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Enhancing Incident Detection and Response in Cloud Computing

by classifying Customer Support Cases

Aishwarya Raut
21175748

Abstract

This report delves into the pivotal role of incident detection and response systems in ensuring
availability and minimizing downtime within cloud computing environments. This research focuses
on enhancing incident detection capabilities through the application of machine learning models,
specifically, non-negative matrix factorization (NMF) for unsupervised clustering and transformer
models such as DistilBERT, XLMRoberta, and CNN+LSTM with Glove Embedding for supervised
classification. The investigation revolves around automating the categorization of customer support
tickets, addressing challenges through meticulous data loading, preprocessing, and exploration. NMF
reveals distinctive patterns in support tickets, while transformer models undergo rigorous training,
evaluation, and performance analysis.

The research unfolds with a noteworthy achievement in the realm of incident detection within
cloud computing environments. A standout result is the exceptional performance of the FineTune
XLMRoberta Transformer, demonstrating high accuracy and robust categorization across various
customer support ticket types. This outcome accentuates the significance of thoughtful model selec-
tion and fine-tuning, offering valuable insights into optimizing incident response strategies. However,
the research is not without limitations, such as dependencies on the quality and diversity of the initial
dataset and the need for periodic model updates. Despite these challenges, the results offer practical
implications and feasibility of leveraging machine learning models for incident detection in cloud
environments. The research contributes substantially to the field, providing a roadmap for selecting
suitable algorithms and improving overall incident response efficiency. The success of integrating
advanced machine learning models not only bridges theoretical gaps but also showcases practical
implications for incident management in real-world scenarios.
Keywords— DevOps, Site Reliability Engineering, Machine Learning, Incident Detection, Reliab-
ility, Availability

1 Introduction

In the world of incident management, quickly figuring out and correctly labeling problems is super
important. The objective is to help companies handle issues better and decide which ones to tackle first
which means wanting to speed up how fast we respond to problems, make it easier to declare issues
across different parts of a system, and improve how we fix things. This research is all about making
this process way better for cloud systems. The main aim is to to create a classification system that
can blend with ticketing tools. This means organizing and labeling incidents can be based on different
criteria’s such as, how urgent they are, and how much they impact things. We aim to give companies a
solid system to deal with issues quickly and smartly. The big picture objective is to make cloud systems
stronger, ultimately boosting the overall quality of service they deliver. Below mentioned is a scenario
which shows what is the necessity of creating such a systemAhmed and Singh (2023)

Figure 1 depicts a real incident stemming from a misconfigured change in the Storage service. This
misconfiguration had a domino effect, impacting multiple SQL databases and subsequently causing dis-
ruptions for Web Application instances dependent on these databases. The sequence of alerts for Storage,
SQL, and Web Application was triggered at 3:54 am, 4:00 am, and 4:25 am, respectively. Following in-
depth discussions, it took nearly 50 minutes to recognize the cross-service nature of the issue and officially
declare it as an incident. An experienced Incident Commander (IC) was then engaged to orchestrate the
mitigation process, successfully concluding at 5:27 am and restoring all services to normal operation.Li
and Zhang (2021)

In light of the challenges illustrated in Figure 1, where a misconfiguration triggered a cascading
impact, disrupting services, the aim is to address such incidents more effectively by proposing a robust
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Figure 1: (Original)Timeline to declare and mitigate an incident

incident classification and response system. To do this, the planned flow is about combining proven
methods like Warden’s with insights from customer support cases. The idea is to help companies not
just respond fast to problems but also learn from them. Thus making it easier for companies to adapt
quickly, improve their strategies, and get better at defending against future challenges.Jain (2021)

In summary, this research endeavors to revolutionize incident detection in cloud systems, fostering
faster response times, streamlined cross-platform incident declaration, and efficient mitigation processes.
This research is about more than just theory; it’s about making incident detection in cloud systems way
better. Thus aiming for faster responses, smoother ways to declare problems across different parts of a
system, and more effective ways to fix things.

2 Related Work

The examination of existing literature highlights on incident detection methodologies, mainly employing
rule-based approaches, anomaly detection, and machine learning techniques. Despite the promising
outcomes associated with these approaches, a notable research gap is seen in using machine learning
techniques and integration of various incident data sources to enhance overall detection capabilities.
Moreover, the literature emphasizes the significance of incident response frameworks and best practices
as crucial elements in minimizing downtime and effectively mitigating the impact of incidents.

2.1 The requirement for automated incident detection, along with the de-
velopment of frameworks designed to automate both incident detection
and response in cloud systems

The paper ”Fighting the Fog of War: Automated Incident Detection for Cloud Systems” Li and Zhang
(2021) by Liqun Li introduces a novel strategy for incident detection in cloud systems using machine
learning. The Warden framework, tailored for incident detection based on monitor-reported alerts,
serves as a foundational reference for the current research. Warden leverages historical failure patterns
and selected monitor data to robustly detect potential incidents and notify on-call engineers promptly.
Warden employs a classification model trained on historical failure patterns, and the authors provide
a comprehensive evaluation of its performance. The paper employs a Balanced Random Forest (BRF)
classification model, demonstrating superior precision and recall, ensuring high accuracy in incident de-
tection. Despite its strengths, Warden’s reliance on manually linked alerts introduces challenges related
to label quality, impacting real-world incident evaluation.

The scholarly workChen and Zhang (2020) ”How Incidental are the Incidents?”by Pu Zhao focuses
on incident management, particularly in identifying and prioritizing incidental incidents. The empirical
study introduces DeepIP, a deep learning approach displaying commendable performance in incident
prioritization across 18 online service systems.

In this project of classifying customer support cases into incident management, a correlation emerges
with Zhao’s findings. Both incidents and customer support cases offer rich information for improved
characterization and prioritization Classifying and integrating customer support cases into incident man-
agement proves valuable for optimizing prioritization, which enhances incident categorization, ensuring
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prompt resolution of critical incidents..The qualitative analysis on customer support cases adds depth
to incident understanding, aligning with Zhao’s exploration of incident characteristics.

2.2 Selection of best suitable machine learning models for comparative ana-
lysis: DistillBERT, XLMRoberta, and CNN + LSTM with Glove Em-
bedding

The academic paper titled ”Comparing BERT against traditional machine learning text
classification” Gonzalez-Carvaja (2021)by Gonzalez-Carvajal and Garrido-Merchan evaluates the effic-
acy of BERT, a cutting-edge Natural Language Processing (NLP) model, in comparison to traditional
machine learning (ML) approaches (Santiago).

The key discoveries from this study indicate that BERT consistently outperforms traditional ML
models in text classification across diverse scenarios and languages. BERT’s advanced capabilities in
NLP facilitate precise case classification, nuanced context comprehension, and efficient response gen-
eration. These advantages strongly influence this decision to select the BERT algorithm for training
machine learning model, particularly in the classification of customer support cases for accelerated in-
cident detection. By harnessing BERT’s contextual understanding, this report can gain from enhanced
language representations, leading to more accurate and context-aware classification of customer issues.

While BERT stands out as a cutting-edge choice, the work of Sanh, Debut, Chaumond, and Wolf
introduces an intriguing alternative in the form of DistilBERT.”DistilBERT, a distilled version of BERT:
smaller, faster, cheaper, and lighter”.Sanh and Debut (2020) Recognizing the challenges associated with
deploying large-scale pre-trained models in resource-constrained environments, DistilBERT offers a com-
pelling solution. Through knowledge distillation during the pre-training phase, DistilBERT achieves
a remarkable 40 per cent reduction in size, maintaining 97percent of BERT’s language understanding
capabilities. Furthermore, it boasts a 60percent increase in inference speed, addressing concerns related
to computational budgets and on-the-edge applications.

Key advantages of DistilBERT lie in its efficiency, cost-effectiveness, and high performance across
various downstream tasks. The reduction in model size aligns with environmental considerations associ-
ated with training large models. The study demonstrates that DistilBERT, despite its smaller footprint,
remains competitive with BERT in terms of performance, making it an attractive option for real-world
applications.

In light of these findings, this paper adopts a nuanced approach in the selection of an NLP model
for customer support case classification. While recognizing the remarkable achievements of BERT, the
decision to employ DistilBERT is rooted in its efficiency, cost-effectiveness, and demonstrated excellence
across diverse tasks.

One key paper that significantly influenced the model selection process and critical analysis is
”Comparative Analyses of BERT, RoBERTa, DistilBERT, and XLNet for Text-Based Emotion Recognition”
ADOMA1 and HENRY2 (2020) by Acheampong Francisca Adoma, Nunoo-Mensah Henry, and Wenyu
Chen. The paper explores the efficacy of BERT, RoBERTa, DistilBERT, and XLNet in recognizing
emotions from text, employing a fine-tuning approach on the ISEAR dataset.

Through a meticulous comparative analysis, the authors evaluate these transformer models based on
accuracy, precision, and recall.Notably,the findings reveal that RoBERTa emerges as the most effective
model for emotion recognition,outperforming its counterparts.The insights and methodologies articulated
in aforementioned paper have been judiciously incorporated into this report to systematically inform the
decision-making process.

The paper by Yaroslav A. Seliverstov et al. ”Detection of Low-toxic Texts in Similar Sets Using a
Modified XLM-RoBERTa Neural Network and Toxicity ConfidenceParameters”Seliverstov and Komis-
sarov (2021) serves as a central reference, warranting a critical analysis of the choice to utilize XLM-
RoBERTa for classifying incidents derived from customer tickets.The study introduces a modified neural
network based on the XLM-RoBERTa transformer architecture, demonstrating its efficacy in detecting
low-toxic texts without retraining on such data.

The strategic selection of XLM-RoBERTa is validated by its adaptability, effectiveness, and innovative
approach to toxicity confidence parameters. The study concludes with an evaluation of the model’s
performance on a new test dataset from another educational institution, confirming the efficiency of the
approach.
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Unlike traditional approaches that retrain models on low-toxic texts, the proposed methodology lever-
ages a modified XLM-RoBERTa model trained on highly toxic texts. The innovation lies in dynamically
adjusting the toxicity confidence parameter during classification, eliminating the need for explicit re-
training which is been used in current project as well.

The paper titled ”Application of XLM-RoBERTa for Multi-Class Classification of Conversational
Hate Speech”Leburu-Dingalo and Ntwaagae (2022) by Tebo Leburu-Dingalo et al. addresses the challenge
of identifying conversational hate speech in code-mixed languages, specifically Hinglish (Hindi-English)
on social media. The authors use the XLM-RoBERTa multilingual model for transfer learning.

They preprocess the data by cleaning special characters, URLs, and augmenting tweets with tex-
tual descriptions of emojis. The experimental setup involves training and validation datasets, and they
fine-tune the XLM-RoBERTa model which was useful as guide in this project.The authors justify the
selection of XLM-RoBERTa by highlighting its effectiveness in multilingual text classification tasks. The
choice is further supported by the model’s success in the competition.

This paper is written by A. Kitanovski, M. Toshevska, and G. Mirceva named as “DistilBERT
and RoBERTa Models for Identification of Fake News”Toshevska and Mirceva (2023) investigates the
effectiveness of DistilBERT and RoBERTa models, two state-of-the-art language models, in detecting
fake news. The exploration covers training both models on labeled news articles and evaluating their
performance on distinct datasets, comparing accuracy, precision, recall, and F1-score.

The insights derived from this paper have been instrumental in informing the decision-making process
and the methodology regarding the selection of models for this ticket classification comparative analysis.
The detailed discussions on model architectures, experimental setups, and performance metrics have
played a crucial role in guiding the approach for current project.

This study underscores the potential of transformer models, particularly DistilBERT and RoBERTa.
Thus adapting and appling these insights to the ticket classification analysis,I’ve acknowledged the sig-
nificance of thorough preprocessing of data for optimal model performance.

The decision to employ the CNN-LSTM algorithm in this study was informed by its notable success
rate and efficiency, as demonstrated in the work of Yanli Shao (2021)

The paper titled ”Towards Robust Online Sexism Detection: A Multi-Model Approach with BERT,
XLM-RoBERTa, and DistilBERT for EXIST 2023 Tasks” Giachanou and Bagheri (2023)explores the
application of transformer-based models in identifying and categorizing online sexism. The study, focus-
ing on the EXIST 2023 shared task, emphasizes the importance of Natural Language Processing (NLP)
in detecting harmful content. The methodology involves a combination of BERT, XLM-RoBERTa, and
DistilBERT models, with additional datasets and preprocessing techniques. The research shows optimal
performance in English and suggests future work, including incorporating annotator information and
addressing imbalanced datasets.

This paper provided insights into advanced NLP methods, model architectures, data preprocessing,
and evaluation strategies. The methodology’s emphasis on addressing nuanced and context-dependent
language aligns with the challenges faced in classifying customer support cases accurately. Future research
directions outlined in the paper offer guidance for enhancing the robustness and generalizability of ticket
classification models.

2.3 Alternative Approaches to Improve System Performance and Incident
Management

The paper titled ”Efficient Customer Incident Triage via Linking with System Incidents”
Jiazhen Gu (2020) by Chen proposes the LinkCM approach, employing transfer learning and semantic
representation to automate incident triage in large-scale cloud service systems. The study highlights
practical case studies demonstrating its potential to enhance incident resolution accuracy and reduce
response times. In relation to this research on classifying incidents using three models for comparative
analysis, both papers share a common goal of leveraging incidents and customer feedback to enhance
system maintenance. While the Chen paper focuses on incident triage in cloud service systems, this
research explores the integration of customer support cases into the software development process. Both
approaches underscore the importance of utilizing customer insights for improved system performance,
quality, and customer satisfaction.
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Another paper, ”Identifying Linked Incidents in Large-Scale Online Service Systems”
Chen and Yang (2020a) by Hang Dong, introduces LiDAR, a deep learning-based framework for identify-
ing linked incidents. This paper complements this research on an intelligent Incident Management (IcM)
system, known as ”Warden,” which leverages machine learning for automated incident management.
Dong’s research on incident linkage aligns well with the goal of incorporating customer support cases
into incident management, providing insights and methods to enhance the overall system health view.

2.4 Thorough understanding of automated incident detection and its im-
portance

The paper ”Towards Intelligent Incident Management: Why We Need It and How We Make It”Chen and
Yang (2020b) by Yu Kang addresses challenges in cloud incident management, introducing the BRAIN
framework that utilizes AI and ML for detection, auto-triage, and correlation. The framework is applic-
able to a case study on improving incident management in a cloud-based customer support system. The
paper’s empirical validation methodology offers a structured approach for evaluating incident manage-
ment effectiveness.

”Knowledge Management Challenges in Customer Support: A Case Study”Kirsi Tanskanen (2023)
by Marko explores knowledge management aspects in customer support, highlighting challenges in docu-
mentation, classification, knowledge sharing, and metrics. For researchers automating incident detection
with customer support cases, this paper provides insights into factors hindering effective incident resol-
ution, informing the design of automated systems.

”STAR: A System for Ticket Analysis and Resolution”Wubai Zhou (2017) by Wei Xue presents an
automated system for IT service management ticket resolution, introducing a deep neural ranking model.
This model, with character-level, entity-level, semantic-level, and attribute-level features, outperforms
baselines, offering a robust framework for automating ticket resolution in IT-related issues. The study
aligns with research goals, indicating potential efficiency gains in ticket resolution and improved service
delivery.

3 Project Methodology

In the subsequent section, we delineate a systematic and comprehensive approach to realizing the project
flow. The methodology unfolds in a step-by-step process, encompassing data loading, cleaning, prepro-
cessing, topic modeling, data visualization, splitting, model building, performance measurement, GUI
development using Flask, and deployment using AWS CodeDeploy, Elastic Beanstalk, and EC2 instances.

Dataset:

• The project utilizes a dataset retrieved from Kaggle, comprising customer complaints in a financial
company, stored in a .json format.

Source and Ownership

– Source: Kaggle

– Author/Owner: Venkatasubramanian SundraMahadevan

Features of the Dataset

The dataset comprises the following key features:

– Complaint ID: A unique identifier assigned to each consumer complaint.

– Zip Code: The zip code associated with the consumer filing the complaint.

– Date Received: The date when the complaint was submitted.

– State: The state in which the complainant resides.
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– Product: The financial product or service associated with the complaint (e.g., Debt collec-
tion, Mortgage, Credit card or prepaid card).

– Issue: A brief description of the consumer’s complaint.

– Company Response: The response provided by JPMORGAN CHASE and CO. to the
consumer’s complaint.

– Submitted Via: The method through which the complaint was submitted (e.g., Web, Phone,
Referral).

– Timely: Indicates whether the complaint was submitted in a timely manner (Yes/No).

– Sub Product: Additional categorization of the product (e.g., Credit card debt, Checking
account).

– Consumer Consent Provided: Indicates whether the consumer provided consent regarding
the complaint.

– Tags: Additional tags associated with the complaint, such as ”Servicemember” or ”Older
American.”

– Consumer Disputed: Indicates if the consumer disputed the company’s response (Yes/No).

– Company Public Response: Any public response provided by JPMORGAN CHASE &
CO. regarding the complaint.

– Complaint What Happened: Detailed description of what happened according to the
consumer.

– Sub Issue: Additional details regarding the specific issue (e.g., Debt is not yours, Problem
using a debit or ATM card).

Details of dataset

– Source/Provenance:The dataset is sourced from the ”complaint-public-v2” index.

– Size of the dataset:The dataset is 83.39MB in size.

– Number of records:The dataset comprises of 78,313 customer complaints.

– Number of features per record:The total number of features/attributes per record is 22.

– Updation frequency:The dataset was last updated 2 years ago.

– File Format: The data is presented in a JSON-like format.

File Description

Each entry includes information such as complaint details, zip code, date received, state, product,
issue, company response, submission method, and consumer consent. The data exploration can
involve techniques such as topic modeling on the .json data. Since the data is not labeled, techniques
need to be applied to analyze patterns and classify tickets into the specified clusters. For this
project, the technology for label creation has been used is Non-Negative Matrix Factorization.

A. Data Preprocessing:

1. Data preprocessing is a pivotal step in refining the dataset for further analysis.

2. Importing All Libraries:

• Firstly importing essential libraries such as Python, VS code, Colab, TensorFlow, Keras,
scikit-learn, Transformers, NLTK, Plotly, Seaborn, Flask, etc.

• These libraries will be used for various tasks in the project.

3. Data Loading:

• Input:

– Raw dataset retrieved from Kaggle, comprising customer complaints in a financial com-
pany, stored in a .json format.
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• Procedure:

– The JSON file is opened, and its contents are loaded into a Python dictionary.

– The json normalize function is employed to transform this hierarchical JSON data into
a structured tabular format within a Pandas DataFrame.

• Output:

– Pandas DataFrame loaded with 78,313 customer complaints characterized by 22 features.

– To commence the analysis, the dataset is loaded into a Pandas DataFrame using Python.

4. Data Cleaning:

• This step involves several key processes aimed at handling missing values, standardizing
column names, and refining textual data.

– Input:

∗ Loaded DataFrame with raw data.

– Procedure:

∗ Null values are identified and removed, ensuring the quality of textual data.

∗ A comprehensive text cleaning function is designed to preprocess textual data in the
’complaint what happened’ column.IKONOMAKIS (n.d.) This function includes
steps such as removing URLs, decontracting contractions, filtering out punctuation,
separating alphanumeric characters, handling repeated characters, splitting attached
words, and removing stopwords.

∗ The data cleaning task includes steps such as removing URLs, decontracting contrac-
tions, filtering out punctuation, and handling repeated characters.

– Output:

∗ Cleaned DataFrame with standardized column names, removed null values, and pre-
processed textual data.

5. Data Preprocessing:

• Input:

– Cleaned DataFrame with textual data.

• Procedure:

– Text lemmatization is performed using the spaCy library, transforming words into their
base or root form.

– Parts-of-speech (POS) tagging is employed to identify the grammatical category of each
word in a sentence. Only nouns (NN) are extracted.

– N-grams (contiguous sequences of n items) are extracted from the cleaned text.

• Output:

– Processed DataFrame with lemmatized text, extracted POS tags, and top n-grams.

B. Exploratory Data Analysis (EDA):

• Exploratory Data Analysis (EDA) is a phase that involves gaining insights into the dataset through
statistical and visual methods. This step aids in understanding the distribution of data, relation-
ships between variables, and potential patterns that can inform subsequent modeling decisions.

• The data visualization for the project is done using various plots and graphs as mentioned below
Visualizing Unigrams and Trigrams:

– Input: Processed text data in ’data clean’.

– Output: Plots showing the count of each class in the target variable (’label’) and visualiza-
tions of word clouds, histograms, and count plots.

– 1.2 Topic Modeling Results: This section shows the results of topic modeling using Non-
negative Matrix Factorization (NMF). The top 15 words for each topic are displayed, providing
an understanding of the key terms associated with each topic. The best topic for each com-
plaint is assigned, and a mapping to human-readable labels is performed.
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– 1.3 Data Visualization: This visualization section covers diverse aspects

Histogram:

– Input: Lengths of each row of the text data.

– Procedure:

∗ Calculate Text Lengths:

· For each row of the cleaned text data (clean description clean column), calculate
the length of the text (number of characters or words).

· Store the lengths in a list or array.

∗ Plot Histogram:

· Utilize a plotting library (e.g., Matplotlib) to create a histogram.

· Set the number of bins (intervals) for the histogram, defining the range of text lengths
to be considered.

· Choose an appropriate bin size to capture the distribution effectively.

∗ Labeling and Styling:

· Add labels to the X-axis and Y-axis for clarity.

· Provide a title to the histogram that conveys the purpose of the visualization.

· Optionally, customize the appearance, such as color, transparency, or other stylistic
elements.

∗ Display or Save:

· Display the histogram within the Jupyter Notebook or save it as an image file for
later reference.

· Choose an appropriate format for saving the image (e.g., PNG, JPEG).

Bar Plot: Count of Each Class in the Target Variable (’label’):

– Input:

∗ DataFrame ’data clean’ with labeled topics.

– Procedure:

∗ A bar plot is created to visualize the count of each class in the target variable (’label’).

∗ This plot provides an overview of the distribution of different topics in the dataset.

– Output:

∗ A bar chart with labels on x-axis and counts on y-axis i.e a bar plot showing the count
of each class in the target variable (’label’)

Wordclouds for Each Class::

– Input:Cleaned text data (clean description clean column) for each class.

– Procedure:Utilized the WordCloud library to create wordclouds for each class.

– Output:Wordclouds visualizing the words where they are weighted based on their frequency
in the text data associated with each class.

C. Topic Modelling using NMF:

1. Unlabeled Data:

1. The initial dataset contains text data but lacks explicit class labels or categories.

2. Non-Negative Matrix Factorization (NMF):

1. NMF is used as an unsupervised clustering technique to group similar documents or text
entries based on the underlying topics or patterns in the data.

2. The number of clusters or topics (classes) is determined through a trial-and-error approach
or some validation metric.

3. Word Clusters:
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1. Once the optimal number of clusters is determined, word clusters are created for each class.
2. A total of 5 optimal clusters were created in this project named Mortgages/Loans, Theft/dispute

reporting, Credit card/prepaid card, Bank account services, and Others.
3. Each cluster represents a set of words that tend to co-occur within the documents assigned

to that cluster.

4. Word Cloud Generation for Each Class:

1. For each class/cluster in the dataset, a word cloud has been generated.
2. Words are weighted based on their frequency in the text data associated with each class.

Word clouds generated for each class are as shown in figure 2:

(a) Loan and Theft (b) Card and services (c) Others

Figure 2: 5 word clouds for clusters created

5. Inspect and Validate:

1. The next step involves inspecting and validating the correctness of each cluster.
2. This may include manual inspection to ensure that the words in a cluster are semantically

related and make sense within the context of a class.

6. Labeling Clusters:

1. Clusters are then labeled or assigned specific topics based on the predominant words within
them.

2. These labels effectively serve as the classes for the previously unlabeled data.

7. Mapping Clusters to Topics:

1. The clusters generated by NMF are mapped to human-readable topics or categories.
2. This mapping allows for interpreting the content of each cluster in the context of a specific

class or theme.

In summary, the classes are effectively created through the unsupervised clustering process of NMF.
The clusters are identified based on the natural patterns and topics present in the unlabeled text
data, and subsequent steps involve validating and assigning human-interpretable labels to these
clusters.

D. Splitting Data:

1. Split the dataset into training, validation, and test sets with a ratio of 60:20:20 to evaluate
the model’s performance on unseen data.

2. Training data is 60%, where the model learns patterns, relationships, and features.
3. Validation data is 20%, which is used to fine-tune the model during the training phase. It

helps in adjusting hyperparameters and avoiding overfitting.
4. Testing data is 20%, which is reserved for evaluating the model’s performance on unseen data.

Once the model is trained and tuned using the training and validation sets, it is tested on this
independent set to assess how well it generalizes to new, unseen data.

E. Model Building:

1. The 3 algorithms which have been chosen to train the model for comparative analysis are as
follows:

– CNN-LSTM with Glove embedding
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– Fine-tune DistilBERT Transformer
– Fine-tune XLM-RoBERTa Transformer. Singh (2021)

F. Performance Measurement:
The performance of the model is been measured using the following metrics:

1) Accuracy and loss graphs

– 1.1 Training and Validation Accuracy:

∗ Training Accuracy (Blue Line): Represents the accuracy of the model on the training
dataset. It shows how well the model is fitting the training data over epochs. An increasing
trend indicates effective learning.

∗ Validation Accuracy (Red Line): Illustrates the accuracy on a separate validation dataset
not used during training. It serves as a proxy for the model’s ability to generalize to new
data. A close alignment with the training accuracy suggests good generalization.

– 1.2 Training and Validation Loss:

∗ Training Loss (Blue Line): Represents the value of the loss function on the training data-
set. It measures how well the model’s predictions match the actual labels. The goal is to
minimize this value.

∗ Validation Loss (Red Line): Depicts the loss on the validation dataset. It gauges how well
the model is performing on unseen data. A similar or slightly higher loss on validation
compared to training is acceptable.

2.Classification report

The classification report provides precision, recall, and F1-score for each class, offering a detailed
evaluation of the model’s performance on individual classes.

3. Confusion Matrix:

A confusion matrix is a pivotal tool for evaluating the performance of a classification model. It
provides a detailed breakdown of the model’s predictions, allowing a deeper understanding of how
well it categorizes instances into different classes.
G. GUI (Flask):

– Graphical user interface (GUI) is been developed by making use of Flask to facilitate user
interaction with the trained models.

H. Deployment (AWS CodePipeline, Elastic Beanstalk, s3 bucket):

– Deploy models using AWS services such as Elastic Beanstalk making use of AWS CodePipeline
and s3 bucket.

4 Design Specification

4.1 Proposed model

For the development of the support ticket classification system, a comprehensive comparative
analysis of three machine learning algorithms—DistilBERT, XLMRoberta, and CNN+LSTM with
Glove Embedding—was conducted. After rigorous evaluation based on various parameters and
performance metrics, XLMRoberta emerged as the best-performing algorithm for this task.

XLMRoberta Model Description:

To implement the XLMRoberta model, the following steps were taken:
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Figure 3: Model Design diagram of the project

– Tokenization: Utilized the Hugging Face AutoTokenizer to tokenize the text using the ”xlm-
roberta-base” pre-trained model.

– Data Splitting: The dataset was split into training, validation, and test sets using the
train test split function with a ratio of 60:20:20 to evaluate the model’s performance on
unseen data where training data is 60%, validation data is 20%, testing data is 20%.

– Padding and Encoding: Applied padding with a specified maximum length to ensure
consistency in dimensions for training, validation, and test sets. Encoded the text using the
XLMRoberta tokenizer.

– TensorFlow Datasets: Configured TensorFlow datasets for the training and validation sets.

– XLMRoberta Model Configuration: Configured the XLMRoberta model using the XLM-
RobertaConfig with specified dropout and attention dropout rates.

– Model Architecture: Developed a custom model architecture in Keras, making the Trans-
former layers of XLMRoberta untrainable. Incorporated input layers for input IDs and atten-
tion masks, processing the model’s last layer’s hidden-state output. Extracted the [CLS] token
for further processing through hidden and output layers. Applied dense layers with dropout
for feature extraction and classification. Defined the model using the Keras functional API.

– Model Compilation: Compiled the model using the Adam optimizer, categorical crossen-
tropy loss, and accuracy as the metric.

– Model Training: Trained the XLMRoberta model on the TensorFlow dataset for five epochs,
with batch processing.

– Performance Visualization: Visualized training and validation accuracy and loss using
Matplotlib.

– Evaluation: Evaluated the model on the test set, generating predictions for further analysis.

– Confusion Matrix: Plotted a confusion matrix to visualize the model’s performance on
different classes.

– Classification Report: Generated a classification report, providing detailed metrics for
model evaluation.

This robust methodology ensured the successful development and evaluation of the XLMRoberta
model for support ticket classification. The model exhibits high accuracy and reliability, as evid-
enced by the comprehensive evaluation metrics and visualizations.

4.1.1 Justification for selection of model

• In the process of developing the support ticket classification model, I happened to meticulously
survey a multitude of research papers, aiming to identify state-of-the-art models with proven
efficacy.
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• From this extensive review, thus selected three models—DistilBERT, XLMRoberta, and CNN+LSTM
with Glove Embedding—each recognized for its robust performance in various natural language
processing tasks which performed outstanding as compared to the rest of the models.

• These models were chosen based on their prevalence in the literature and demonstrated success
in similar applications.

• Following this careful selection, the research involves a thorough comparative analysis of these
three chosen models.

• The goal is to determine the most suitable model for our specific support ticket classification
task and thus finally carrying the final classification task over the best fit model.

• By conducting a rigorous evaluation, the aim was to pinpoint the strengths and weaknesses of
each model, ultimately identifying the best-fit solution.

• This meticulous approach ensures that the chosen model aligns seamlessly with the intricacies
of incident detection within cloud environments, leading to the development of a highly effective
and tailored support ticket classification system.

Selecting a model involves considering various factors beyond just accuracy. Here are some aspects
that were considered when choosing the fine-tuned XLM-Roberta model:

• Precision, Recall, and F1-Score: These metrics provide a more nuanced understand-
ing of the model’s performance.
Precision is important when false positives are costly, recall is crucial when false negat-
ives are critical, and the F1-score balances both.
Thus, in this project, the focus is on F1-score accuracy to balance both precision and
recall.
Considering accuracy, precision, recall, and F1-score across all classes, Roberta appears
to be the best-performing model in this case.

• Class Imbalance: If the dataset has imbalanced classes, accuracy alone might not be
a good indicator of model performance.
In such cases, precision, recall, and F1-score for each class become crucial.
Roberta seems to maintain a good balance across classes.

• Task Requirements: Consider the specific requirements of the individual task.
Some tasks might prioritize precision, while others might prioritize recall.
For instance, in medical diagnoses, there is a need for high recall to ensure that you
don’t miss any positive cases, even if it means more false positives.
For this project, a good balance between precision and recall is needed, and Roberta is
a suitable choice with high performance in both aspects.

• Computational Resources: More complex models generally require more compu-
tational resources for training and inference. Consider the available resources when
choosing a model. If computational resources are a constraint, Distillbert is a lighter
version of BERT and might be more suitable.

• Interpretability: Depending on the domain and the audience, model interpretability
might be crucial. Some models, like CNN+LSTM, might be harder to interpret compared
to transformer-based models like Roberta or Distillbert. As interpretability is important
for this project, transformer models are preferred.

Taking all these factors into account, Roberta seemed to be the best choice based on the provided
metrics and general considerations.

4.2 Architecture:

The high level architectural overview for deploying application over EC2 instances in the project
is as given in 4a
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(a) Deploying Flask application over EC2 (b) Architectural diagram of the project

Figure 4: Architectural diagrams

1. Model Development and Storage:

– Algorithm Selection: A careful choice was made upon 3 diverse machine learning algorithms
for training the support ticket classification model.

– Training Phase: The selected algorithms were applied to a comprehensive dataset from
Kaggle for training purposes and model artifacts are generated

– Secure Storage in S3 Bucket: This model artifacts are securely stored in an AWS S3
bucket named ”supportticketmodel” in the ”Sydney” region.

– Version Control: The strategic use of S3 facilitates efficient version control, allowing for
easy tracking and retrieval during subsequent deployment phases.

2. Flask Application Integration:

– Post-Training Development: Development of a Flask application commences after the
completion of model training.

– Intelligent Logic Integration: Intelligent logic is incorporated into the application for
preprocessing user input, invoking the trained model, and presenting classification results.

– User Interface Design: The Flask application is designed to serve as the user interface,
ensuring seamless interaction with the support ticket classification model.

3. AWS Elastic Beanstalk Configuration:

– Environment Setup: An Elastic Beanstalk environment is configured, bearing the name
”MyElasticBeanstalkAppSupportTicketNew5” and located in the ”Sydney” region.

– Streamlined Deployment: Elastic Beanstalk autonomously handles deployment tasks, ca-
pacity provisioning, load balancing, and automatic scaling.The environment provides an op-
timal hosting solution for the Flask application, ensuring streamlined deployment and efficient
resource management.

4. Integration with AWS CodePipeline:

– Continuous Delivery Setup: Implementation of an AWS CodePipeline, named ”support-
ticketflaskcodepipeline,” located in ”Sydney,” establishes continuous delivery.

– Version Control Connection: The CodePipeline is connected to a version control system
GitHub, creating a linkage for automated deployments triggered by changes in the repository.

– Automated Workflow: The CodePipeline sets up an automated workflow, ensuring that
any changes pushed to the connected repository trigger automatic deployments.
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5. Flask Application Deployment Workflow:

– Change Detection: Upon detecting changes in the connected repository, the AWS Code-
Pipeline initiates the deployment workflow.

– The deployment process is orchestrated, ensuring a smooth transition from the repository to
the Elastic Beanstalk environment.

– The seamless integration guarantees that users can effortlessly access the deployed Flask
application on AWS Elastic Beanstalk, promoting accessibility and user engagement.

∗ The link to the deployed application to AWS Elastic Beanstalk is
http://myelasticbeanstalkappsupportticketnew5.eba-3hi7gf52.ap-southeast-2.

elasticbeanstalk.com/

Conclusion:

This comprehensive architecture embody a holistic approach, intricately weaving together stages
of model development, application creation, and deployment. The focus remains on achieving
user-friendliness, automation, and efficiency, ultimately establishing a robust and easily accessible
support ticket classification system.

5 Implementation and Contribution

In this section, we detail the final stages of our implementation, outlining the outputs, tools used,
and, most importantly, our substantial contributions to the project.

5.1 Transformed Data

Outputs:

– Transformed dataset with preprocessed and cleaned text data.

– TF-IDF vectorized representations for input into machine learning models.

– The artifacts of this model are safely stored in an AWS S3 bucket named ”supportticketmodel”
within the ”Sydney” region.

Tools and Languages:

– Utilized Python with libraries such as scikit-learn, NLTK, and spaCy for data preprocessing
and transformation.

5.2 Machine Learning Models Developed

Outputs:

– Three distinct machine learning models were been used for text classification based on cus-
tomer complaints.

– Models include Convolutional Neural Network (CNN), Long Short-Term Memory networks
(LSTM), a hybrid model combining CNN and LSTM and Transformer models.

Tools and Languages:

– Developed models using TensorFlow and Keras libraries in Python.

– Employed the Google Colab environment for enhanced computing resources.
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5.3 Evaluation Metrics and Model Performance

Outputs:

– Evaluation metrics such as accuracy, precision, recall, and F1-score for model performance.

– Comparative analysis results highlighting the strengths and weaknesses of each model.

Tools and Languages:

– Utilized scikit-learn for calculating evaluation metrics.

– Python for data analysis and visualization.

5.4 Comparative Analysis Results

Outputs:

– Comprehensive comparative analysis showcasing the strengths and weaknesses of the three
machine learning models.

– Insights into the suitability of each model for the specific task of customer complaint categor-
ization.

Tools and Languages:

– Python with matplotlib and seaborn for creating visualizations.

– Jupyter Notebooks for documentation and analysis.

5.5 Contribution of the project

Summary:

– The novel aspect of this project lies in its groundbreaking approach to ticket classification
based on customer complaints.

– Unlike existing models that rely on generic features such as on historical failure patterns or
categories assigned from someone who creates tickets, our methodology harnesses the richness
of customer interactions over years, thereby enhancing the model’s understanding of nuanced
issues.

– By integrating this novel classification approach, we aim to pave the way for a more tailored
and responsive customer support system.

– This research extends beyond the conventional application of three machine learning models
to a dataset.

– The methodology adopted involves a meticulous selection process, informed by an extensive
review of research papers where choice is made by selecting the best models from comparative
analysis made in different papers and then checking which is best-fit for this application based
on variety of metrics where classification of unlabelled data is to be done.

– The novelty of our approach lies not only in the utilization of customer tickets or complaints
but also in the incorporation of innovative data preprocessing techniques, including rigorous
text cleaning, lemmatization, and part-of-speech tagging.

– A noteworthy contribution is the integration of Non-Negative Matrix Factorization (NMF)
for topic modeling, providing a novel means of extracting meaningful clusters from unlabeled
data in an unsupervised manner.

– Furthermore, our contribution encompasses not only algorithmic advancements but extends
into the realm of data visualization as in various plots and reports.

– Techniques such as bar plots, word clouds, and histograms are strategically employed, serving
as instrumental tools for a comprehensive exploration of the dataset.

In summary, this work represents a purposeful and innovative endeavor, ensuring that each
step taken significantly contributes to the overarching objective of refining the categorization
of customer support tickets.
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Impact:

– The insights gained from the comparative analysis contribute to the understanding of the
strengths and limitations of various models in the context of customer support ticket classi-
fication.

– The findings inform future research directions and aid practitioners in selecting the most
suitable model based on their specific requirements.

In conclusion, the implementation phase not only involved the development of machine learning
models but, more importantly, provided valuable contributions through a meticulous comparative
analysis. The work extends beyond mere model execution, offering insights that are valuable to
practical aspects of customer support ticket classification.

6 Evaluation

– Analysis: Detailed analysis of experimental results from support ticket classification models
to provide insights into each model’s performance, drawing conclusions relevant to research
questions and objectives.

– Evaluation Metrics: To comprehensively assess model performance, key metrics, including
precision, recall, and F1-score, are employed.

– Metrics Explanation: Precision, recall, and F1-score are commonly used in classification
tasks:

∗ Precision: Accuracy of positive predictions (Precision = TP / (TP + FP)).

· Calculated as the ratio of true positive predictions to the total number of positive
predictions.

· High precision indicates accurate positive predictions.

∗ Recall: Ability to capture relevant positive instances (Recall = TP / (TP + FN)).

· Calculated as the ratio of true positive predictions to the total number of actual
positive instances.

· High recall indicates effective identification of positive instances.

∗ F1-score: Harmonic mean of precision and recall (F1-score = 2 * (Precision * Recall) /
(Precision + Recall)).

· Balances precision and recall, especially in class-imbalanced situations.

· Ranges from 0 to 1, where 1 indicates perfect precision and recall.

Figure 5: Evaluation metrics diagram

The research methodology unfolds in a systematic high level overview three-stage process: data
preprocessing, where raw data is refined and cleaned; model training, where machine learning
models are developed using advanced libraries; and evaluation, where the performance of the
models is assessed based on precision, recall, and F1 metrics.The diagram flow for the same is
given inFigure 5
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In summary, precision emphasizes the accuracy of positive predictions, recall focuses on capturing
all positive instances, and F1-score provides a balanced measure that considers both precision and
recall. Depending on the specific goals and requirements of a classification task, one metric may
be prioritized over the others. For example, in situations where false positives are costly, precision
may be a more critical metric, while in scenarios where missing positive instances is costly, recall
may take precedence. F1-score serves as a compromise between these two considerations and thus
been taken as a final metric to measure the performance of the models mentioned below

6.1 Performance report of the 3 models

The performance metrics for the CNN + LSTM model with Glove Embedding is shown in Figure 6a
The performance metrics for the FineTune Distilbert Transformer model is shown in Figure 6b
The performance metrics for FineTune XLMRoberta Transformer is shown in modelFigure 6c is
shown in Figure 9

(a) CNN+LSTM (b) FineTune DistilBERT (c) XLM-RoBERTa

Figure 6: Comparison of Performance reports of different models

These results provide a comprehensive evaluation of each model’s precision, recall, and F1-score
across different classes.

6.2 Comparative analysis of Confusion Matrix of each model:

The comparison of confusion matrix for the CNN + LSTM model with Glove Embedding Figure 9a,
the FineTune Distilbert Transformer model Figure ?? and the FineTune XLMRoberta Transformer
modelFigure ?? is shown in Figure 7
In the context of the provided confusion matrix:

(a) CNN+LSTM (b) FineTune DistilBERT (c) XLM-RoBERTa

Figure 7: Comparison of Confusion matrix of different models

Actual Labels (Rows): Correspond to the true classes of the instances in the test dataset. Predicted Labels (Columns):
Represent the classes predicted by the model.

Key Metrics:
True Positives (TP): Instances correctly predicted as belonging to a particular class. True Neg-
atives (TN): Instances correctly predicted as not belonging to a particular class. False Positives
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(FP): Instances incorrectly predicted as belonging to a particular class. False Negatives (FN):
Instances incorrectly predicted as not belonging to a particular class.

Interpreting a confusion matrix involves assessing various metrics to gauge the performance of
a classification model as follows
1. Diagonal Elements (Top-Left to Bottom-Right): These represent correct predictions (True Pos-
itives and True Negatives). Higher values along the diagonal indicate strong predictive performance
for corresponding classes.
2. Off-Diagonal Elements: These indicate instances where the model made incorrect predictions
(False Positives and False Negatives). Pay attention to these elements, as they highlight areas
where the model can be improved.
3. Brighter Colors: Brighter colors, especially along the diagonal, emphasize higher values and
correct predictions, aiding in the identification of dominant patterns. Higher values suggest better
performance.

Thus as per comparative analysis of confusion matrix XLM-Roberta model has given the best
performance.

6.3 Comparative analysis of Training and validation accuracy graph:

(a) CNN+LSTM (b) FineTune DistilBERT (c) XLM-RoBERTa

Figure 8: Comparison of Training and validation accuracy of models

In a training and validation accuracy graph, an ascending trend for both curves is generally desir-
able. This indicates that the model is learning from the training data and improving its performance
over epochs. Ascending Trend: Both the training and validation accuracy should show an upward
trend initially, reflecting improved learning.
1. Convergence: As training progresses, ideally, the gap between the training and validation accur-
acy should not widen significantly. Convergence or a parallel trend suggests effective learning and
generalization.
2. Overfitting Warning Signs: If the training accuracy continues to increase while the validation
accuracy plateaus or decreases, it may indicate overfitting. Overfitting occurs when the model
memorizes the training data but fails to generalize well to new, unseen data.
3. Consistency: A consistent and steady increase in accuracy for both training and validation sets
indicates a model that is likely to perform well on new data.

Thus analysing all the 3 models we see the training and validation graph for XLM-Roberta is
the best as it has an ascending trend, convergence between the two curves, and consistency in
improvement over epochs.

6.4 Comparative analysis of Training and validation loss graph:

In a training and validation loss graph, certain patterns indicate the performance and generaliza-
tion capabilities of the model which are as follows:
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(a) CNN+LSTM (b) FineTune DistilBERT (c) XLM-RoBERTa

Figure 9: Comparison of Training and validation loss of models

Descending Trend: Both the training and validation loss should show a descending trend. This
suggests that the model is improving in minimizing the difference between predicted and actual
values.
Convergence: Similar to accuracy, the gap between training and validation loss should remain rel-
atively stable or narrow. A widening gap might signal overfitting, where the model fits the training
data too closely but struggles with new data.
Overfitting Warning Signs: If the training loss continues to decrease while the validation loss in-
creases, it could indicate overfitting. This scenario implies that the model is becoming too special-
ized in the training data and may not generalize well.
Stabilization: As training progresses, both training and validation losses should stabilize. This
signifies that the model has reached a point where further training may not significantly improve
performance.

Thus as per the training and validation loss curve, XLM-Roberta has performed the best as it has
a descending trend in both training and validation loss, convergence between the two curves, and
stabilization as training advances.

6.5 Discussion

6.5.1 CNN + LSTM with Glove Embedding
1. The CNN + LSTM model with Glove Embedding achieved an accuracy of 76%.
2. It demonstrated notable precision and recall for class 1, indicating a strong ability to identify
relevant support ticket categories.
3. However, the low precision and recall for class 2 suggest challenges in correctly classifying tickets
in this category.

6.5.2 FineTune Distilbert Transformer
1. The FineTune Distilbert Transformer model achieved an accuracy of 78%.
2. It displayed high precision and recall for class 0, indicating effectiveness in identifying tickets in
this category.
3. The model also demonstrated balanced performance across other classes, contributing to its
overall robustness.

6.5.3 FineTune XLMRoberta Transformer
1. The FineTune XLMRoberta Transformer model outperformed the others with an accuracy of
82%.
2. It showcased strong precision, recall, and F1-score across multiple classes, highlighting its ability
to effectively classify support tickets.
3. This model’s superior performance suggests that leveraging the XLMRoberta Transformer ar-
chitecture and fine-tuning it for the specific task of support ticket classification yields favorable
results.
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Among the models evaluated, the FineTune XLMRoberta Transformer stands out as the most
effective for the support ticket classification task. Its superior performance across multiple metrics
indicates its capability to handle the complexities of the dataset. The utilization of the XLM-
Roberta Transformer architecture, along with fine-tuning, enhances the model’s ability to discern
nuances in support ticket content. The evaluation results emphasize the importance of choosing
an appropriate pre-trained transformer architecture and fine-tuning it for the specific classification
task at hand. The FineTuned XLMRoberta Transformer model, with its robust performance, offers
promising prospects for enhancing support ticket categorization accuracy and thus for the project
the final model for classification that has been used is XLMRoberta Transformer model.

7 Conclusion and Future Work

In summary, this research embarked on a comprehensive exploration of natural language pro-
cessing (NLP) and machine learning (ML) methodologies, utilizing non-negative matrix factoriza-
tion (NMF) for unsupervised clustering and fine-tuning transformer models—specifically, CNN+LSTM
with glove embedding, DistilBERT and XLMRoberta—for supervised classification. The primary
goal centered around automating the categorization of customer support tickets. The investigative
journey involved meticulous steps such as data loading, preprocessing, and exploration, where NMF
was employed for unsupervised clustering, revealing distinctive patterns in customer support tick-
ets. Concurrently, transformer models underwent rigorous training, evaluation, and performance
analysis, with a particular emphasis on the efficacy of CNN+LSTM, DistilBERT and XLMRoberta
in precisely categorizing support tickets into predefined classes. The results underscore the signi-
ficance of thoughtful model selection and fine-tuning for achieving superior performance in support
ticket classification tasks. Among the evaluated models, the FineTune XLMRoberta Transformer
emerged as the most promising, demonstrating the best accuracy and robust classification across
diverse ticket categories.

While the research has shown efficacy in successfully deploying accurate models to the AWS cloud,
it is not without limitations. Dependencies on the quality and diversity of the initial dataset and
the need for periodic model updates to adapt to evolving support ticket patterns pose challenges.
In essence, this research provides valuable insights into the practical application of NLP and ML
techniques, laying the groundwork for further refinements and enhancements. Future work may
involve seamless integration of these models into established incident management frameworks,
paving the way for enhanced incident detection and resolution capabilities in cloud computing
environments. Additionally, the exploration of ensemble models or hybrid approaches, combining
various machine learning algorithms, could provide a more robust and adaptive solution.
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