as pd
import numpy as np
import sklearn
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.offline as py
trom sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear model import LinearRegression
trom sklearn.ensemble import GradientBoostingRegressor
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
import tensorflow as tf
trom tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout,Bidirectional, GRU
from tensorflow.keras.callbacks import EarlyStopping
trom keras.utils import plot_model
import warnings
warnings.filterwarnings("ignore')

Figure 4: Required Libraries/Packages

4 Phases

Implementation methodology for predicting resource utilization using ML and DL models
is as follows:

4.1 Data Collection:

In this research project, there are two datasets utilised. Bitbrains |Delft University of|
'Technology| (2015) dataset for CPU utilization and Network transmission throughput
and Microsoft azure (2017)) dataset for CPU utilization.

4.2 Loading Dataset:

Figure and figure [0 is presenting how Time.csv and azure_dataset.csv dataset is
loaded using pandas dataframe library named ’dataframe’ in ResourceUtilization and
CPU_Utilization ipynb files respectively.

° #loading dataset into dataframe AR
dataframe = pd.read_csv('/content/drive/MyDrive/Praject Coding/Time.csv')
datafrane.head()

E
. . (PU capacity el Memqry Menory Disk read Disk write NEtV.Mk Net‘work
Timestamp Time (PU A CPU usage y capacity Memory .. received transmitted
provisioned efficiency . efficiency throughput throughput
[ms] [ms] cores 1] (K] ¥l provisioned usage [KB] 4] [18/s] [8/5] throughput throughput

[K8] [KB/s] [K8/s]
0 1376314846 1 2 505199912 197.017304 3366667 8380608 4250213333 5066649 0000000 6266667 12.000000 8.200000
1 1376315146 301 2 58H199912 206523967 3700000 0300608 4417966657 5266631 BTINND B3NN 12333 9.1333%3
2 1376315446 601 2 585199912 198.967970 3.400000 8380608 520840000 626642 0000000 GAGGGT 12.26A667 8.266667
3 137615746 901 2 585199912 195086637 333331 8380608 3467277333 4133317 0000000 6400000 11533333 7.600000

4 1376316046 1201 2 060199912 206770636 3.5333H 0300608 4062442667 4666691 6733333 GA66G6T 10.600000 6.800000

Figure 5: Dataset loaded for ResourceUtilization file

[] #loading dataset into dataframe

dataframe = pd.read_csv('/content/drive/MyDrive/Project_Coding/azure_dataset.csv')
dataframe.head()

timestamp min cpu max cpu avg cpu ﬁ
0 2017-01-0100:00:00 715146.536821 2.223302e+06 1.22956%+06 m
1 2017-01-0100:05:00 700473.840324 2212393e+06 1.211322e+06
2 2017-01-0100:10:00 705953.565850 2.213057e+06 1.206635e+06
3 2017-01-010015:00 688363.073221 2.187572e+06 1.19036%+06

4 2017-01-0100:20:00 688276.551033 2.183684e+06 1.180992e+06

Figure 6: Dataset loaded for CPU_Utilization file

4.3 Dataset Info
Figure [7]and figure [§ is presenting the structure of both the dataset.

#again checking datatypes after converting to datetime
dataframe.info()

<class "pandas.core.frame.DataFrame’>
Rangelndex: 8634 entries, 8 to 8633
Data columns (total 13 columns)

Column Non-Null Count Dtype
@ Timestamp [ms] 8634 non-null inte4
1 Time [ms] 8634 non-null inte4
2 CPU cores 8634 non-null int64
3 CPU capacity provisioned [MHZ] 8634 non-null floatd4d
4 CPU usage [MHZ] 8634 non-null floatd4d
5 CPU efficiency [%] 8634 non-null floatd4d
6 Memory capacity provisioned [KE] 8634 non-null inté4
7 Memory usage [KE] 8634 non-null floats4
8 Memory efficiency [%] 8634 non-null floats4
9 Disk read throughput [KB/s] 8634 non-null floato4d
18 Disk write throughput [KB/s] 8634 non-null floato4d
11 HNetwork received throughput [KB/s] 8634 non-null floato4d

12 HNetwork transmitted throughput [KB/s] 8634 non-null floatod
dtypes: floate4(9), ints4(4)
memory usage: 277.8 KB

Figure 7: Defined Dataset Column for ResourceUtilization file

#again checking datatypes after converting to datetime
dataframe.info()

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 8648 entries, 8 to 8639
Data columns (total 7 columns):

Column Non-Null Count Dtype

@ timestamp 8648 non-null datetime&4[ns]
1 min cpu 8648 non-null floate4

2 max cpu 8648 non-null floate4

3 avg cpu 8648 non-null floate4

4 Year 8648 non-null inte4

5 Month 8648 non-null inte4

6 Day 8648 non-null int64

dtypes: datetimesd[ns](1), floated(3}, ints4(3)
memory usage: 472.6 KB

Figure 8: Defined Dataset Column for CPU _Utilization file

4.4 Dataset Cleaning
Figure [9and figure checking for if any missing values we have in the dataframe .

£ ResourceUtilisation.ipynb

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

#checking null values
[] dataframe.isna().sum()

Timestamp [ms]

Time [ms]

CPU cores

CPU capacity provisioned [MHZ]

CPU usage [MHZ]

CPU efficiency [%]

Memory capacity provisioned [KB]
Memory usage [KB]

Memory efficiency [¥]

Disk read throughput [KB/s]

Disk write throughput [KB/s]
Network received throughput [KB/s]
Network transmitted throughput [KB/s]
dtype: inte4

oD DO @O OO0 000D D

Figure 9: Checking for missing values in ResourceUtilization file

& CPU_Utilization.ipynb

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

[1 #checking null values
dataframe.isna().sum()

timestamp
min cpu

max cpu

avg cpu
dtype: int64

[B e R]

Figure 10: Checking for missing values in CPU _Utilization file

4.5 Dataset Visualization

Many ways in which data can be presented using matplotlib library. Figure presents
CPU utilization graph at x-axis and timestamp at y-axis , illustrates the network-
transmitted throughput at a certain period of time. presents a comprehensive depic-
tion of CPU Utilization trends over a specified duration.

CPU Utilisation [%]

13765 1.3770 13775 13780 1.3785 13790
Timestamp [ms] 1e9

Figure 11: Visual representation of CPU utilization using Bitbrains Dataset

254

204

154

10 4

Network transmitted throughput [KB/s]

13765 13770 13775 1.3780 1.3785 1.3790
Timestamp [ms] 1e9

Figure 12: Visual representation of Network Transmission Throughput using Bitbrains
Dataset

354 —— min cpu
—— maxcpu
—— avg cpu
3.0 q
251
2.0
1514
101
0.5 1
02 09 16 23 30
Jan
2017
timestamp

Figure 13: Visual representation of CPU utilization using Microsoft Azure Dataset

4.6 Feature Scaling

Feature scaling such as Min-Max scaling, is a technique used in data preprocessing to
bring numerical features to a similar scale. Min-Max scaling specifically transforms each
feature’s values to a range between 0 and 1 in figure [14} It does this by subtracting the
minimum value of the feature and dividing by the difference between the maximum and
minimum values. This process ensures that all features have the same scale, prevent-
ing certain features from dominating due to their larger numerical ranges and helping
algorithms converge faster during training.

[1 scaler=MinMaxScaler(feature_range=(2,1))
data3=scaler.fit_transform{np.array(data3).reshape(-1,1})

Figure 14: Feature scaling: Min-max scaler

4.7 Data Splitting

Dataset splitting into 90% for training and 10% for testing involves allocating 90% of
the data to train a machine learning model to recognize patterns, while reserving the
remaining 10% to assess its performance on unseen data, ensuring the model generalizes
well to new instances and doesn’t overfit to the training data refer figure [15]

] training_size=int(len(data3)*e.oe)
test_size=len(data3)-training_size
train_data,test_data=data3[@:training_size,:],data3[training_size:len(data3),:1]

, def create_dataset(dataset, time_step=1):
dataX, datay = [], []
for i in range(len(dataset)-time_step-1):
a = dataset[i:(i+time_step), 0]
dataX.append(a)
dataY.append(dataset[i + time_step, 8])
return np.array(dataX), np.array(dataY)

] time_step = 3
X_train, y_train = create_dataset(train_data, time_step)
X_test, y_test = create_dataset(test_data, time_step)

Figure 15: Feature scaling: Min-max scaler

4.8 Training of Models

In this section, four machine learning models including Linear Regression, Decision Tree
Regression, Gradient Boosting Regression, Support Vector Regression and two deep learn-
ing models including Long Short Term Memory and Bi-directional Long Short Term
Memory models are trained to predict the resource utilisation in cloud computing envir-
onments.

4.9 Performance Evaluation

The MSE, MAE, RMSE and R2 metrics of the ML, and DL algorithms compared in this
paper as shown in Table [I] Table [2] and Table [3] .

Table 1: For BitBrains dataset - CPU Utilization prediction

Model MSE | MAE | RMSE | R2 score
LiR 0.0027 | 0.0215 | 0.0521 | 0.7794
DTR 0.0099 | 0.0402 | 0.0995 | 0.1951
GBR 0.0055 | 0.0294 | 0.0747 | 0.5465
SVR 0.0030 | 0.0389 | 0.0556 | 0.7488
LSTM | 0.0026 | 0.0233 | 0.0515 | 0.7843
BiLSTM | 0.0024 | 0.0224 | 0.0490 | 0.8042

Table 2: For Microsoft Azure dataset - CPU Utilization prediction

Model MSE | MAE | RMSE | R2 score
LiR 0.0002 | 0.0131 | 0.0169 | 0.9833
DTR 0.0023 | 0.0390 | 0.0480 | 0.8661
GBR 0.0010 | 0.0255 | 0.0321 | 0.9399
SVR 0.0015 | 0.0337 | 0.0388 | 0.9127

LSTM | 0.0009 | 0.0239 | 0.0304 | 0.9462

BiLSTM | 0.0004 | 0.0169 | 0.0214 | 0.9732

Table 3: For BitBrains dataset - Network Transmission Throughput prediction

Model MSE MAE | RMSE | R2 score
LiR 0.0012 | 0.0114 | 0.0359 | 0.9256
DTR 0.0043 | 0.0473 | 0.0656 0.752
GBR 0.00183 | 0.0259 | 0.0428 0.894
SVR 0.0037 | 0.0495 | 0.0610 0.786
LSTM 0.0026 | 0.0232 | 0.0513 0.848
BiLSTM | 0.00172 | 0.0203 | 0.0415 0.901

4.10 Conclusion

This section concludes that BiLSTM model gives lower error RMSE and MAE values
hence, gives better prediction results as compared to other predictive models followed by
Linear Regression and LSTM.

References

Azure (2017). Azurepublicdataset repository on github, https://github.com/Azure/
AzurePublicDataset. Accessed 15th Nov 2023.

10

https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset

Delft University of Technology (2015). Gwa-t-12: Bitbrains dataset. Dataset retrieved
from Delft University of Technology. Accessed 20th Nov 2023.
URL: http://qua.ewi.tudelft.nl/datasets/qwa-t-12-bitbrains

11

	Introduction
	System Configuration Setup
	Software Requirement
	Hardware Requirement

	Project Implementation
	Environmental Setup
	Packages/Libraries Used

	Phases
	Data Collection:
	Loading Dataset:
	Dataset Info
	Dataset Cleaning
	Dataset Visualization
	Feature Scaling
	Data Splitting
	Training of Models
	Performance Evaluation
	Conclusion

