
Performance Optimization of Serverless Edge
Computing for Machine Learning Workloads

in Distributed Edge Environments

MSc Research Project

Cloud Computing

Akash Anil Sane
Student ID: 21220956

School of Computing

National College of Ireland

Supervisor: Aqeel Kazmi

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Akash Anil Sane

Student ID: 21220956

Programme: Cloud Computing

Year: 2023/2024

Module: MSc Research Project

Supervisor: Aqeel Kazmi

Submission Due Date: 31/01/2024

Project Title: Performance Optimization of Serverless Edge Computing for
Machine Learning Workloads in Distributed Edge Environ-
ments

Word Count: 6658

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Akash Anil Sane

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Performance Optimization of Serverless Edge
Computing for Machine Learning Workloads in

Distributed Edge Environments

Akash Anil Sane
21220956

Abstract

This research focuses on latency and resource optimisation issues in deploy-
ing machine learning applications in distributed environments using serverless edge
computing. The increasing number of IoT devices requires a strong infrastruc-
ture that can effectively handle large amounts of data. The objective of the pro-
ject is to enhance the scalability and response time of systems by breaking down
machine learning applications into smaller, manageable serverless functions. The
study leverages the CIFAR-10 and ImageNet200 datasets to assess and improve the
system’s performance. It demonstrates significant gains in handling initial star-
tup processes and various workloads. This research enhances the understanding
of serverless computing paradigms by providing a novel method that aligns with
the latest progress in the field. Essentially, this research presents a framework that
greatly simplifies the implementation of machine learning in edge environments,
thereby addressing current business needs for responsiveness and efficiency. How-
ever, the study does not address long-term sustainability but informs about using
a federated learning approach for serverless functions to enhance model accuracy,
which uses large datasets, leaving room for future investigation.

Keywords: serverless computing, edge computing, machine learning, CIFAR-10,
ImageNet200, resource utilization, scalability.

1 Introduction

Growth of the IoT resulted in a significant increase in data produced at the edge of the
network, which poses distinct difficulties for data management and application imple-
mentation. The integration of machine learning (ML) applications into evolving edge
computing systems has become crucial for analysing and acting upon the data in real-
time. Conventional cloud computing infrastructures, although strong, can cause delays
that may limit the required responsiveness for edge-based applications. Serverless com-
puting has become a revolutionary method in this situation, providing benefits such as
automated scaling, easier maintenance, and a pay-as-you-go pricing structure that guar-
antees cost savings and operational efficiency.

Although serverless computing is becoming more popular, it does have some down-
sides. Problems with persistent workloads, increased operational expenses because of

1



cloud service architecture, performance gaps in edge ML applications, and latency dur-
ing ”cold start” times are critical. The urgent requirement for optimised computing
paradigms to meet the ever-changing demands of edge ML applications is highlighted by
these concerns. According to Shafiei et al. (2022), the phrase ”serverless” is frequently
used to misunderstand the real-world functioning of such designs. It does not indicate
that there are no servers present; rather, it abstracts server management from the end-
users. There are two different methods that have become popular in serverless computing,
which is Function-as-a-Service and Backend-as-a-Service. BaaS systems, such as Firebase
and AWS Amplify, are designed to save developers from the complexities of server-side
operations. On the other hand, FaaS solutions, such as AWS Lambda, provide a more
granular degree of execution control, enabling code to run in response to events on a
function-by-function basis.

Based on the existing literature and practical implementations of serverless comput-
ing for machine learning workloads in edge environments, the objective of this study is
to address the identified limitations. In a serverless environment, the objective is to dis-
cover and evaluate innovative metrics and approaches that have the potential to evaluate
and enhance machine learning model deployment. To achieve the best possible balance
between performance and functionality, this project has investigated important metrics
like scalability, resource utilisation, and response time.

This study builds upon the work of author Bac et al. (2022), who presented a server-
less framework for edge ML applications, and proposes a more sophisticated technique,
building on their initial assumptions. To improve efficiency and study the scalability as-
pect, the research has looked into breaking ML models into smaller serverless functions.
This study aims to address the problems and limitations pointed out in previous research
by adding new metrics like CIFAR-10 and ImageNet200, looking into optimisation meth-
ods, and testing how effectively they work in the framework of serverless edge computing.
This research aims to significantly contribute to the growing field of serverless computing,
specifically in relation to edge ML workloads, by providing a thorough examination of
these methodologies and carefully validating them.

1.1 Research Question

• By Incorporating additional metrics such as CIFAR-10 and ImageNet200
and dividing ML applications into smaller serverless functions, how to
enhance the performance of machine learning workloads in distributed
serverless edge computing environments?

1.2 Objective

The primary objective of this project is to investigate techniques for improving the per-
formance of machine learning workloads in distributed serverless edge computing systems.
This will be accomplished by implementing the following strategies:

1. A comprehensive evaluation of the proposed approach is to be carried out by using
additional datasets such as CIFAR-10 and ImageNet200.

2. In an effort to improve efficiency and scalability, machine learning applications will
be divided into smaller, more manageable serverless functions.

2



3. Investigating resource utilisation and system scalability will be essential to ensure
the successful operation of machine learning systems in edge environment.

1.3 Structure

In Section 2, the research reviews serverless, edge, and fog computing literature and com-
pares pertinent studies. Section 3 explains the serverless edge deployment of the ML
model using flowcharts and other technical graphics. Section 4 shows how the deploy-
ment generates a complete sequence of serverless edge platforms. Section 5 discusses
the architecture, serverless functions, infrastructure tools, and output. Section 6 ana-
lyses each serverless function scenario in detail, providing its results. Section 7 outlines
the study’s findings and suggests further research to illustrate its worth to the cloud
computing community in a serverless edge environment.

2 Related Work

Exploring ways to enhance and optimise serverless edge computing for machine learning
tasks is crucial for computing field. The increasing implementation of serverless and edge
computing technologies has generated curiosity over their utilisation for efficient data
management and application execution in distributed environment. In-depth review of
the literature, as well as the influence of serverless computing on enhancing machine
learning tasks in distributed edge systems has been presented. It clarifies significant
findings and identifies areas that are worthy of additional investigation. Every reviewed
paper is carefully analysed to assess its contributions and limitations in supporting this
research.

2.1 Integration of Serverless, Edge, and Fog Computing in Cloud
Environments

Modern computer designs are reliant on serverless, edge, and fog computing especially in
the field of cloud computing. Because serverless computing breaks down the computing
unit into separate functions, it makes it possible to manage things more precisely and
easily. This is crucial in cloud computing because it allows developers to focus on the
code instead of the infrastructure by means of this abstraction, which guarantees both
scalability and performance Nastic et al. (2022). In contrast, edge computing enables
real-time processing and data analysis at the network’s boundary, which is useful for IoT
and cloud offloading applications. When it comes to optimising tasks across the Edge-
Cloud continuum, the study conducted by Shi et al. (2016) offers valuable insights that
highlight the restrictions imposed by resources and networks. Fog computing research
from Bonomi et al. (2012) promotes the development of cloud computing to the edge
of networks in order to facilitate the creation of innovative applications and services.
However, the cost and scalability aspects of fog computing are still not well investigated,
particularly in regards to the growing Internet of Things environments.

2.2 Serverless Computing Frameworks

Serverless frameworks offer a chance for research to be conducted, especially at the edge.
To build and deploy serverless applications, these frameworks are essential. A serverless

3



framework called ”Cirrus,” created by Carreira et al. (2019), enables end-to-end ma-
chine learning workloads. In order to ensure effective machine learning operations in
edge scenarios, this research takes into account data distribution, task scheduling, and
resource limitations. It is significant to the proposed study since it emphasises the pos-
sible advantages of serverless frameworks for ML applications. However, understanding
the Cirrus framework’s mechanism suggests that it may not accurately reflect all edge
environment situations in the real world. This may be a framework fault. It is necessary
to overcome the developmental obstacles of serverless edge computing systems and their
frameworks in order to implement the distributed paradigm of edge computing. These
challenges include rapid evolution and limited resources. Palade et al. (2019) performed
an in-depth evaluation of open-source serverless technological frameworks, and the results
indicated that these frameworks offer advantages such as vendor neutrality and cost sav-
ings. The functional comparability of platforms such as Knative, OpenFaaS, and Apache
OpenWhisk is confirmed by comparative analysis done by Li et al. (2021). However,
there are differences in performance and scalability between these platforms. The study
reveals that each of the four platforms has a comparable range of functionalities, includ-
ing support for various programming languages, event-driven execution, and auto-scaling
capabilities. Nevertheless, there exist differences in terms of performance and scalability.
Kubeless and Apache OpenWhisk provide superior performance characteristics, whereas
OpenFaaS and Knative demonstrate enhanced scalability capabilities.

2.3 Optimization and Cost of Serverless Applications

Since prominent cloud providers like AWS Lambda, Microsoft Azure Functions, and
Google Cloud Functions have released their FaaS platforms, serverless computing has
become an interesting technique and field of study. Several studies have highlighted the
issue of the lack of performance and cost models, which results in uncertain performance
and cost. Based on this information, a heuristic technique known as Probability Refined
Critical Path Greedy (PRCP) uses four greedy algorithms to optimise the performance
and cost of serverless apps Lin and Khazaei (2021). On average, the created model can
estimate the cost and performance of serverless apps with a 98% accuracy rate, while the
PRCP approach has an average accuracy of 97% in achieving optimal configurations, but
it fails to provide a potential impact of factors such as network latency, data transfer costs,
or variations in workload patterns on the performance and cost predictions. Similarly, a
study conducted by Arora et al. (2021) from Deloitte showed that serverless deployment
is growing, and over 75% of organisations polled have deployed or plan to use a serverless
strategy within two years. Within the framework of AWS Lambda and EC2 instances,
the research investigated server-based and serverless technologies and found that AWS
Lambda saved 38% to 57% compared to a server-based cloud execution strategy. Which
means significant cost savings over typical server-based approaches.

2.3.1 Performance Evaluation of Serverless Computing Platforms

As the cloud continues to grow, more and more server hosting choices have become
available to businesses. These include serverless architectures, virtual machines, Docker
containers. It is necessary to evaluate performance metrics for every service in order to
make knowledgeable hosting selections Jain et al. (2020). Kumar and Selvakumara (2022)
conducted a research which examines serverless architectures, including AWS Lambda

4



and IBM Open Whisk, and draws attention to their advantages, including scalability and
cost effectiveness. There has been a movement towards open-source alternatives, such as
Kubeless and knative due to worries about vendor lock-in caused by the widespread use
of serverless solutions Kaviani et al. (2019).

A study published at IBM from Schweigert and Hadas (2022) has shown that cold
starts can take anywhere from ten to fifteen seconds to more than a minute, which can
have a devastating effect on serverless performance. This is in contrast to the efforts
made to reduce cold start times in tools like IBM Cloud Code Engine, Red Hat Open-
Shift Serverless, and Knative. Especially for AWS Lambda, a popular option within the
AWS suite used by many businesses, this presents a significant challenge Baird et al.
(2017). According to Bardsley et al. (2018), in order to reduce serverless application
latency, optimisation measures such as function warming and understanding of the fun-
damental architecture should be utilised. Performance testing and infrastructure man-
agement are highlighted in the work of Mahmoudi and Khazaei (2023), which uses models
from queuing theory to understand the dynamics of serverless systems. To fully under-
stand the complexities of serverless computing, this analysis can be better understood
with the help of these serverless computing insights.

2.3.2 Serverless Computing Analysis for Edge-Based Machine Learning

To execute ML applications at the edge, serverless computing’s ability to manage vari-
ous workloads and reduce edge-based inference latency is becoming more critical. Kurz
(2021) explores serverless architecture for distributed ML, enhancing knowledge of ML
architectures and distributed learning approaches. Although not focused on edge com-
puting, Christidis et al. (2019) offers new insights into deploying serverless architecture in
resource-intensive scenarios. Furthermore, Trieu et al. (2022) illuminated the challenges
of deploying machine learning applications at the edge and suggested that serverless
computing may be a solution. Research shows that Kubeless responds faster to basic
workloads than Fission, which struggles with high user demands. Research has shown
empirical performance evaluations using tools like JMeter1, assessing system performance
across various workloads.

A study by Ishakian et al. (2018) highlights the significance of rigorous performance
evaluations for deep learning models on serverless platforms. This study on MxNet-based
deep learning raises AWS Lambda cold start and latency concerns. Cold starts may affect
distribution delays, disrupting Service Level Agreements (SLAs).

In order to provide services that are both cost-effective and consistent, Cox et al.
(2020) research on serverless inferencing in Kubernetes guides the implementation of
efficient autoscaling and ’scale to zero’ solutions. It presents the KFServing project, which
is an extension of the KNative framework, and demonstrates how the benefits of serverless
computing may be utilised for machine learning deployments. This demonstrates the
need for developing solutions that improve the efficiency of machine learning tasks and
the scalability of distributed edge systems.

In their investigation of the deployment of serverless edge computing for machine
learning applications, Bac et al. (2022) make a significant contribution to this field by
employing the MNIST dataset for training and testing in a distributed environment. The
study acknowledges the demand for new optimisation measures and advocates for future
research to validate these metrics. This is happening despite the fact that it has been

1https://jmeter.apache.org/

5

https://jmeter.apache.org/


demonstrated that serverless computing may have potential benefits for machine learning
applications. By carrying this research forward, the aim of the current research is to verify
the additional metrics for optimisation in an edge environment by integrating existing
findings. This allowed the research to address the weaknesses that were discovered in prior
studies and provide a pathway with improved knowledge of the deployment efficiency of
machine learning applications in serverless architectures.

2.4 Research Niche

The literature review identified several important gaps and obstacles in current studies
on serverless edge computing, machine learning tasks, and improving performance in dis-
tributed edge systems. This work focuses on improving ML task efficiency in serverless,
distributed edge computing. One way to accomplish this is that machine learning func-
tions can be divided into smaller serverless functions to improve system manageability.
Another way is to use additional metrics like the CIFAR-10 and ImageNet200 datasets to
demonstrate the system’s ability to perform under varied workloads. This research seeks
to fill the gaps and overcome the limitations of previous research by investigating the use
of specified datasets and the potential advantages of dividing machine learning systems
into smaller, more manageable serverless functions.

• Expected Contribution

1. Incorporation of Additional Datasets: The addition of datasets like
CIFAR-10 and ImageNet200 to the proposed study will enhance machine learn-
ing workload evaluation in distributed serverless edge systems. Datasets like
this allow the research to test how well and how versatile serverless edge com-
puting is for machine learning.

2. Performance Evaluation with CIFAR-10 and ImageNet200: This study
replicated earlier evaluations of the serverless edge computing method by test-
ing it on the CIFAR-10, ImageNet200, and MNIST datasets. Thoughtful
decision-making is required to implement ML applications in edge environ-
ments, and this study clarified the approach’s ability to manage complex and
large-scale workloads.

3. Optimisation Strategy: Simplifying ML apps’ components assists server-
less edge computing with machine learning workloads. This solution addresses
serverless architecture startup and resource utilisation issues to improve dis-
tributed edge system efficiency and effectiveness.

4. Scalability Insights: This research has used performance analysis with large
datasets like ImageNet200 to investigate scalability metrics, specifically ex-
amining how the system handles increased loads and concurrent requests.

5. Identifying Resource Utilisation Across Nodes: The project aims to val-
idate key performance characteristics for machine learning workloads in server-
less edge computing platforms. By following these steps, the methodology’s
benefits and drawbacks can be better understood, resulting in the effective
implementation of machine learning systems based on the edge.

6



3 Methodology

Serverless Computing Environment Setup

Data Storage and Management
(MySQL, GCP Bucket)

Severless Framework
(Knative, Docker)

Infrastructure Configuration
(Docker, Kubernetes, KIND)

Dataset Selection and Preprocessing

Infrastructure Configuration
(Docker, Kubernetes, KIND)

Preprocessing Steps
(Normalization, Augmentation)

 ML Model Framework

Load Testing and Performance Evaluation

CNN Utilization
(Image Analysis)

Architecture Approach
(Dataset Specific)

Architecture Approach
(Metrics Monitoring)

Load Testing Strategy
(Image Analysis)

Analytical Approach
(Statistics)

Figure 1: Workflow Diagram of Serverless Edge Computing System

This research’s methodology is a quantitative experimental strategy for testing serverless
edge computing framework effectiveness on ML workloads, and the workflow for the sys-
tem is illustrated in figure 1. This research aims to optimise machine learning applications
by breaking them down into smaller serverless functions and by integrating additional
datasets as opposed to single datasets from the present studies available.

3.1 Serverless Computing Environment Setup:

• Infrastructure Configuration: By using Docker for Desktop, a Kubernetes
cluster with three worker nodes and one master node is set up using KIND. A
master node coordinates the launch and administration of serverless functions as
the control plane, while a set of three worker nodes are set up to mimic an edge
computing scenario.

• Serverless Framework: To enable autoscaling and event-driven execution, server-
less functions are containerized using Docker and managed by Knative. The various
components of the ML workload are handled by deploying functions that are tailored
to processing and training datasets, managing models, and making predictions.

• Data Storage and Management: To store all of the model’s metadata and
serving as the central repository, the master node has a MySQL database installed.
The use of Google Cloud Buckets for storing trained models provides scalable and
secure data access.

7



3.2 Dataset Selection and Preprocessing:

• Dataset Overview: Three separate datasets—MNIST, CIFAR-10, and ImageNet200—are
used in the study. To provide real-world image data, each dataset is picked for its
unique properties and level of complexity.

• Preprocessing Steps: Datasets go through preprocessing steps like normalisation
and augmentation to make them more robust and variable before they are fed into
machine learning models.

3.3 Machine Learning Model Framework:

• CNN Utilization: The main machine learning model is convolutional neural net-
works (CNNs) because of how well they perform tasks involving images. When it
comes to image datasets, these models perform well at extracting features.

• General Architecture Approach: Because each dataset is unique, the CNNs’ ar-
chitectures have been fine-tuned to adapt to the data available on MNIST, CIFAR-
10, and ImageNet200, respectively, based on the pixel and image colour type, i.e.,
coloured or grey scale.

• Data Storage and Management: To store all of the model’s metadata and serve
as the central repository, the master node has a MySQL database installed. The
use of Google Cloud Buckets for storing trained models provides scalable and secure
data access.

3.4 Load Testing and Performance Evaluation:

• Load Testing Strategy: The k6 tool is used to load test the serverless func-
tions. This program helps to understand the system’s scalability and resilience by
simulating different traffic patterns and workloads through a test script and Job
execution.

• General Architecture Approach: To measure how well the system performs
and how well it handles ML workloads, important metrics are monitored, including
response time along with cold and warm starts, scalability, and resource utilisation.

• Analytical Approach: For understanding the results of the load testing, the
research makes use of statistical techniques which includes histograms and charts.
The purpose of this analysis is to derive useful findings on the effectiveness of the
serverless architecture in an edge computing setting.

4 Design Specification

Advanced techniques and development methods are used to design this serverless edge
computing system that performs well for machine learning. These phases determine
how serverless functions preprocess, train, and predict from huge datasets like MNIST,
CIFAR-10, and ImageNet200. This complex activity orchestration in a serverless envir-
onment is shown through a sequence diagram2. This section also provides a description of

8



the system’s performance measures. It shows how well and efficiently the system operates
in different operational conditions.

4.1 Serverless Function Roles and Interactions

The main parts of the system are the specialised Python serverless functions that are
created to do specific jobs in the machine learning workflow:

• preprocess and train: Tasked with data preprocessing and training machine
learning models for the MNIST, CIFAR-10, and ImageNet200 datasets. This func-
tion is tailored for each dataset, independently named as preprocess and train mnist,
preprocess and train cifar10 and preprocess and train imagenet, taking into account
the particular needs of the datasets to provide optimised training performance.

• predict: It is designed to process the prediction requests received by connecting
with trained machine learning models stored in the Google Cloud Bucket.

• model manager: Oversees the Create, Read, Update, and Delete activities for
the metadata of a model in the MySQL database.

4.2 Workflow and Data Flow

By sending a data processing request to the relevant preprocess and train function, the
user or system starts the workflow. The Google Cloud Bucket stores processed data and
trained models, whereas the MySQL database stores model information and references.
The model manager function can be requested to make it easier to manage models, while
the predict function is used to retrieve and use the trained models to make predictions
based on the model ID and image provided for prediction.

4.3 Sequence Diagram

Figure 2: Serverless ML Model Sequence Diagram

9



The Figure 2 is representing the sequence diagram of the system’s interactive flows and
operational state. Its purpose is to show how data and actions move from the point
when the user or system initiates a process all the way to the point where a prediction
is made. It displays the system’s and user’s interactions with serverless services, the
data transfer between the MySQL database and Google Cloud Bucket, and the system’s
overall response to different requests.

• User/System Interaction: A user or system-initiated action invokes the server-
less functions to handle data, as shown in the Figure 2. This is where the process
flow begins and where all the subsequent operations are initiated.

• Data Preprocessing and Training: Invoking the preprocess and train * func-
tion prepares the dataset for training the model on CNN. These processes are es-
sential for cleaning up raw data and making it suitable for machine learning model
training.

• Model Storage and Management: When the training is complete, the model
artefacts and metadata are safely saved in a Google Cloud Bucket. The MySQL
database is used to record references. All of these processes for CRUD operations
on the trained model are monitored by the model manager function, which makes
sure that the models are stored and can be retrieved for changes or modifications
in the future.

• Prediction Execution: The predict function searches the MySQL database for
the location and URL of the appropriate model based on the model ID provided
whenever a prediction request is made. When the URL for the model is retrieved, it
retrieves the model itself from the Google Cloud Bucket. This is the most important
part of the process since it uses the trained model to make predictions using new
data.

4.4 Performance Metrics

To evaluate serverless edge computing for machine learning workloads, a wide range of
metrics have been used, along with a comparison with the findings found from the previous
research studies Mahmoudi and Khazaei (2023); Nestorov et al. (2021). A tabular format
similar to Table 1 has been used to systematically catalogue the findings of different
operating situations.

Load/Virtual User Avg Cold Start Duration Avg Warm Start Duration Total CPU Resource Utilization Worker 1 Utilization Worker 2 Utilization Worker 3 Utilization
5-500 ”To Be Measured” ms ”To Be Measured” ms ”To Be Measured”% ”To Be Measured”% ”To Be Measured”% ”To Be Measured”%
13-1100 ”To Be Measured” ms ”To Be Measured” ms ”To Be Measured”% ”To Be Measured”% ”To Be Measured”% ”To Be Measured”%
20-1800 ”To Be Measured” ms ”To Be Measured” ms ”To Be Measured”% ”To Be Measured”% ”To Be Measured”% ”To Be Measured”%
2-2100 ”To Be Measured” ms ”To Be Measured” ms ”To Be Measured”% ”To Be Measured”% ”To Be Measured”% ”To Be Measured”%

Table 1: Template for Performance Evaluation of Serverless Functions under Varied Loads

Metrics Captured:

• Load/ Virtual Users: A specified number of virtual users are created using the
K6 load testing scripts to stimulate requests to evaluate the performance of the
designed system.

• Average Cold Start Duration: That average amount of time required to ini-
tialise serverless services when they are called for the first time upon deployment
or when they have been idle were captured for the number of load tests performed.

10



• Average Warm Start Duration:For each load test, a average record how long
it takes for serverless functions that have been initialised to respond when called
later on is also counted.

• Total CPU Resource Utilization: The peak consumption was recorded for
serverless functions during execution based on the load tests.

• Worker Nodes Utilisation: For each load test, the peak usage across all worker
nodes was captured.

5 Implementation

An thoroughly planned architecture is brought to completion in this section, which covers
the application’s high-level architecture but also details the development of serverless edge
computing system designed to enhance the efficiency of machine learning applications.
Finally, this part digs into the implementation’s last stage, highlighting the data outputs,
ML model development, and tool and language suite used to get there.

5.1 System Architecture

Worker Node 2 Worker Node 3Worker Node 1

Master Node

Serverless Functions Deployed On All Worker Nodes

http://preprocess-and-train-cifar10.default.172.18.1.101.sslip.io

http://preprocess-and-train-mnist.default.172.18.1.101.sslip.io

 http://model-manager.default.172.18.1.101.sslip.io

http://preprocess-and-train-imagenet.default.172.18.1.101.sslip.io

http://predict.default.172.18.1.101.sslip.io

Load Balancer

Route traffic 
from external 
sources to the 

appropriate 
service.

Ingress Controller

Forwarding the
received request

Google Cloud Bucket

Bucket

Nodes Running the serverless functions and creating pods based on events

MySQL DB hosted on Master Node

Nodes accessing the Trained Model as per requests

Model Getting Saved/ Fetched from Google Cloud Bucket

Docker For Desktop

Kubernetes Cluster 
Environment

Route traffic back 
correctly to the 
original request

Getting Output

Knative Serverless
Orchestration

Client

Sending Model Training Request
and receiving output

Sending a image
for prediction

Sending request for
deleting a trained model

Figure 3: Serverless ML Model Architecture Diagram

The architecture in Figure 3 shows interaction between clients, serverless functions de-
ployed on all three worker node and the services serving on the knative orchestration

11



along with the primary database storage solutions MySQL available in the Master Node.
An efficient way for clients, such as smart devices and IoT sensors, to connect to the sys-
tem is through a Load Balancer, which distributes requests throughout the Kubernetes
cluster with Ingress controller in place.

The cluster is managed by Docker for Desktop and includes a Master Node that hosts
a MySQL database and three Worker Nodes that execute serverless functions for ma-
chine learning activities. With containerization and deployment across all Worker Nodes,
the serverless functions that handle data preprocessing-training, model updates, and pre-
diction can be executed reliably. Machine learning models are stored in Google Cloud
Bucket, from which Worker Nodes retrieve models as required for prediction jobs. The
design makes use of k6 for load testing, logs to InfluxDB, and the Kubernetes Dashboard
to keep tabs on how resources are being used and how the system handles traffic.

• Outputs Produced: Preprocessed and trained ML models, prediction based on
requests received and model CRUD operations and a set of performance indicators
that reveal how the system is running are the ends result and output resulted from
this system. The data from the selected datasets which are MNIST, CIFAR-10 and
ImageNet200 undergoes transformations to make it suited to ML processes, and
models are built to be logically efficient.

5.2 System Development Tools & Infrastructure

The serverless edge computing system is built using several tools to develop and imple-
ment the machine learning models and Python as primary programming language.

1. Programming Languages and Frameworks

(a) Python: Functions for serverless computing, data preparation, training of
machine learning models, and prediction were build in python language.

(b) Flask: It was chosen for developing the API endpoints for model training and
prediction, and it was also ideal for model management using web services due
to its lightweight nature.

2. Code Management & Development Suite

(a) Visual Studio Code (VS Code): VS Code was the major coding tool. Its
vast feature set, including Python and Docker extensions and GitHub version
control, made it crucial to development. Code was continuously committed
and published to GitHub from Visual Studio Code by following version control
best practices and documenting code changes.

3. Machine Learning Frameworks

(a) TensorFlow and Keras: All the resources needed to build, train, and valid-
ate CNN models were provided by these frameworks. TensorFlow was great for
processing on the back end, and Keras was great for building neural networks
because of its user-friendly interface.

4. Convolutional Neural Network (CNN) Models

12



(a) MNIST Dataset: A Keras model was constructed using a sequential archi-
tecture with MNIST, including of two convolutional layers, which were sub-
sequently followed by max-pooling and dropout layers to mitigate overfitting.
The model was completed with fully connected layers for the purpose of cat-
egorization.

(b) CIFAR-10 Dataset: The CIFAR-10 model used directly from the Keras
framework has additional convolutional layers to effectively capture the com-
plex patterns present in the dataset. Each convolutional layer was subsequently
followed by max-pooling and dropout layers. The model concluded with
densely linked layers that facilitated the classification process.

(c) ImageNet200 Dataset: Is has been collected from the official ImageNet
website2 and then the ResNet50 architecture was used as the foundational
model, and subsequently modified with global average pooling and extensive
layers to suit the specific needs of the ImageNet200 dataset.

5. Containerization and Serverless Orchestration

(a) Docker for Desktop: The serverless functions were capable of being con-
tainerized, guaranteeing that the environments used for development and pro-
duction were identical.

(b) Kubernetes: Creating a Kubernetes multi-node cluster with help of KIND
with the orchestration of containerized apps, overseeing their deployment, scal-
ing, and cluster operation was achieved with this setup.

(c) Knative: An important resource for Kubernetes environments that offered
serverless orchestration capabilities. Knative managed the lifecycle of server-
less workloads, simplified the deployment of containerized apps, and allowed
the system to dynamically scale the number of pods up or down depending on
demand.

6. Master Node Setup and Cloud Storage

(a) MySQL: MySQL was installed as the database on the Master Node to store
model metadata and other essential information.

(b) Google Cloud Bucket: Took advantage of GCS to store and retrieve ma-
chine learning models, ensuring scalability and effortless integration with the
serverless architecture.

7. Monitoring and Load Testing

(a) Kubernetes Dashboard: It assisted for visualisation of resource utilisation
inside the cluster and it made this available through the provision of its mon-
itoring dashboards.

(b) k6: An effective tool for load testing that used specially designed scripts to
stimulate traffic and allowed to analyse how the system worked in a range of
load conditions.

(c) InfluxDB: Through its less resource intensive approach InfluxDB assisted to
do further analysis as the performance data was captured and kept while the
load tests scripts were executed with the k6 job.

2https://image-net.org/index.php

13

https://image-net.org/index.php


6 Evaluation

To evaluate the serverless computing architecture that was built as a result of this re-
search, a thorough examination of the system’s performance in handling machine learning
workloads was necessary. This section highlights the findings that provide evidence to
support the research question and objectives. To thoroughly analyse the experimental
data and determine the significance of those results, statistical approaches are used.

6.1 Model Accuracy Across Nodes

MNIST Old Model vs. MNIST, CIFAR-10 and ImageNet200 New Model Accuracy

Table 2: Model Training Accuracy Comparison of Old Vs New System

Training accuracy on the MNIST, CIFAR-10, and ImageNet200 datasets was evalu-
ated across all worker nodes in the current system for various number of epoch which
is seen in the table 2 which compares the accuracy. Training accuracy on the MNIST
dataset was consistent, and models were successfully saved and retrieved using Google
Cloud Bucket. The models demonstrated strong performance across several nodes in the
CIFAR-10 and ImageNet200 datasets, following similar performance of MNIST.

The new system highlights significantly higher training accuracy and demonstrates
a sustained performance across all nodes when compared to the old system which is
observed in the table 2 demonstrating varying performance levels on each node which
is evidence of how the optimised serverless environment improved performance. It is
clear from the better accuracy percentages found across all three nodes that the new
architecture allowed for more efficient data handling and model training procedures.

14



6.2 Cold Start vs. Warm Start Performance

Critical to serverless computing, response times during cold and warm starts of both old
and the new proposed system are evaluated as part of the system’s evaluation.

Figure 4: Response time comparison of the old system (left) versus the new system (right)
for cold and warm starts.

• Comparative Response Time Analysis: Cold start and warm start entries were
represented in the histograms seen on the right side of the Figure 4, which allowed
for visualisation of the analysis. Most warm starts were conducted in less than
10 milliseconds, and the new system displayed 5,201 cold start entries and 59,956
warm start entries, indicating a higher frequency and efficiency in responding to
subsequent requests. When compared to the old system, the new one performed
far better at cold start latency management and reduction while maintaining warm
start processing times for huge number of requests.

6.3 Load Testing and Scalability

A series of load tests was carried out with a range of virtual users ranging from 1 to
2,100. This was done to evaluate system’s scalability. It was clear from the results that
the system could keep working at a high level of accuracy and speed until users count
reached 1875. Despite the fact that a small number of requests resulted as interrupted,
the system was able to maintain an accuracy level that was close to 99% under a variety
of load conditions.

• Scalability Test Results

1. Testing Performance with Users scaling from 5-500:

As seen from the Figure 5, load tests with 5-500 users was executed to determine
how much of the system’s resources were used. The system is not overloaded because
the CPU use peaks does not exceed the available capacity with stable memory use
indicates that the workload is well within the system’s capabilities. There were no
interruptions in the processing of any of the 287,092 requests that were successfully
processed from the load test performed through k6. Request handling times and
data transfer rates are stable, which shows that the system is fast. Overall, the

15



Figure 5: Resource utilization during load test for 5-500 Virtual Users

testing with users scaling till 500 shows that the system works well and can grow
with the number of users that were tried. It does a good job of managing resources
and keeping service quality high.

2. Testing Performance with Users scaling from 13-1100:

Figure 6: Resource utilization during load test for 13-1100 virtual users.

In this test case, 13-1100 virtual users raise CPU use significantly. The graph
in Figure 6 indicates about 657.60% usage of the 10 cores, indicating a significant
workload. The system appears to have memory capacity to handle increased traffic,
as worker nodes use memory according to request processing and pods scale on each
node. Memory utilisation remains consistent and stable at 5.09GB out of 7.44GB.

From 13–1100 virtual users, the system executed all 787,052 requests without er-
ror. The system managed network connections efficiently despite increased users

16



because HTTP request metrics including waiting, receiving, and connecting times
were low. Iterations per second, virtual users, and maximum virtual users match
the test configuration and load parameters. The system’s strong performance and
consistent quality of service even as the load increases showcases an efficient and
well-configured environment.

3. Testing Performance with Users scaling from 20-1800:

Figure 7: Resource utilization during load test for 20-1800 Virtual Users

Kubernetes Dashboard (Figure 7) shows the system’s ability to manage multiple
virtual users. The system effectively handled large demands, with CPU utilisa-
tion peaking at 997.90% (Figure 7) and worker node 1 and other nodes managing
requests concurrently. The system demonstrates effective memory management
through consistent memory usage, accompanied by a minor increase in system ca-
pacity. Stability and reliability were evident when the system processed 727,016
requests with 99.98% accuracy. Despite a consistent increase in virtual user num-
bers and high iteration counts, the system maintained its performance under rising
demand. These numbers show that the system can handle large traffic and be
efficient.

4. Final Test Performance with Users scaling from 2-2100:

Figure 8: Dashboard showing performance degrade after reaching system peak

17



Figure 9: Resource utilization during load test for 2-2100 virtual users

The system showed remarkable robustness throughout the scalability test for 2-
2100 virtual users, as shown in Figure 9. The system was strained beyond its usual
operational boundaries as the CPU utilisation peaked at 1023.78%, surpassing the
nominal 1000% level. Consistent memory utilisation in situations of high demand
is indication of well-managed memory resources. A record 872,218 requests were
fulfilled by the system throughout the test. Even when under heavy demand, the
system’s memory usage remained consistent at around 5.26 GB out of 7.44 GB.

However, the system encountered 1082 interrupted iterations when the user load
exceeded 1875 users and system’s performance started to decline as seem in Figure
8, indicating its maximum capability under great stress. Even though there was
a degrade in performance the system was still able to achieve a 99% of successful
request completion and a acceptable response time for 97% of requests. The test
findings highlight the importance of optimising the application or scaling resources
to accommodate these peak loads without service interruptions.

According to results from the load test, the system is capable of handling a huge
amount of traffic, but beyond a certain point, performance starts to degrade as expected
from the designed system, which illustrates how much peak the system can handle and
survive efficiently.

6.4 Knative Autoscaling Evaluation

Under a simulated load of 2100 virtual users, the Knative autoscaling capabilities were
tested, as shown in Figure 10. Over the course of 23 minutes, the autoscaling graph
displays the quantity of pod instances. Knative dynamically expanded the number of
pods to handle the incoming traffic, reaching a peak of 43 pod instances, from an initial
minimal number when user load grew. Since the pod count changes with user requests,
the autoscaling technique is operating as expected. But when the jobs gets completed
after 23-minute, the pod count drops rapidly, signalling that user load has dropped and
there’s no longer any need for a large number of pods. So, it analyses the situation and
decides to scale down the pods until they reach zero.

18



Figure 10: Knative Autoscaling for Load Management

As part of the load balancing process, instances are created and terminated dynam-
ically in pods. While most pods are in a healthy ”Running” condition, the existence of
”Terminating” pods informs that there is ongoing scaling down activity following peak
load management. The graph provides evidence of how Knative’s serverless environment
is elastic, which is important for keeping services available and performing well under
different load situations.

6.5 Discussion

The experiments conducted provided a evaluation of the serverless architecture’s per-
formance under varied loads. Table 3. summarizes the results, presenting a view of how
response times and CPU utilization was affected as the number of virtual users increased.

Load/Virtual User Avg Cold Start Duration Avg Warm Start Duration Total CPU Resource Utilization Worker 1 Utilization Worker 2 Utilization Worker 3 Utilization

5-500 23.5 s 3.22 ms 392.38% 201.9% 103.41% 59.23%

13-1100 24.7 s 2.61 ms 657.60% 260.46% 135.24% 234.23%

20-1800 24.4 s 4.9 ms 997.90% 426.22% 266.66% 268.38%

2-2100 39.98 s 12 ms 1023.78% 485.62% 174.59% 286.28%

Table 3: Performance Evaluation of Serverless Functions under Varied Loads

The data presented in Table 3 shows that cold start event length is directly propor-
tional to user count. The first three rows shows the system is able to sustain the users
with excellent performance and average cold start response less than 25 seconds. This
finding supports the idea that under normal circumstances, a cold start can take up to
10-15 seconds initialization delay. In contrast, the warm starts constantly maintained
a low level, indicating that once initialised, the instances were capable of handling new
requests with minimal latency. The finding aligns with existing research, highlighting
the need of implementing tactics that reduce cold start duration in a resource intensive
and a workload where huge amount of requests needs to be served to enhance the user
experience in serverless apps.

The evaluation showed that the system’s auto-scaling feature with Knative can handle
more simultaneous users while retaining optimal performance, surpassing the old system.
Scaling is essential for managing unpredictable workloads and applications with changing
traffic. Knative implementation optimised resource allocation across worker nodes. The

19



system optimised CPU and memory utilisation through dynamic resource allocation and
deallocation, leading to improved warm start response in all tests (see to Table 3).

The CPU utilisation showed a nearly proportional rise in response to the workload,
indicating the serverless platform’s ability to automatically scale. However, in the highest
demand period, as observed in the final row of Table 3 for 2100 users, the CPU usage
surpassed the allocated capacity and then allocated extra resources as the cluster was
configured to allocate a extra 25% in case of resource peak utilisation, but if was not con-
figured for a extra 25% resource allocation during request burst events an over allocation
that may result in increased costs during real world scenarios.

7 Conclusion and Future Work

The purpose of this research was to investigate serverless edge computing for distributed
machine learning applications in great detail with the use of open-source technologies.
With new datasets like CIFAR-10 and ImageNet200 and the splitting of ML applications
into smaller serverless functions, performance and efficiency have improved. A number
of performance tests proved the implementation was valid, showing that it improved
response times during cold and warm starts, scaled well under different user loads, and
made the most efficient use of resources on each node.

Results indicate that serverless designs enhance edge computing operations. In par-
ticular, the system showed good scalability, efficiently managing increased loads while
maintaining high performance accuracy. Research has enhanced understanding of cold
start times and demonstrated that optimisations can significantly reduce latency, result-
ing in an improved user experience. Additionally, Knative is crucial for system scalability,
ensuring smooth handling of compute demands. Dynamic resource allocation and dealloc-
ation on serverless platforms optimise operating expenses by matching resource utilisation
with demand, highlighting their efficiency.

An encouraging basis for improving performance and making optimal use of resources
has been laid out by the present study into serverless edge computing for machine learn-
ing. Research in the future can build on these findings to investigate various strategic
improvements, such as: The use of federated learning to improve the accuracy of models
learned on massive datasets such as ImageNet should be thoroughly investigated. Split-
ting the dataset and training it on different nodes allows each node to train a particular
portion of the dataset to create a more complete and accurate global model that can be
created by combining the data the from nodes. This method helps with data analysis
while still protecting individual privacy, and it also improves accuracy. The goal of par-
allelized model training is to create methods that can train huge models over multiple
server nodes in parallel. Because of this, it might improve the system’s ability to handle
huge machine learning workloads and reduce training time. To maintain the accuracy
and reliability of the node models in the combined model synthesis, it is important to
plan for parallelization. Modern Methods for Optimisation: Hyperparameter tuning and
neural architecture search (NAS) are two sophisticated optimisation methods that can
be investigated to further optimise machine learning models. In a serverless edge envir-
onment, NAS can automate neural network architecture design to identify more efficient
models than manually created models.

20



References

Arora, G., Tayal, A. and Sembhi, R. (2021). Determining the total cost of ownership:
Comparing serverless and server-based technologies, Deloitte Consulting.
URL: https://d1.awsstatic.com/SMB/deloitte-tco-of-serverless-whitepaper-2022-smb-
build-websites-and-apps-resource.pdf

Bac, T. P., Tran, M. N. and Kim, Y. (2022). Serverless computing approach for deploying
machine learning applications in edge layer. Date Added to IEEE Xplore: 26 January
2022.

Baird, A., Huang, G., Munns, C. and Weinstein, O. (2017). Serverless architectures with
aws lambda.
URL: https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-
lambda.pdf

Bardsley, D., Ryan, L. and Howard, J. (2018). Serverless performance and optimization
strategies, 2018 IEEE International Conference on Smart Cloud (SmartCloud), IEEE,
New York, NY, USA.

Bonomi, F., Milito, R., Zhu, J. and Addepalli, S. (2012). Fog computing and its role in
the internet of things, Proceedings of the first edition of the MCC workshop on Mobile
cloud computing, ACM, pp. 13–16.

Carreira, J., Fonseca, P., Tumanov, A., Zhang, A. and Katz, R. (2019). Cirrus: A
serverless framework for end-to-end ml workflows, Proceedings of the ACM Symposium
on Cloud Computing, SoCC ’19, ACM, pp. 13–24.
URL: https://doi.org/10.1145/3357223.3362711

Christidis, A., Davies, R. and Moschoyiannis, S. (2019). Serving machine learning
workloads in resource constrained environments: a serverless deployment example,
2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA),
IEEE.

Cox, C., Sun, D., Tarn, E., Singh, A., Kelkar, R. and Goodwin, D. (2020). Serverless
inferencing on kubernetes, Distributed, Parallel, and Cluster Computing .
URL: https://doi.org/10.48550/arXiv.2007.07366

Ishakian, V., Muthusamy, V. and Slominski, A. (2018). Serving deep learning models
in a serverless platform, 2018 IEEE International Conference on Cloud Engineering
(IC2E), IEEE, Orlando, FL, USA.
URL: https://ieeexplore.ieee.org/document/8360337

Jain, P., Munjal, Y., Gera, J. and Gupta, P. D. (2020). Performance analysis of
various server hosting techniques, Procedia Computer Science 173: 70–77. Interna-
tional Conference on Smart Sustainable Intelligent Computing and Applications under
ICITETM2020.

Kaviani, N., Kalinin, D. and Maximilien, M. (2019). Towards serverless as commod-
ity: a case of knative, WOSC ’19: Proceedings of the 5th International Workshop on
Serverless Computing, IBM Publications, pp. 13–18.

21



Kumar, N. S. and Selvakumara, S. S. (2022). Serverless computing platforms performance
and scalability implementation analysis, 2022 International Conference on Computer,
Power and Communications (ICCPC), IEEE.

Kurz, M. S. (2021). Distributed double machine learning with a serverless architecture,
Companion of the ACM/SPEC International Conference on Performance Engineering,
ACM, pp. 27–33.

Li, J., Kulkarni, S. G., Ramakrishnan, K. K. and Li, D. (2021). Analyzing open-source
serverless platforms: Characteristics and performance, The 33rd International Confer-
ence on Software Engineering & Knowledge Engineering. [Submitted on 4 Jun 2021].
URL: https://arxiv.org/abs/2106.03601

Lin, C. and Khazaei, H. (2021). Modeling and optimization of performance and cost
of serverless applications, IEEE Transactions on Parallel and Distributed Systems
32(3): 615–632.

Mahmoudi, N. and Khazaei, H. (2023). Performance modeling of metric-based serverless
computing platforms, IEEE Transactions on Cloud Computing 11(2): 1899–1910.

Nastic, S., Raith, P., Furutanpey, A., Pusztai, T. and Dustdar, S. (2022). A server-
less computing fabric for edge & cloud, 2022 IEEE 4th International Conference on
Cognitive Machine Intelligence (CogMI), IEEE, Atlanta, GA, USA.

Nestorov, A. M., Polo, J., Misale, C., Carrera, D. and Youssef, A. S. (2021). Perform-
ance evaluation of data-centric workloads in serverless environments, 2021 IEEE 14th
International Conference on Cloud Computing (CLOUD), IEEE, IEEE, Chicago, IL,
USA.

Palade, A., Kazmi, A. and Clarke, S. (2019). An evaluation of open source serverless
computing frameworks support at the edge, 2019 IEEE World Congress on Services
(SERVICES), IEEE, Milan, Italy. Conference: 08-13 July 2019.

Schweigert, P. and Hadas, D. (2022). Reducing cold start times in knative, red hat
openshift serverless, and ibm cloud code engine.
URL: https://developer.ibm.com/articles/reducing-cold-start-times-in-knative/

Shafiei, H., Khonsari, A. and Mousavi, P. (2022). Serverless Computing: A Survey of
Opportunities, Challenges, and Applications, ACM Computing Surveys 54(11s): 1–32.
Article No.: 239.
URL: https://doi.org/10.1145/3510611

Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L. (2016). Edge computing: Vision and
challenges, IEEE Internet of Things Journal 3(5): 637–646.

Trieu, Q. L., Javadi, B., Basilakis, J. and Toosi, A. N. (2022). Performance evaluation
of serverless edge computing for machine learning applications, 2022 IEEE/ACM 15th
International Conference on Utility and Cloud Computing (UCC), IEEE.

22


	Introduction
	Research Question
	Objective
	Structure

	Related Work
	Integration of Serverless, Edge, and Fog Computing in Cloud Environments
	Serverless Computing Frameworks
	Optimization and Cost of Serverless Applications
	Performance Evaluation of Serverless Computing Platforms
	Serverless Computing Analysis for Edge-Based Machine Learning

	Research Niche

	Methodology
	Serverless Computing Environment Setup:
	Dataset Selection and Preprocessing:
	Machine Learning Model Framework:
	Load Testing and Performance Evaluation:

	Design Specification
	Serverless Function Roles and Interactions
	Workflow and Data Flow
	Sequence Diagram
	Performance Metrics

	Implementation
	System Architecture
	System Development Tools & Infrastructure

	Evaluation
	Model Accuracy Across Nodes
	Cold Start vs. Warm Start Performance
	Load Testing and Scalability
	Knative Autoscaling Evaluation
	Discussion

	Conclusion and Future Work

