
Performance Optimization of Serverless Edge
Computing for Machine Learning Workloads

in Distributed Edge Environments

MSc Research Project

Cloud Computing

Akash Anil Sane
Student ID: 21220956

School of Computing

National College of Ireland

Supervisor: Aqeel Kazmi

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Akash Anil Sane

Student ID: 21220956

Programme: Cloud Computing

Year: 2023/2024

Module: MSc Research Project

Supervisor: Aqeel Kazmi

Submission Due Date: 31/01/2024

Project Title: Performance Optimization of Serverless Edge Computing for
Machine Learning Workloads in Distributed Edge Environ-
ments

Word Count: 1522

Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Akash Anil Sane

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Akash Anil Sane
21220956

1 Setting Up a Serverless ML Infrastructure for Edge

Computing

This manual provides a comprehensive explanation of how to set up a serverless computing
infrastructure specifically designed for machine learning tasks at the edge layers. Begin by
installing Python 3.11.5., a crucial component for scripting serverless functions and ML
models. Subsequently, configure Visual Studio Code with Python and Docker extensions
to facilitate development and install all the required requirement from requirements.txt.
Docker for Desktop is essential for containerising serverless functions within containers.
In addition, you will require Kubernetes and KIND for the purpose of managing clusters.
Familiarise yourself with Knative, an open-source platform for deploying and scaling
serverless applications. Install and set up TensorFlow and Keras through PIP command
within your project to construct convolutional neural network models. Make sure that
MySQL is set up for database administration and that Google Cloud Buckets are available
for model storage. To do load testing using the K6 tool. Ensure that all installs are
verified by conducting proper version checks and setups as you progress.

2 Docker for Desktop and Kubernetese Cluster setup

with KIND

[Instructions for setting up Docker for Desktop and Kubernetes Cluster with KIND will
follow here.]

1. Install Docker for Desktop and update WSL2: To install Docker for Desktop, start
by downloading the software with the latest version from the official website1. To
set up the required environment it is required to update the Windows Subsystem for
Linux available in the Windows 11 operating system for the docker application to
run smoothly and enable creation of cluster. To prepare your system for Docker for
Desktop with Kubernetes, begin with updating and verifying Windows Subsystem
for Linux 2 (WSL2) as seen in figure1. For updating WSL 2 installation Open
PowerShell or Command Prompt and run:

>wsl −−update

1https://docs.docker.com/desktop/install/windows-install/

1

https://www.python.org/downloads/release/python-3115/
https://code.visualstudio.com/
https://github.com/Akash-Sane/Serverless-Edge-ML-System/blob/main/Requirements%20Files/requirements.txt
https://docs.docker.com/desktop/install/windows-install/

Figure 1: Updating WSL2

Once the WSL2 system is updated restart the Machine for the configurations to
apply. When the system is again up and running verify the installation with below
command.

>wsl −− l i s t −−verbose

Figure 2: Update verification

When the WSL2 is set up then access the Docker for desktop and enable the Kuber-
netes option from settings as shown in figure3 so its available for cluster creation
and configuration which will now allow to use the kubectl command.

Figure 3: Enable Kubernetese on Docker For Desktop

2. Install Kubernetes with KIND: KIND, acronym for Kubernetes IN Docker, is a
utility designed to execute Kubernetes clusters within Docker containers. Follow the

2

instructions provided on the KIND2 and follow chocolatey3 for windows installation
to install it on the system.

3. Create a Multi Node Kubernetes Cluster with KIND: Use the KIND tool to establish
a Kubernetes cluster consisting of 4 nodes in which one node will act as a master
node and other three nodes will be available as worker nodes and these worker nodes
will act as edge clients. For this cluster configuration setup use the my-cluster.yaml
available in the GitHub project and execute it by following below command.

>kind c r ea t e c l u s t e r −−name <yourclustername> −−c on f i g=my−c l u s t e r . yaml

When the command is successfully executed verify the cluster installation and node
setup with below commands.

>kind get c l u s t e r s

Figure 4: Cluster Creation Verification

>kubect l get nodes

Figure 5: Cluster Nodes

2https://kind.sigs.k8s.io/docs/user/quick-start/#installation
3https://community.chocolatey.org/packages/kind

3

https://kind.sigs.k8s.io/docs/user/quick-start/#installation
https://community.chocolatey.org/packages/kind

3 Serverless Environment Configuration

3.1 Knative Installation

Knative is a crucial element for the deployment and management of serverless workloads
on Kubernetes. It streamlines the procedure of building, deploying, and overseeing scal-
able, serverless services. To deploy Knative, execute instruction available on the official
website4 or follow below:

1. Install Knative Serving: To facilitate the deployment and serving of server-
less applications and processes, Knative Serving builds upon Kubernetes. Use the
following command to install Knative Serving:

>kubect l apply −f https : // github . com/ knat ive / s e rv ing /
r e l e a s e s /download/ knative−v1 . 1 2 . 2 / serv ing−crds . yaml

>kubect l apply −f https : // github . com/ knat ive / s e rv ing /
r e l e a s e s /download/ knative−v1 . 1 2 . 2 / serv ing−core . yaml

2. Configure Networking Layer: For Knative serving, select the Istio networking
layer. Use these steps to install Istio on your network:

>kubect l apply − l knat ive . dev/crd− i n s t a l l=true −f https
: // github . com/ knat ive /net− i s t i o / r e l e a s e s /download/
knative−v1 . 1 2 . 0 / i s t i o . yaml

The Knative Istio controller can be installed by running the following command:

>kubect l apply −f https : // github . com/ knat ive /net− i s t i o /
r e l e a s e s /download/ knative−v1 . 1 2 . 0 / net− i s t i o . yaml

3. Verify Installation: Please ensure that each component are in the correct location
and are working properly. Virify the pods by using below command in the ’knative-
serving’ namespace to check its status as running:

>kubect l get pods −−namespace knat ive−s e rv ing

Figure 6: Knative installation verification

4https://knative.dev/docs/install/yaml-install/serving/install-serving-with-yaml/

4

https://knative.dev/docs/install/yaml-install/serving/install-serving-with-yaml/

4. Configure Domain Name: By default, Knative Serving will utilise the sslip.io
DNS suffix, due to a Kubernetes Job called default-domain. Run the following
command to add sslip.io as a domain:

>kubect l apply −f https : // github . com/ knat ive / s e rv ing /
r e l e a s e s /download/ knative−v1 . 1 2 . 2 / serv ing−de fau l t−
domain . yaml

4 Database and Storage Setup

4.1 MySQL Database Setup on Master Node

To set up the MySQL database on the master node of your Kubernetes cluster, use
the ‘mysql-deployment.yaml‘ file available in the services folder in the GitHub repository.
Once the file is downloaded update your Master Node name in the file so that the database
will be only installed and available on the specified node. Below are the steps for execution
are the steps:

1. Once the project is cloned locate the ’mysql-deployment.yaml’ file which has the
necessary configuration. This file defines the MySQL deployment, including the
container image, environment variables (such as the MySQL root password), storage
volumes, and other required settings.

2. Apply the ’mysql-deployment.yaml’ file to your Kubernetes cluster to create the
MySQL deployment using the following command:

>kubect l apply −f mysql−deployment . yaml

3. Verify that the MySQL pod is running correctly:

>kubect l get pods

Look for the MySQL pod in the output and ensure it’s in the ’Running’ state as
seen in the figure7.

Figure 7: MySQL pod created and running

4. Once the MySQL pod is up and running, you can access the MySQL database from
within the cluster. Use the MySQL command-line tool or any other MySQL client
to connect to the database.

5

5. When the deployment is available and pod is in running state, create the necessary
database schema and tables for the application. This can be done by connecting to
the MySQL pod and executing SQL commands as below:

>kubect l port−forward pod / [your−sq l−pod−name] [port
number]

>mysql −u root −p −h [ip−of−you−sq l−s e r v i c e] −−port=[
portnumber]

>CREATE DATABASE model db ;
>CREATE TABLE models (id INT AUTO INCREMENT PRIMARY KEY,

name VARCHAR(255) NOT NULL, dataset name VARCHAR
(255) NOT NULL, a r c h i t e c t u r e VARCHAR(255) NOT NULL,
accuracy FLOAT NOT NULL, l o s s FLOAT NOT NULL,
c r e a t ed a t TIMESTAMP DEFAULT CURRENTTIMESTAMP,
model data LONGBLOB, model path MEDIUMTEXT) ;

Once the Database is created you can verify with below commands:

>SHOW DATABASES;

Figure 8: Database Created in MySQL

>SELECT ∗ from models ;

6

Figure 9: Database table Models oberview

4.2 Google Cloud Bucket Setup

Google Cloud Buckets serve as repositories for storing trained models. Below are
the steps to setup the bucket:

(a) First, ensure you have a Google Cloud account and have set up a project.

(b) Create a new Google cloud storage bucket: When the project is created you
can set up a new cloud bucket by clicking on create bucket and by giving it
appropriate name, Location type, storage class and access.

Figure 10: Google Cloud Storage Bucket

(c) To provide public access to the bucket using the code, you must make the
bucket public for testing the system.

7

(d) Post bucket creation, obtain the JSON key file for your Google Cloud ac-
count—this file houses the credentials for programmatic access to the bucket.

(e) Securely store the JSON key file and establish an environment variable dir-
ecting to the file’s location, facilitating your application’s authentication with
Google Cloud services. Insert the path into your environment variables as
illustrated:

export GOOGLE APPLICATION CREDENTIALS=”/path/ to /your
/ k e y f i l e . j s on ”

(f) Deploy Google Cloud dependencies within your Python application to enable
interactions with the GCS. The following pip command installs the necessary
packages:

pip i n s t a l l google−cloud−s t o rage

(g) Use the Google Cloud libraries within the application’s code to connect to
the GCS bucket and facilitate operations such as model upload and retrieval.
The ’GOOGLE APPLICATION CREDENTIALS’ environment variable will
authenticate your requests to GCS.

(h) To upload and download models from your application, use the Google Cloud
Storage client libraries in your Python scripts. Also, a config map needs to be
created to store the JSON file downloaded as secret for accessing the bucket
seamlessly.

5 Deploying Serverless Functions from GitHub and

DockerHub

How to import code from GitHub5 repository, package it up, and use it in the Knat-
ive environment as serverless functions is explained in this part. Another option is for
users to use pre-built files from the DockerHub Image Registry as shown in figure12 and
13. Within the serverless system, YAML files are used for various services during the
deployment process.

5https://github.com/Akash-Sane/Serverless-Edge-ML-System

8

https://github.com/Akash-Sane/Serverless-Edge-ML-System

Figure 11: GitHUb Repository

Figure 12: Docker Image Registry

9

Figure 13: Docker Images

1. Cloning the Repository: Begin by cloning the necessary code repositories from
GitHub. Use the following command to clone a repository:

>g i t c l one <r epo s i t o ry−ur l>

2. Containerizing the Code: After cloning, navigate to the repository directory and
build Docker images for your serverless functions also the required function code
will be available files with ”.py” extension. Use the Docker CLI to build images
but make sure the requirement.txt is in the same location as the docker file so it
can pick the required libraries during the build phase of the image:

>docker bu i ld −t <your−image−name> .

Alternatively, you can pull pre-built images from DockerHub6 as they are made
available for replicating the system.

3. Pushing Images to DockerHub: Push your newly built images to DockerHub
(or another container registry of your choice):

>docker push <your−image−name>

4. Deploying Serverless Functions: Once the images are ready in the registry,
deploy them as serverless functions using Knative. Apply the YAML files for each
service using ’kubectl’ but make sure that the requirement.txt files is in the same
location as these YAML files:

6https://hub.docker.com/repository/docker/akashsane18/project-repo/general

10

https://hub.docker.com/repository/docker/akashsane18/project-repo/general

Figure 14: Deployment of Serverless Function

5. Verifying the Deployment: Ensure that the services are running correctly in
your Knative environment. Check the status of the deployments using:

>kubect l get pods

Figure 15: Verifying the Pods from Once the Service is created

>kubect l get a l l

Figure 16: Deployed Services Running In Serverless Environment

11

This method will it easy to deploy serverless functions from GitHub repositories or
directly from DockerHub. This makes sure that your machine learning apps are set up
correctly in a Knative environment with multiple nodes.

6 Load Testing with k6 and InfluxDB

Using the k6 tool with InfluxDB in a Kubernetes environment for load testing is explained
in this part. InfluxDB will be used to store the logs from the test cases for later analysis.
The objective is to test the serverless functions under different load conditions.

6.1 Configuring k6 Job in Kubernetes

1. Job Definition: Create a Kubernetes job to conduct the k6 load test. The job
configuration will use the ‘loadimpact/k6‘ image and provide the script and In-
fluxDB details for storing the job’s logs. The following is the YAML setup for the
k6 job:

6.2 Configuring k6 Job in Kubernetes

Figure 17: k6 Job Configuration

2. Load Test Script Preparation: Prepare your k6 load test script, for instance,
’loadtest.js’, which contains your load testing logic or the current script of loadtest.js
available in the repository can be used and updated as per the testing requirements.

3. Creating ConfigMap for Load Test Script: Create a Kubernetes ConfigMap
for storing the load test script. This allows the script to be easily accessed within

12

https://github.com/Akash-Sane/Serverless-Edge-ML-System/blob/main/K6%20Load%20Test%20Service%20and%20Script/loadtest.js

the cluster. Use the following command to generate a ConfigMap from your script
file:

>kubect l c r e a t e configmap loadt e s t−s c r i p t −−from− f i l e=l o ad t e s t . j s

4. Creating the Job: Apply the above YAML file to your Kubernetes cluster using
the following command:

>kubect l apply −f k6−job . yaml

5. Monitoring the Job: Monitor the execution of the job using:

>kubect l get jobs

Figure 18: K8 Job Deployment

Figure 19: k6 job pod running while executing the job

6. K6 Job Verification: The Job execution can be found by viewing the k6 pod logs
by executing the below command as seen in the figure20.

>kubect l l o g s pod <K6 pod Name>

13

Figure 20: k6 pod log showing completed job executing

6.3 Setting Up InfluxDB

InfluxDB is used to store and analyze the results of load tests. Follow these steps to
configure InfluxDB:

1. InfluxDB Installation: Deploy InfluxDB of version 1.8 within your Kubernetes
cluster. To use the official InfluxDB Docker image, you can set up a deployment
within Kubernetes or us the available file named influxdb.yaml which is can be seen
in figure22:

Figure 21: InfluxDB POD

14

https://github.com/Akash-Sane/Serverless-Edge-ML-System/blob/main/Service%20YAML%20FIles/influxdb.yaml

Figure 22: InfluxDB Config Configuration

2. Logging Database Configuration: Once the InfluxDB and its service is running
create a database named ’myk6db’ in InfluxDB for storing the k6 test results.

3. Accessing Data: Access and verify at the logs using InfluxDB’s Web UI or CLI.
The database can also be access locally by port-forwarding the service to available
ports. Querying is an option to get useful information from the load test results,
which are made available after the k6 job is finished.

Note: Verify that the InfluxDB service is properly exposed and can be accessed from
the k6 job within the Kubernetes cluster, or assign the necessary port for port forwarding
to access the database.

7 Monitoring and Performance Evaluation

7.1 System Monitoring

• Kubernetes Dashboard: The Kubernetes Dashboard lets you keep tabs on your
Kubernetes cluster’s health and performance as a whole. To install Kubernetes, just
follow the steps given on the website7. It gives useful details about how resources
are being used, the status of pods, and system events.

• Accessing the Dashboard: Use the ’kubectl proxy’ command to access the
Kubernetes Dashboard23. Navigate to the provided URL to view the cluster’s

7https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

15

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

status. Also, the kubernetese dashboard visualization is available from Docker for
desktop as seen in below figure24.

Figure 23: Kubernetes Dashboard

Figure 24: Docker For Desktop K8s Dashboard for Master Node

7.2 Performance Metrics

• Evaluating Test Results: Analyze the load test results stored in InfluxDB. Focus
on key performance indicators such as response times, error rates, and throughput to
evaluate the resilience and scalability of your serverless functions. The scalability
of this system can be analyzed from the Knative serving logs for how the pods
are getting scaled based on the scaling metric defined in the services deployed in
the environment. autoscaling.knative.dev/metric: ”concurrency”: This annotation

16

seen in the below service deployment7.2 gives the Knative autoscaler’s measure for
scaling the application. Using ”concurrency” as the metric . This indicates the
autoscaler will count concurrent requests per application instance. Concurrency-
based scaling is utilised when a pod’s ability to handle many requests is a better load
indicator than CPU or memory utilisation. autoscaling.knative.dev/target: ”200”:
Sets pod average concurrency. Knative should aim for 200 concurrent requests per
pod with ”200”. Knative creates more pods to accommodate the load when the
average number of concurrent requests exceeds this threshold. Knative may limit
pods if concurrent requests consistently fall below this target.

Figure 25: Autoscaler Configuration in Service

• Optimization Based on Data: Utilize the insights from the performance data
to optimize the serverless environment. Adjust configurations, scale resources, and
refine serverless functions as needed.

Note: The process of load testing and performance evaluation is defined by iteration.
Consistent monitoring and review are crucial for the purpose of analysis and producing
insightful information.

17

	Setting Up a Serverless ML Infrastructure for Edge Computing
	Docker for Desktop and Kubernetese Cluster setup with KIND
	Serverless Environment Configuration
	Knative Installation

	Database and Storage Setup
	MySQL Database Setup on Master Node
	Google Cloud Bucket Setup

	Deploying Serverless Functions from GitHub and DockerHub
	Load Testing with k6 and InfluxDB
	Configuring k6 Job in Kubernetes
	Configuring k6 Job in Kubernetes
	Setting Up InfluxDB

	Monitoring and Performance Evaluation
	System Monitoring
	Performance Metrics

