~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Alby Sabu

Student ID: 21240906

School of Computing
National College of Ireland

Supervisor: Dr. Shivani Jaswal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Alby Sabu
Student ID: 21240906
Programme: Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Dr. Shivani Jaswal
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 1075
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Alby Sabu

Date: 13th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Alby Sabu
21240906

1 Introduction

In this document, the steps for setting up the prototype system are discussed. This
includes the steps for installing the prerequisites, details of necessary tools and their
versions, and also the steps for starting the Hyperledger Fabric network and Web applic-
ation.

2 System Configuration

The prototype developed for demonstrating the research study was implemented on an
Ubuntu 20.04 operating system environment hosted on the hardware configurations as
shown in figure [1}

Device Name Ubuntuzo >

Memory p.scis

Graphics livmpipe (LLVM 12.0.0, 128 bits)

oS Type 64-bit
GNOME Version

windowing System x11
Virtualisation Oracle

Software Updates
Figure 1: Hardware requirements of the system

3 Installing Prerequisites

To create the Hyperledger Fabric test network as well as to run the developed web ap-
plication the required dependencies and prerequisites have to be installed [Fabric| (2023)).

3.1 Prerequisites for setting up Hyperledger Fabric test net-
work

e Git: Install git for Ubuntu using $ sudo apt-get install git command in the terminal.
The installed version is shown in the figure [2]

[+ albysabu@ubuntu20: ~

:~$ git --version
git version 2.25.1
=5

Figure 2: Installed version of Git

e Curl: Install cURL for ubuntu using $ sudo apt-get install curl command in the
terminal. The version that was installed is shown in the figure [3

<5 curl --version

curl 7.68.0 (x86_64-pc-1inux-gnu) 1ibcurl/7.68.0 OpenSSL/1.1.1f zlib/1.2.11 brotli/1.8.7 libidn2/2.2.0 libpsl/0.21.0

(+libidn2/2.2.0) libssh/0.9.3/openssl/zlib nghttp2/1.40.0 1ibrtmp/2.3
Release-Date: 2026-01-08
Protocols: dict file ftp ftps gopher http https imap imaps ldap ldaps pop3 pop3s rtmp rtsp scp sftp smb smbs smtp sm
tps telnet tftp

Features: AsynchONS brotli GSS-API HTTP2 HTTPS-proxy IDN IPv6 Kerberos Largefile 1ibz NTLM NTLM_WB PSL SPNEGO SSL TL
S-SRP UnixSockets

Figure 3: Installed version of cURL

e Docker: Install docker and docker-compose for Ubuntu using the $ sudo apt-get -y
install docker-compose command and verify the versions installed as shown in figure
[l After successful installation, start the docker daemon using $ sudo systemctl start
docker in the terminal window.

:-§ docker --version
Docker version 24.6.5, build 24.0.5-6ubuntu1~20.04.1
:~§ docker-compose --version

docker-compose version 1.25.0, build unknown
. ‘*I

L

Figure 4: Installed version of Docker and Docker-compose

e Go: Since the chaincode for the system utilizes the Go programming language for
developing the smart contract and writing the required functions it is essential that
Go should be installed. To install Go download the installation file for Ubuntu and
use the $ sudo tar -zvf <path of go installation file> on the terminal.

3.2 Prerequisites for running the web application

For the web application to start, all the required modules and dependencies are to be
installed on the system. To install these requirements run $ pip install -r requirements. txt
after navigating to the directory that contains the source code of the web application.
The installed dependencies can be found in the figure [5|

1fasgiref==3.6.0
2 autopep8==2.0.2
3 backports.zoneinfo==0.2.1
4 certifi==2822.12.7
5 charset-normalizer==3.1.0
6 Djangoe==4.1.7
7 django-filter==22.1
8 djangorestframework==3.14.8
9 djangorestframework-simplejwt==5.2.2
10 idna==3.4
11 importlib-metadata==6.0.0
12 Markdown==3.4.1
13 Pillow==9.4.0
14 pycodestyle==2.108.0
15 PyJWT==2.6.0
16 pytz==2022.7.1
17 requests==2.28.2
18 sqlparse==0.4.3
192 tomli==2.0.1
20 urllib3==1.26.14
21 zipp==3.15.0
=2

Figure 5: Required dependencies and packages

4 Implementation Steps

4.1 Cloning the project source code

The source code required for setting up the project prototype can be cloned from the fol-
lowing GitHub repository: https://github.com/albysabu9/researchproject.git The folder
structure is divided into three sub-folders. DigitalAssetManagement contains the code
for the web application. Fabric-sample contains the configurations for the Hyperledger
fabric test network. Caliper-workspace contains the configuration files for benchmarking
the system.

4.2 Starting the Hyperledger Fabric Test network

e To install the Hyperledger Fabric, an installation script is required. Open a terminal
in the root directory of the project and run the following code to get the installation
script. $ curl -sSLO https://raw. githubusercontent.com/hyperledger/fabric/main/scripts/install-
fabric.sh €€ chmod +x install-fabric.sh

o After getting the installation script, run the following code to install.
$. /install-fabric.sh d s b

e To give the directory required permissions run the following code.

$ chmod -R 777 ./

e After the fabric network has completed the installation successfully, start the fabric
network using the command $ sudo ./network.sh up after moving to the fabric-
samples directory. To see the status of the nodes, use the following code

CONTAINER ID

MA
CREATED S PORTS NAMES

ec7c30322deb

add.” 6 days age Up 6 days
e5905f58cf9452871007dadeddd52f 1 fde53f8082a8ed2c56d16d1a290fb39

1de42eb7746a

$ docker ps -a
The status of the node in the network is shown in figure [6]

$ docker ps -a
COMMAND

dev-peer®.org2.example.con-basic_1.0.1-6e5905F58cf9452871007dad0ddd52f1f fde53f8082a8ed2c56d16d1a290Fb39-07438181d2d6e9c9bC297302120Fhaa9793dc7093e6759Fh6c41F40d549b7F5Sc "chaincode -peer.
dev-peer0.org2.exanple.com-basic_1.0.1-6

dev-peer0.orgl.example.con-basic_1.0.1-6e5905F58cf9452871007dadeddds2f1ffde53f8082a8ed2c56d16d1a290fb39-7222a9e341910cboccbasBdb9ss068201f236fdce6bbd7cf0d994b9a565c7364 "chaincode -peer.

add." 6 days ago Up 6 days dev-peerd.orgl.exanple.com-basic_1.6.1-6
€5905F58cf9452871007dad0ddd521Ffde53F8082a8ed2c56d16d1a290fb39

5f729218858F

hyperledger/fabric-tools: latest " /bin/bash”

6 days ago Up 6 days i

3455F5bc38ca

hyperledger/fabric-ordere est o —

6 days ago Up 6 days -> 50->7050/tcp, ©.0.0.0:7053->7053/tcp, :::7053->7053/tcp, 0.0.0.0:9443->9443/tcp, :::9443-9443/tcp orderer.example.com

st
6 days ago Up 6 days 6. :7051->7051/tcp, :::7651->7051/tcp, 6.0.0.0:9444->0444/tcp, :::9444->9444/tcp peerd.orgl.example.con
i S

"peer node start”
51->9051/tep, 7051/tcp, 0.0.0.0:9445->9445/tcp, :::9445->9445/tcp peerd.org2.example. com
"peer node start”

Figure 6: Fabric network nodes and running status

Create a network channel that will enable the two organizations and peers to com-
municate and create transactions between them. Run the following code after
moving to the test-network directory of the project.

$ sudo ./network.sh createChannel

The created network channel can be listed by running $ peer channel list as shown

in figure [7]

§ peer channel list
[channelCrd] -> Endorser and orderer connections initialized

Channels peers has joined:
mychannel

4.3

Figure 7: Created channel on the network

After the channel is created, the developed chaincode with the functions that are
to be invoked on the data operations performed by the user needs to be deployed
on the created channel.

$ sudo ./network.sh deployCC' -cen basic -ccp .. /path-to-the-chaincode/chaincode-go
-ccl go

Once the chaincode is deployed, the web application for the users to interact with
the Hyperledger Fabric network can be started.

Starting the Web Application Interface

To start the user interface of the web application, First change the directory to
the DigitalAssetManagement directory of the project and execute the following
command in the terminal.

$ python3d manage.py runserver

This will open the user interface in the default browser on the localhost URL:
http://127.0.0.1:8080

The login screen will be displayed for the user to login to the client application as
shown in figure [8]

O O o~ 127.0.0.1:82000

Figure 8: Web application interface

4.4 Querying the Peer CLI to verify the transactions

e The peer nodes in the network can query the Hyperledger fabric blockchain to
verify the transactions that are created when the chaincode is invoked on the data
operations of the users through the web application. Change the directory to the
fabric-sample directory of the project in the terminal and then set the path that
will point to the configuration files using the below commands.
$ export PATH=$PWD /bin:3PATH
$ export FABRIC_CFG_PATH=3PWD/config/

e To query the fabric ledger using the Peer CLI, use the following command. The
records that are written as transactions to the blockchain can be seen as shown in

figure [9]
$ peer chaincode query -C mychannel -n basic -¢ "7 Args”:[”GetAllAssets”]’

albysabu@Ubuntu20: ~/Fabric-samplestest-network
\ pwr chamode qu -C mychan el -n ba:lc -C [Arg: [oemm«m]}

40b6-91ff-27ee5335053¢", "Fr

5 B d", est”, 5 st for m: naned test10'}, [)}

1"43848395- 919 403b32f\0115‘ ‘Frw)m“‘cp‘ "To":"","Actio e asse 63e547d-2955- ! "mark”,"To":"","Action": "mark crcatcd a new
asset named File § "4d7e2ecd-9677- %a- cOcaZlfdeclc‘, From"; "test","To" F Owncr acceptcd thc bid of user te<t} { 4a8abf3-65be-45a1- ae01-9300e ", "Fron";"
,"Action”:"mark created a new asset named F 0" ‘Scsdodbd 25\2 4928- afac d75L "mark", "Action":"john requested mark for a e 10" "6197978b- -4b29 93
15-754ea7afe6bs", "Fron":" joh ,'T)' "mark", "Action"; {lea"},{"10" 0-84ac-483e-af95- e Action":"mark created a new asset name
dmez}["6b3c76 -3e97-57e ! ':' e e - 4d7d95480","Fron":"","T0": " john" ,"Act
iner a((epted the D":"a6 6-e ’ e8; "Fron” o) ‘37\5(770 9832- 4‘»(2 b]‘)‘) 93111717

wner accepted the requat of user 1w)hn for a<<et named F
"b682edf9- 0492-4349-a%eb- a9590f 70afc‘ "Fron": ‘te<t‘ ‘T)‘ ‘cp‘ "Act ested te ile est10" } [1D":"b6 .
"To" "+"Owner accepted the reque

, n requested mark f)r asset named Filel"},{ f2bd-4f32- aooa 7911761eb081","Fron": "test","
ived requested for file from cp. for file naned test’ "},{"I0":"e1d5e4 a55e-4ffe-9abd- 5896e879e5b" ,"Fron":"test","To": A 1"cp requested test for hlr naned mfm
61-ab48-4f50-8¢82-3ac744b72a23", "Fron":"","To" :"john", "Action": "Ouner accrptrd the request of user john for awt naned Fllen H

Figure 9: Querying the ledger using peer CLI

5 Evaluation Steps

5.1 Performance benchmarking using Hyperledger Caliper

e To evaluate the performance of the configured Hyperledger fabric system and verify
that the solution offers better performance in terms of scalability and efficiency we
have used Hyperledger caliper tool in conducting the benchmarking tests |Caliper
(2023)). To perform the benchmarking, move to the caliper-workspace directory of
the project in the terminal. The required configuration files for benchmark and
network are defined in the caliper workspace directory. The workload modules for
read and write operations are also placed in the directory. The directory structure
is represented in the figure [10]

L— myAssetBenchmark.yaml

L— networkConfig.yaml

package-lock.json
report.html

|: readAsset. js
writeAsset. js

3 directories, 6 files

Figure 10: Configuration files required for benchmark

e The benchmark test can be run by executing the caliper CLI command in the
terminal as shown in figure

. S npt caliper launch manager -~caliper-vorkspace ./ --caliper-networkconfig networks /networkConfig. yanl
-Caliper-benchconfig benchmarks /mykssetBenchmark.yanl --caliper-ﬂow-only-testl

Figure 11: Running the benchmark tests using caliper CLI

e Once the test is successfully executed a report will be generated and saved in the
caliper workspace directory that contains all the test information related to the
performance metrics and the resource utilization. The benchmark report generated
is shown in figure [I2] The tests can be repeated multiple times by varying the
parameters such as transaction load that is specified in the benchmark configuration
file to see the variations that can occur to the metrics like latency, throughput, and
resource utilization of the nodes in the network.

HYPERLEDGER Caliper report

Summary of performance metrics

S - Name Suce | Fail Send Rate (TPS) Max Latency (5 Min Latency (s Avg Latency (s Throughput (TPS]
Basic information Q) =€) 7& 2 7 DRy
DIT: fabric readAsset 7012 |0 2362 031 0.01 0.05 236.0
Name: basic-contract-benchmark writeAsset 510 0 16.8 260 034 0.96 16.5
Description: test benchmark
Benchmark Rounds: 2
Details Benchmark round: readAsset
Benchmark results Read asset benchmark
Summary
readAsset txDuration: 3@
N rateControl:
writeAsset type: fixed-load
opts:
transactionlLoad: 25
System under test
Details Performance metrics for readAsset
Name Suce Fail Send Rate (TPS) Max Latency (s) Min Latency (s) Avg Latency (s) Throughput (TPS)
readAsset 7012 |0 236.2 031 0.01 0.05 236.0

Resource utilization for read Asset

Resource monitor: process

Name CPU%(max) | CPU%/(avg) | Memory(max) [B] | Memory(avg) [B]

node(avg) | 46.06 2295

Figure 12: Benchmark report generated by the Caliper tool

References

Caliper, H. (2023). Hyperledger caliper - getting started.
URAL: https://hyperledger. github.io/caliper/v0.5.0/getting-started/

Fabric, H. (2023). Hyperledger fabric documentation - getting started. Accessed: Novem-
ber 13, 2023.

URAL: https://hyperledger-fabric.readthedocs.io/en/release-2.2/gettingstarted.html

	Introduction
	System Configuration
	Installing Prerequisites
	Prerequisites for setting up Hyperledger Fabric test network
	Prerequisites for running the web application

	Implementation Steps
	Cloning the project source code
	Starting the Hyperledger Fabric Test network
	Starting the Web Application Interface
	Querying the Peer CLI to verify the transactions

	Evaluation Steps
	Performance benchmarking using Hyperledger Caliper

