
Performance Evaluation of Various Container
Runtimes and Process ID Based Escape

Detection

MSc Research Project

Msc In Cloud Computing

Jogindersingh Ramani
Student ID: 22129588

School of Computing

National College of Ireland

Supervisor: Dr. Rashid Mijumbi

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Jogindersingh Ramani

Student ID: 22129588

Programme: Cloud Computing

Year: 2023/2024

Module: MSc Research Project

Supervisor: Rashid Mijumbi

Submission Due Date: 14/12/2023

Project Title: Performance Evaluation of Various Container Runtimes and
Process ID Based Escape Detection

Word Count: 2110

Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Jogindersingh Ramani

Date: 13th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Jogindersingh Ramani
x2212958

1 Introduction

This configuration manual provides detailed steps to set up the testing environment
and tools required to perform performance benchmarking of container runtimes and
experiments related to the research paper - ”Performance Evaluation of Various Con-
tainer Runtimes and Process ID Based Escape Detection”. Critical runtimes like Docker,
Gvisor, Kata, and Youki should be installed with benchmarking tools like Hyperfine and
Sysbench. Jenkins is also used for the detection of container escape through pipelines.
This manual covers various sections like launching EC2 instances, installing prerequis-
ites, executing benchmark tests, and creating Jenkins jobs for automation. Following this
manual will help to quickly set up the required tools and infrastructure to run experiments
and evaluate the performance of various container runtimes.

2 Launching EC2 instance in AWS

In this project, all the experimentation and setup are done on the AWS EC2 instance. So
here are the below steps to launch an AWS instance. So login to the AWS console, search
EC2 and click it, and go to instances. Then click ”Launch Instance”, and it will open
a new page asking for all the information like name, OS AMI(Amazon Machine Image),
Instance type, Key pair (used for login into the server), Network settings, storage, and
advanced settings. So type the name and select Ubuntu as OS in the ami section, and
in configure storage, make it 20 and choose instance type according to the experiment
needs. Finally, click on the launch instance, which will redirect to the ec2 instance page,
where you can see your instance. One can refer to the AWS Documentation for detailed
steps to launch an EC2 instance.

Documentation Link: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
EC2_GetStarted.html

3 Prerequisite

Below are the steps to install the necessary prerequisites that are required to run exper-
iments.

3.1 Docker Installation

To install docker Docker (2020) login to the AWS instance that was launched and run
the below commands.

1

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

• Setting up the apt repository:

Add Docker’s official GPG key:

sudo apt-get update

sudo apt-get install ca-certificates curl gnupg

sudo install -m 0755 -d /etc/apt/keyrings

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | \

sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg

sudo chmod a+r /etc/apt/keyrings/docker.gpg

Add the repository to Apt sources:

echo "deb [arch=$(dpkg --print-architecture) \

signed-by=/etc/apt/keyrings/docker.gpg] \

https://download.docker.com/linux/ubuntu \

$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt-get update

• Install docker related packages.

sudo apt-get install docker-ce docker-ce-cli \

containerd.io docker-buildx-plugin docker-compose-plugin

• Verify installation by running the below command.

sudo docker run hello-world

3.2 Gvisor Installation

To install Gvisor login to the ec2 instance that was launched and run the following
commands.

• Install the necessary package that will be required to install Gvisor gVisor Project
(2023).

sudo apt-get update && sudo apt-get install -y \

apt-transport-https && ca-certificates && curl && gnupg

• Prepare the apt repository to install and download Gvisor.

curl -fsSL https://gvisor.dev/archive.key | \

sudo gpg --dearmor -o /usr/share/keyrings/gvisor-archive-keyring.gpg

echo "deb [arch=$(dpkg --print-architecture) \

signed-by=/usr/share/keyrings/gvisor-archive-keyring.gpg] \

https://storage.googleapis.com/gvisor/releases release main" | \

sudo tee /etc/apt/sources.list.d/gvisor.list > /dev/null

• Install Gvisor by running the below command and verify the installation

sudo apt-get update && sudo apt-get install -y runsc

sudo systemctl reload docker

docker run --rm --runtime=runsc hello-world

2

3.3 Kata Container installation

To install Kata Container Kata Containers Project (2023), log in to the ec2 instance that
was launched and run the following commands. Also, install docker as mentioned in the
above steps. Use the following commands to install and verify kata containers.

$ ARCH=$(arch)

$ BRANCH="${BRANCH:-master}"

$ sudo sh -c "echo ’deb http://download.opensuse.org/repositories/home:/\

katacontainers:/releases:/${ARCH}:/${BRANCH}/xUbuntu_$(lsb_release -rs)/ /’ \

> /etc/apt/sources.list.d/kata-containers.list"\

$ curl -sL http://download.opensuse.org/repositories/home:/katacontainers:\

/releases:/${ARCH}:/${BRANCH}/xUbuntu_$(lsb_release -rs)/Release.key \

| sudo apt-key add -

$ sudo -E apt-get update

$ sudo -E apt-get -y install kata-runtime kata-proxy kata-shim

$ kata-runtime check

3.4 Youki Installation

To install Youki Youki Project (2023), log in to the ec2 instance that was launched and
run the following commands. Also, install docker as mentioned in the above steps. Rust
installation is also needed as Youki is built on Rust language.

• Installing rust on the Ubuntu ec2 server using the following commands. After
running the below command enter 1 and press enter.

curl --proto ’=https’ --tlsv1.3 https://sh.rustup.rs -sSf | sh

source $HOME/.cargo/env

rustc --version

• Installation of Compiler and necessary packages.

sudo apt update && sudo apt upgrade && sudo apt install build-essential\

git clone ’https://mpr.makedeb.org/just’ && cd just && makedeb -si \

export PATH="$PATH:$HOME/bin" && just --help

• Additional packages required.

$ sudo apt-get install && pkg-config && libsystemd-dev && build-essential \

libelf-dev && libseccomp-dev && libclang-dev && glibc-static && libssl-dev

• Install Youki using the below commands.

git clone https://github.com/containers/youki.git

cd youki && just youki-dev # or youki-release

./youki -h

3

3.5 Quark Container Installation

To install Quark Container QuarkContainer Project (2023), log in to the ec2 instance
that was launched and run the following commands. Also, install docker and rust as
mentioned in the above steps.

• Install prerequisite which is required to install quark containers.

rustup toolchain install nightly-2022-08-11-x86_64-unknown-linux-gnu

rustup default nightly-2022-08-11-x86_64-unknown-linux-gnu

sudo apt-get install libcap-dev

sudo apt-get install build-essential cmake gcc libudev-dev \

libnl-3-dev libnl-route-3-dev ninja-build pkg-config valgrind \

python3-dev cython3 python3-docutils pandoc libclang-dev

rustup component add rust-src

cargo install cargo-xbuild

• Build and install quark containers.

git clone https://github.com/QuarkContainer/Quark.git

cd Quark && make && make install

sudo mkdir /var/log/quark && sudo systemctl restart docker

• Check and verify the installation.

sudo systemctl restart docker

sudo systemctl restart docker.service

docker run --rm --runtime=quark hello-world

3.6 Benchmarking Tools Installation

In this project, two benchmarking tools are used which are hyperfine and sysbench. Its
installation steps are given below.

• Hyperfine sharkdp (2023) Installation steps:

wget https://github.com/sharkdp/hyperfine/releases/download/v1.16.1/\

hyperfine_1.16.1_amd64.deb

sudo dpkg -i hyperfine_1.16.1_amd64.deb

hyperfine --version

• Sysbench Kopytov (2004) installation steps:

wget -qO - https://packagecloud.io/install/repositories/akopytov/sysbench/\

script.deb.sh | sudo bash

sudo apt install -y sysbench

sysbench --version

4

3.7 Jenkins installation

To install Jenkins, log in to the ec2 instance that was launched and run the following
commands.

sudo wget -O /usr/share/keyrings/jenkins-keyring.asc \

https://pkg.jenkins.io/debian-stable/jenkins.io-2023.key

echo deb [signed-by=/usr/share/keyrings/jenkins-keyring.asc] \

https://pkg.jenkins.io/debian-stable binary/ | sudo tee \

/etc/apt/sources.list.d/jenkins.list > /dev/null

sudo apt-get update

sudo apt-get install jenkins

sudo apt install fontconfig openjdk-17-jre

java -version

sudo systemctl enable jenkins

sudo systemctl start jenkins

sudo systemctl status jenkins

Once the installation process is completed the Jenkins console can be accessed through
a browser with the URL http://you_servers_publicip:8080/. After loading this URL
one will get the below screen to unlock Jenkins. Get your initial password from the
location mentioned on the page and set up your initial username and password. Once
you log in you can access various functionality of Jenkins.

Figure 1: Unlock Jenkins getting the initial password.

3.8 Installation of GRYPE

Grype is the vulnerability scanner that is used to scan the docker images Kalaiselvi et al.
(2023). The output shows several vulnerabilities that are high, critical, and low.

curl -sSfL https://raw.githubusercontent.com/anchore/grype/main/\

install.sh | sh -s -- -b /usr/local/bin

To test the installation run the below command which will do a vulnerability test on
the docker image. This can be integrated with Jenkins by adding a stage for it.

5

http://you_servers_publicip:8080/

Figure 2: Grype installation working.

3.9 Build a Docker image that will be used everywhere in the
test

Below is the Dockerfile that will be used to create a Docker image. This image will be
used for benchmarking and also experiments that are used to detect container escape.

FROM busybox:latest

RUN apt-get update && apt-get install -y procps

Build this docker image using using the below command.

docker build -t imageName:imageTag -f Dockerfile .

4 Running Benchmarks

Below are the commands that are used to run various benchmarking by logging into
instances where runtimes are installed.

4.0.1 Benchmarking using sysbench

The sysbench is used for introducing various workloads on a runtime that will generate
metrics.

• CPU Benchmarking: Using this command the performance of the CPU under the
computation load. The workload is given by performing the task of calculating
prime numbers up to 20000. It will return various parameters which are used for
evaluation in the research.

• Memory Benchmarking: Sysbench does memory benchmarking by using 1KB size
and allocating a total of 10GB of memory to evaluate system memory performance.

docker run -it ubuntu:sysbench sysbench memory --memory-block-size=1K\

--memory-total-size=10G run

• I/O Benchmarking: The below command is used to perform random read write
operation of around 10GB in three stages which are prepare, run, and cleanup.

docker run ubuntu:sysbench sysbench fileio --file-total-size=10G \

--file-test-mode=rndrw prepare

docker run ubuntu:sysbench sysbench fileio --file-total-size=10G \

6

Figure 3: CPU benchmarking using sysbench.

Figure 4: Memory benchmarking using sysbench.

--file-test-mode=rndrw run

docker run ubuntu:sysbench sysbench fileio --file-total-size=10G \

--file-test-mode=rndrw cleanup

• Container Startup: The below command is used to measure the container startup
time using the docker command.

date +%s%N; docker run --rm -it ubuntu /bin/date +%s%N

4.1 Benchmarking using Hyperfine

It is a built-in Linux command line utility that is used for benchmarking by running
scripts multiple times. For Container lifecycle evaluation multiple three scripts were
made one was used to build docker images, the other was used to run the container from
the docker image and the last script was to kill the running container. This was done
using the below command.

hyperfine --prepare ’sudo sync; echo 3 | sudo tee /proc/sys/vm/drop_caches’\

7

--warmup 10 --min-runs 100 ’sudo ./build.sh &&\

sudo ./run.sh && sudo ./delete.sh’ --show-output

Time (mean ± σ): 1.836 s ± 0.079 s [User: 0.219 s, System: 0.166 s]

Range (min ... max): 1.670 s ... 2.047 s 100 runs

5 Jenkins Job creation

In this section, the algorithms that are proposed are integrated with Jenkins. After log-
ging into Jenkins one will land on the login page where the Jenkins job can be created.
After clicking on a new item, it will ask the name of the pipeline. After that click on the
pipeline, it will open a job configuration page and in the pipeline section add the below
pipeline code which is written in Grovvy.

Code:-

pipeline {

agent any

environment {

DOCKER_IMAGE_ID = "" // Declare an environment variable

to store the image ID

}

stages {

stage(’Checkout ’) {

steps {

// Checkout code from Git repository

git branch: ’main’, url:

’https :// github.com/jogindersingh1913/RIC -SEM3.git’

}

}

stage(’Build ’) {

steps {

script {

// Build the Docker image and capture the

image ID\

//Test case 1

DOCKER_IMAGE_ID = sh(script: ’docker␣build␣

-t␣busybox:latest␣-f␣ubuntu.Dockerfile␣.␣

-q’, returnStdout: true).trim()

//test case 2

// DOCKER_IMAGE_ID = sh(script: ’docker␣

build␣-t␣busybox:latest␣-f␣

ubuntu_escaped.Dockerfile␣.␣-q’,

returnStdout: true).trim()

// test case 4

// DOCKER_IMAGE_ID = sh(script: ’docker␣

build␣-t␣busybox:latest␣-f␣

8

nginx.Dockerfile␣.␣-q’, returnStdout:

true).trim()

echo "Docker␣Image␣ID:␣${DOCKER_IMAGE_ID}"
}

}

}

stage(’Scan␣with␣Grype ’) {

steps {

script {

// Update Grype database

sh ’grype␣db␣update ’

// Scan the Docker image using the captured

image ID

sh "grype␣${DOCKER_IMAGE_ID}"
//test case 4

// sh "grype␣${DOCKER_IMAGE_ID}␣␣-f␣Critical␣
>=1"

}

}

}

stage(’Run’) {

steps {

script {

// Run a test container

// test case 1

sh ’docker␣run␣-itd␣busybox:latest ’

//test case 2 escape container

// sh ’docker␣run␣-d␣-v␣/:/ host/␣

--cap -add=ALL␣--security -opt␣

apparmor=unconfined␣--security -opt␣

seccomp=unconfined␣--security -opt␣

label:disable␣--pid=host␣--userns=host␣

--uts=host␣--cgroupns=host␣busybox:latest␣

chroot␣/host/␣bash’

sh ’docker␣ps’

}

}

}

stage(’Check␣Container␣Escape ’) {

steps {

script {

// Check container escape

// sh ’sh␣cescapeByPid.sh’

sh ’sh␣containerEscape.sh’

}

}

}

9

stage(’other␣checks ’) {

steps {

script {

// Additional checks

// sh ’sh␣otherparaescapes.sh’

echo ’container␣intact ’

}

}

}

}

post {

always {

// Stop and remove all containers

sh ’docker␣stop␣$(docker␣ps␣-q)’
sh ’docker␣rm␣$(docker␣ps␣-qa)’

}

}

}

Figure 5: Jenkins pipeline

After adding this code click on save and to run the pipeline just click on build and it will
run the algorithm.

References

Docker, I. (2020). Docker, lınea].[Junio de 2017]. Disponible en: https://www. docker.
com/what-docker .

gVisor Project (2023). gVisor User Guide - Installation. Accessed 13 December 2023.
URL: https://gvisor.dev/docs/userguide/install/

Kalaiselvi, R., Ravisankar, S., Varun, M. and Ravindran, D. (2023). Enhancing the con-
tainer image scanning tool-grype, 2023 2nd International Conference on Advancements

10

in Electrical, Electronics, Communication, Computing and Automation (ICAECA),
IEEE, pp. 1–6.

Kata Containers Project (2023). Kata Containers Documentation. Accessed 13 December
2023.
URL: https://katacontainers.io/docs/

Kopytov, A. (2004). Sysbench: a system performance benchmark, http://sysbench.
sourceforge. net/ .

QuarkContainer Project (2023). QuarkContainer GitHub Repository. Accessed 13
December 2023.
URL: https://github.com/QuarkContainer/Quark

sharkdp (2023). hyperfine: A command-line benchmarking tool. Accessed 13 December
2023.
URL: https://github.com/sharkdp/hyperfine

Youki Project (2023). Youki Documentation - Basic Setup. Accessed 13 December 2023.
URL: https://containers.github.io/youki/user/basicsetup.html

11

	Introduction
	Launching EC2 instance in AWS
	Prerequisite
	Docker Installation
	Gvisor Installation
	Kata Container installation
	Youki Installation
	Quark Container Installation
	Benchmarking Tools Installation
	Jenkins installation
	Installation of GRYPE
	Build a Docker image that will be used everywhere in the test

	Running Benchmarks
	Benchmarking using sysbench
	Benchmarking using Hyperfine

	Jenkins Job creation

