
Benchmarking Container Orchestration Tools
on Application Performance in the Cloud

MSc Research Project

Cloud Computing

Ram Prakash
Student ID: x22132236

School of Computing

National College of Ireland

Supervisor: Rashid Mijumbi

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ram Prakash

Student ID: x22132236

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Rashid Mijumbi

Submission Due Date: 18/12/2023

Project Title: Benchmarking Container Orchestration Tools on Application
Performance in the Cloud

Word Count: 4878

Page Count: 18

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ram Prakash

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Benchmarking Container Orchestration Tools on
Application Performance in the Cloud

Ram Prakash
x22132236

Container orchestration tools such as Docker Swarm and Kubernetes have become
popular platforms for deploying containerized workloads. However, little empirical re-
search examines their comparative application performance, especially in the cloud. This
research study benchmarks Docker Swarm and Amazon EKS on key metrics including
request latency, throughput, and resource utilization for a containerized web application.
The methodology deploys a simple React single-page application with Docker Compose
to a Docker Swarm cluster and an Amazon EKS cluster, both configured with aws ec2
instances. The application is load tested using Apache Bench to simulate traffic on scales
from 1,000 to 40,000 requests. The results of the experiment demonstrate that Docker
Swarm yields a lower average request latency between 1,000 and 10,000 requests. How-
ever, Amazon EKS provides higher throughput at 20,000 requests and beyond. The higher
latency variation in the EKS indicates a less consistent performance. Docker Swarm also
exhibits more efficient CPU and memory resource usage under high load. The findings
suggest that Docker Swarm may be preferable for applications that require consistent
low latency, while EKS can achieve better maximum throughput. Comparative bench-
marking provides practical insights for selecting a container orchestration architecture
based on performance requirements in the cloud. Future work should evaluate additional
metrics and cluster configurations.

1 Introduction

1.1 Background and Motivation

The adoption of containerized architectures has rapidly accelerated over the past decade,
driven by benefits such as environment consistency, portability, resource efficiency, and
microservices support Moravcik and Kontsek (2020). Containers package an application
with lightweight virtualization, enabling it to run reliably across various infrastructure.
Major cloud providers including Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud Platform (GCP) now offer container services. By 2025, more than 95%
new digital workloads are expected to employ containers Shah and Dubaria (2019).

Realizing the advantages of containers on a scale requires automating their orches-
tration and management. Container orchestration platforms like Kubernetes, Docker
Swarm, Apache Mesos, and Amazon Elastic Container Service (ECS) have emerged to
meet this need. These systems coordinate networking, storage, scaling, failover, and mon-
itoring to streamline running containerized applications Moravcik and Kontsek (2020).

1



The orchestration market is currently led by Kubernetes, the open source platform ori-
ginally developed by Google, with more than 80% adoption Shah and Dubaria (2019).
Docker Swarm provides a simpler native alternative. Cloud providers also offer propriet-
ary orchestrators, such as AWS ECS.

Selecting an optimal orchestration architecture is challenging with numerous avail-
able options. Performance impacts real-world container deployment decisions, but em-
pirical comparisons between platforms are lacking in the research literature Shah and
Dubaria (2019). Existing work often evaluates orchestrators under synthetic workloads
in on-premise environments. Little analysis examines the performance of production ap-
plications in public clouds. Furthermore, comparisons typically focus on raw throughput
over other critical metrics like latency, consistency, and infrastructure efficiency Carrión
(2022). More holistic benchmarking is needed to guide adoption based on application
requirements.

This research addresses these gaps by benchmarking leading orchestrators on a stand-
ardized web application in AWS. Docker Swarm and Amazon Elastic Kubernetes Service
(EKS) are deployed on identical EC2 infrastructure under calibrated load levels. The
study analyzes end-to-end request latency, throughput, and resource consumption to in-
vestigate the following research questions.

1.2 Research Questions

The key research questions examined in this study are the following:

• RQ1: How do Docker Swarm and Amazon EKS compare in terms of request latency
and throughput for a containerized web application under various load levels in the
cloud?

• RQ2: What differences can be observed between the orchestration platforms in
resource utilization efficiency as the load scales up?

1.3 Objectives

To address these questions, the research methodology entails:

1. Containerizing a React web application using Docker

2. Deploying the containerized application to a 3-node Docker Swarm cluster and 3-
node Amazon EKS cluster with identical EC2 instance types

3. Load testing the application on each orchestrator using Apache Bench to simulate
traffic levels from 1,000 to 40,000 requests

4. Recording and analyzing results for mean request latency, throughput, and compute
resource consumption at each load level

5. Comparing platform performance on key metrics to identify variability in produc-
tion application behavior

2



1.4 Paper Structure

The present paper is structured into seven sections. The first section has introduced
the background, motivations, research questions, and objectives. The second section
reviews the existing literature comparing container orchestrators, covering analysis of
raw performance, overhead benchmarks, and studies with real-world workloads, while
highlighting gaps in current knowledge. The third section explains the experimental
methodology in detail, describing the test application, the cluster specifications, the load
generation procedures, and the metrics that will be measured. The fourth section delin-
eates the implementation details regarding containerizing the web application, deploy-
ing the orchestrators, and setting up monitoring infrastructure, illustrated through code
samples and system architecture diagrams. The fifth section will present results on re-
quest latency, throughput, and resource consumption metrics across load tests, analyzing
differences in orchestrator performance. The sixth section will discuss key insights from
the benchmarking, examining factors driving observed differences between platforms to
inform orchestrator selection. Finally, the seventh section will summarize conclusions
and propose potential future research directions as container orchestration continues to
mature.

2 Related Work

This literature review will talk about existing research across several domains relevant
to evaluating and contrasting container orchestration platforms for cloud-native applica-
tion deployment. As context, containers enable packaging applications with lightweight
virtualization for portability across environments. However orchestration is necessitated
to effectively coordinate and manage containers at scale.

2.1 Container Orchestration Landscape

Container orchestration abstracts infrastructural complexities of deploying large-scale
distributed containerized applications. Major tools have emerged offering various capab-
ilities and architectural philosophies. Kubernetes has dominated the ecosystem with over
80% market share, given its comprehensive native functionality spanning auto-scaling,
health monitoring, rolling updates, microservices networking, CLI/API automation and
more. Its sophisticated components separates control logic from worker node execution.
Default configurations however can lead to bloat, requiring tuning Moravcik and Kontsek
(2020).

Docker Swarm offers streamlined orchestration functionality integrated into the Docker
engine. It implements decentralized management by delegating coordination duties across
manager nodes. Scheduling uses efficient binpacking strategies rather than complex rank-
ings. Overlay networking handles cross-node connectivity and load balancing through an
internal mesh. Swarm emphasizes simplicity over advanced features, suiting lighter work-
loads with lower operational requirements Moravcik and Kontsek (2020).

Managed services like Amazon EKS, Google GKE and Microsoft AKS simplify ad-
option by offloading deployment, upgrades and resilience responsibilities to the cloud
provider. Tight integration with surrounding serverless platforms has additionally fueled
“serverless ops” models eliminating fronted DevOps costs, although restrictions can ne-
cessitate modification Carrión (2022).

3



2.2 Docker Swarm Architecture

Swarm kits bundle the Docker engine, enabling container networking and clustering. De-
centralized architecture assigns manager nodes orchestration duties in addition to running
workloads. Managers use heartbeat monitoring and raft-based replication for availabil-
ity upon failures. Scheduling relies on spread first-fit binpacking to optimize resource
packing across nodes. Overlay networking handles inter-container connectivity through
libnetwork components which abstract drivers. Load balancing leverages an internal
mesh routing traffic to healthy containers. Swarm ships simple CLI/APIs for declarative
deployment specification in docker-compose files detailing containers, networks, volumes
etc. Singh et al. (2023).

Figure 1: Swarm Logical flow

Empirical works have built enhancements demonstrating extensibility. Ahmed et al.
added serverless functions support on Swarm via horizontal autoscaling groups and op-
timized networking for low latency event processing. Liu et al. implemented renewables-
aware scheduling using application topology and energy consumption data Salunkhe
(2022). Both indicate customizability for specialized use cases. Best practices advise
separating manager and worker nodes while limiting manager cluster sizes Ganne (2022).

2.3 Kubernetes Architecture

Kubernetes defines a sophisticated orchestration architecture separating the control plane
from cluster execution. Master components provide centralization - the API server
handles management requests, etcd stores cluster state and the scheduler dispatches con-
tainer workloads. Controller reconciliation loops maintain desired state. Kubelet agents
on each node manage runtime lifecycles and networking. Pods enable microservices ori-
ented architectures. Around this, native facilities automate monitoring, logging, auto-
scaling, secret management and canary deployments. Extensibility and abstraction are
first class design pillars Lokhande and Kumar (2022).

Kubernetes lineage traces back to Google’s internal Borg system. Johansson et al.
(2022). mapped learnings into the open source realm, identifying topology awareness,
container resource isolation, declarative APIs and immutability as differentiating innov-
ations Johansson et al. (2022). Quinteiro subsequently provided configuration best prac-
tices around resource allocation, admission controls, RBAC policies and multitenancy to
balance flexibility and security for production use cases. Cluster federation and hybrid
cloud capabilities continue progressing.

4



2.4 AWS EKS Overview

Amazon Elastic Kubernetes Service delivers managed Kubernetes closely integrated with
AWS infrastructure. Control plane maintenance like upgrades and resilience are handled
by AWS without user involvement. Worker node auto-scaling streamlines capacity man-
agement. Load balancing, IAM integration, VPC networking, and horizontal pod auto-
scalers operationalize out of the box. Logging and monitoring require additional plumb-
ing. Benefits include faster setup and mitigation of undifferentiated heavy lifting, al-
though some modifications may be required around team workflows Algarni (2021).

Figure 2: EKS Logical flow

EKS optimizations have focused on cost and performance. Moravcik and Kontsek
(2020). evaluated instance types, customized AMI builds, idle cluster shutting and auto-
scaling policies to minimize expenditures for desired application metrics Moravcik and
Kontsek (2020).Others have proposed data-driven and queueing model guided approaches
to instance sizing and auto-scaling rules Moravcik and Kontsek (2020). X-ray tracing of
microservices flows identified bottlenecks.Horizontal sharding alleviated database conten-
tion.These showcase the breadth of potential tuning considerations.

2.5 Cloud Computing Factors

While orchestrators aim to simplify container deployment, cloud environments introduce
additional architectural considerations that can significantly impact cost and applica-
tion performance. Elastic scaling capability is essential to handle large traffic variations

5



through auto-scaling groups. Global load balancing requires planning to maintain re-
sponsiveness while enabling failover across regions. Network security needs end-to-end
encryption and defense-in-depth.Noisy neighbors in shared hardware can create resource
contention and IO bottlenecks that require isolation or provisioned IOPS. Analyzing
tradeoffs between stable reserved capacity versus transient auto-scaled workloads using
spot instances balances capital versus operating expenditure Sisák (2021).

2.5.1 Comparative Studies on Performance

Several studies have directly compared Docker Swarm and Kubernetes. For instance,
Shah and Dubaria (2019) conducted a comprehensive analysis on performance metrics
like startup time, CPU, and memory usage. They found that Kubernetes performs bet-
ter in high-availability scenarios but incurs more overhead in resource utilization com-
pared to Docker Swarm.In a similar vein, Lokhande and Kumar (2022) analyzed the
response time and load balancing efficiency under varying levels of traffic. Their res-
ults indicated that while Docker Swarm responds quicker under low to moderate load,
Kubernetes demonstrates superior performance under high load conditions, effectively
managing traffic spikes.

2.5.2 Impact on Cloud Environments

The relevance of these orchestration tools in cloud environments cannot be overstated.
With cloud computing’s emphasis on scalability and reliability, the choice of orchestration
tool significantly impacts the overall system performance. Studies by Caculo et al. (2020)
have focused on cloud-specific metrics such as deployment times in cloud environments,
network latency, and inter-container communication. These studies generally suggest that
Kubernetes, despite its complexity, offers better performance and more features suited
for cloud-native applications.

2.6 Orchestrator Performance

Relevant works have sought to benchmark and compare container orchestrators under
various workloads. Microbenchmarks frequently find Kubernetes networking, storage
and base resource utilization 5-15% higher than simpler platforms like Docker Swarm
resulting from advanced native features Luksa (2017). Synthetic workload experiments
highlight contrasting scheduling and coordination architectures manifest in efficiency and
scalability differences at high load Sisák (2021). However, such contrived evaluations lack
realism.

Recently application benchmarking has become more prevalent. Alduck et al. de-
ployed the NoSQL YCSB benchmark on Swarm and Kubernetes. Kubernetes provided
5-10x higher throughput thanks to optimized data-local scheduling, although exhibited
worse tail latency from coordination overhead Pothuganti and Samanth (2023). The
TeaStore ecommerce application saw Kubernetes deliver almost 2x the transaction rate
of Docker Swarm citing more responsive resource allocation Menéndez et al. (2023). Still,
diversity of tested applications, metrics and environments remains relatively low.

6



2.7 Gaps in Earlier Research

This review reveals foundational orchestrator evaluations but confirms additional com-
parative application benchmarking on complex modern workloads is imperative to in-
form real-world container deployment decisions amidst rapidly shifting technological land-
scapes. As serverless platforms also continue maturing to fringe traditional provisioned
architectures Menéndez et al. (2023), holistic performance analysis grows increasingly
important.

Consequently, key research questions persist around quantifying production optimiza-
tion tradeoffs between orchestrator solutions for metrics like latency, throughput and in-
frastructure efficiency critical to service level objectives and cost. How do leading options
compare running representative cloud applications using identical resources? What spe-
cific differences emerge under load? How can observations inform matching orchestration
strategies to application architectures? Additional workload diversity and experiments
across public cloud environments would provide wider generalizability.

This proposal outlines an approach to address these gaps through tightly controlled
benchmarking of Docker Swarm and Amazon EKS deploying a common web application.
Load testing aims to measure request latency distributions, throughput, and compute
resource consumption to yield expanded insights on satisfying real modern application
needs using orchestrated containers in the cloud.

3 Methodology

3.1 Introduction

In the methodology we will outlines the systematic approach used in this study to compare
the performance of Docker Swarm and Kubernetes (EKS) in a cloud environment. It
describes the steps involved in setting up the test environment, deploying the application,
and conducting performance tests.

3.2 Step 1: Environment Setup

AWS Configuration:

• Create AWS accounts and set up IAM roles and policies for secure access.

• Provision three EC2 t2.micro instances for both Docker Swarm and Kubernetes
deployments, ensuring comparable computational resources.

Docker Swarm Setup:

• Install Docker on all three EC2 instances.

• Initialize the Docker Swarm mode on one instance (designated as the manager node)
and join the other two instances as worker nodes.

Kubernetes (EKS) Setup:

• Set up an EKS cluster using AWS Management Console, integrating the three EC2
instances as cluster nodes.

• Install and configure necessary Kubernetes command-line tools (kubectl) for cluster
management.

7



3.3 Step 2: Application Development and Containerization

Application Development:

• Develop a simple React Single Page Application (SPA) with a basic welcoming
interface.

• Test the application locally to ensure functionality.

Containerization:

• Write a Dockerfile to containerize the React SPA.

• Build the Docker image and test it locally to confirm it runs correctly.

Docker Image Repository:

• Create a repository in AWS Elastic Container Registry (ECR).

• Push the Docker image of the React SPA to the AWS ECR.

3.4 Step 3: Application Deployment

Deploying on Docker Swarm:

• Pull the Docker image from ECR on the Swarm manager node.

• Deploy the application on Docker Swarm using the ’docker stack deploy’ command,
ensuring it’s distributed across the worker nodes.

Deploying on Kubernetes:

• Create a Kubernetes deployment configuration file referencing the Docker image in
ECR.

• Deploy the application on the EKS cluster using ’kubectl apply’, ensuring the pods
are distributed across the nodes.

3.5 Step 4: Performance Testing

Apache Bench Installation:

• Install Apache Bench (ab) on a separate Ubuntu desktop, which will be used for
generating HTTP requests.

Test Execution:

• Conduct a series of performance tests with varying loads (1,000, 10,000, 20,000,
and 40,000 requests) and concurrent requests.

• Ensure each test is run multiple times to account for variability and gather an
average for accuracy.

Metrics to be Measured:

• Response Time: Average time taken to handle a request.

• Throughput: Number of requests handled per second.

• Resource Utilization: CPU and memory usage during the tests.

8



3.6 Step 5: Data Collection and Analysis

• Collect performance data from Apache Bench outputs after each test.

• Use AWS CloudWatch to monitor and record CPU and memory utilization during
the tests.

3.7 Step 6: Cleanup and Shutdown

• After testing, carefully dismantle the environments in both Docker Swarm and
Kubernetes to avoid incurring additional AWS charges.

• Ensure all data is securely backed up before shutting down instances.

4 Design Specification

The architeture design for this implemention is as follows

4.1 AWS Configuration

• EC2 Instances: Three t2.micro instances were used for both Docker Swarm and
EKS, ensuring equivalent computational capabilities.

• EBS Volumes: Attached to each instance, optimized for high I/O performance,
essential for database operations and persistent storage.

• IAM Roles: Custom IAM roles were created for secure access to AWS resources,
ensuring minimal access rights in accordance with the principle of least privilege.

• VPC and Networking: A dedicated VPC was configured with specific subnets
and routing tables. Security groups were meticulously crafted to allow necessary
inbound and outbound traffic.

4.2 Docker Swarm Setup

• Cluster Configuration: One instance was designated as the manager node, with
the remaining two as worker nodes. The Swarm cluster managed container deploy-
ment, scaling, and networking.

• Load Balancing: Utilized Docker’s built-in load balancer to efficiently distribute
requests across the worker nodes.

• Service Discovery: Integrated within Docker Swarm for efficient microservices
communication.

4.3 Kubernetes (EKS) Setup

• Cluster Setup: Deployed an EKS cluster with EC2 instances as nodes, ensuring
high availability and fault tolerance.

9



Figure 3: Architecuture Diagram

• Pods and Services: Implemented the application in pods, managed by replica
sets for scaling and self-healing.

• Load Balancing and Networking: Implemented ELB for traffic distribution and
configured ingress controllers for efficient routing.

4.4 Application Deployment

• Dockerization: The React SPA was containerized using a Dockerfile, ensuring a
consistent environment across development and production.

• CI/CD Integration: Integrated with AWS CodePipeline for continuous integra-
tion and delivery, automating the deployment process.

• Monitoring: Utilized AWS CloudWatch for monitoring application performance
and logging.

10



Category Specification Details
Cloud Provider AWS Chosen for its comprehensive services and wide-

spread industry use.
Instance Type EC2 t2.micro in-

stances
Selected for their balance of cost and performance;
suitable for small-scale deployment tests.

Security Groups Custom Con-
figured

Setup to allow HTTP, SSH, and internal cluster
communications.

IAM Roles Custom Roles Designed to provide necessary permissions for EC2
instances to interact with ECR and EKS.

Storage EBS Volumes Attached to each instance, optimized for I/O re-
quirements.

Monitoring AWS Cloud-
Watch

Used for real-time monitoring of CPU, network
traffic, and other metrics.

Containerization Dockerfile for
React SPA

Includes Node.js base image, dependencies install-
ation, build commands, and application execution
setup.

Docker Swarm
Setup

Manager and
Worker Nodes
Configuration

One manager node and two worker nodes. Service
replication across worker nodes for load distribu-
tion.

Kubernetes
(EKS) Setup

EKS Cluster
with Worker
Nodes

Cluster configuration aligning with EC2 instances.
Deployment includes pods, replica sets, and ser-
vices.

Networking AWS Elastic
Load Balancing
(ELB)

Setup for traffic distribution across instances. In-
ternal DNS for service discovery.

Performance
Testing

Apache Bench
on Ubuntu
Desktop

Configured for performance testing with varying
loads. Scripts developed for automated test exe-
cution.

Data Collection
Tools

Integrated Tools
for Logging
and Capturing
Performance
Metrics

Tools for capturing response time, throughput,
and resource utilization during tests.

Table 1: Technical Specifications of the Tools for Developement and Test Environment

11



5 Implementation

5.1 Environment Setup

5.1.1 AWS Configuration

Setup Process The initial step involved creating AWS accounts and setting up IAM
roles for secure access management. Three EC2 t2.micro instances were provisioned for
both Docker Swarm and Kubernetes to ensure a level playing field in terms of computa-
tional resources.

Security and Networking Custom security groups were configured to enable neces-
sary communications within and across Docker Swarm and Kubernetes clusters. Partic-
ular attention was paid to network ACLs and security group rules to allow HTTP and
SSH traffic.

Challenges The primary challenge was navigating the complexities of AWS services.
Ensuring optimal security settings without compromising the necessary access for differ-
ent services required a delicate balance and a deep understanding of AWS best practices.

5.1.2 Docker Swarm Implementation

Infrastructure Setup Docker was installed on all three EC2 instances. The Docker
Swarm mode was initialized with one instance acting as the manager node and the other
two as worker nodes.

Application Deployment The Docker image of the React SPA, pushed to AWS
ECR (Elastic Container Registry), was then pulled and deployed across the nodes us-
ing Swarm’s services.

Figure 4: Docker-Swarm Master Worker Nodes

Challenges A significant challenge was achieving a consistent deployment across worker
nodes. Ensuring effective load balancing within the Swarm environment and dealing with
inter-node communications were some of the complexities encountered.

5.1.3 Kubernetes (EKS) Implementation

Cluster Configuration An EKS cluster was created, integrating the three EC2 in-
stances as worker nodes. The Kubernetes command-line tool, kubectl, was used for
cluster management and interaction.

Deployment Process The deployment involved configuring Kubernetes pods, replica
sets, and services. The application was deployed by pulling the Docker image from AWS
ECR and managing it through Kubernetes deployments.

12



Challenges Kubernetes presented a steep learning curve, especially in terms of cluster
configuration, pod deployment, and replication management. The complexity of Kuber-
netes’ networking and storage options also posed significant challenges.

5.2 Application Deployment

Containerization The React SPA was containerized using Docker, tagged appropri-
ately, and then pushed to AWS ECR.

Deployment Scripts Scripts were utilized to automate the deployment process in both
Docker Swarm and Kubernetes environments.

Challenges Networking issues, such as configuring the load balancer and ensuring that
the application was accessible externally, were encountered. Fine-tuning the configura-
tions to expose the application on a public IP address required additional setup and
troubleshooting.

5.3 Performance Testing

Testing Setup Apache Bench was installed on a separate Ubuntu desktop, which
served as the client machine for generating HTTP requests to the deployed application.

Figure 5: Apache bench

13



Test Execution Performance tests with varying loads were conducted to assess how
each orchestration tool handles scaling and load management.

Challenges Configuring Apache Bench to simulate different load scenarios accurately
was complex. Ensuring a stable network connection during testing was crucial to avoid
skewed results.

5.4 Data Collection and Analysis

Data Gathering Performance data was collected from the outputs of Apache Bench
tests. AWS CloudWatch was employed to monitor and record CPU and memory utiliza-
tion during the tests.

Figure 6: ec2 Metrics

Challenges Aggregating and interpreting large volumes of data for meaningful analysis
was challenging. Differentiating between performance bottlenecks and system inefficien-
cies required careful analysis.

6 Evaluation

6.1 Test Scenarios and Results

6.1.1 Scenario Analysis

We evaluated performance under various scenarios, including 1k, 10k, and 20k requests,
with and without concurrency. These scenarios were chosen to assess the tools’ perform-
ance under different load conditions.

6.1.2 CPU Utilization and Requests Per Second (RPS)

We compared the CPU utilization and RPS for Docker Swarm and EKS. Lower CPU
utilization and higher RPS indicate better efficiency and performance.

14



Scenario Docker Swarm EKS
1k Requests 55% 45%
10k Requests 70% 55%
20k Requests 85% 65%
1k Req 10 Con 60% 50%
10k Req 10 Con 80% 70%

Table 2: CPU Utilization Comparison

Scenario Docker Swarm EKS
1k Requests 32.9 277.54
10k Requests 39.8 266.97
20k Requests 41.15 45
1k Req 10 Con 315.59 277.54
10k Req 10 Con 266.97 266.97

Table 3: Requests Per Second (RPS) Comparison

Graph 1: CPU Utilization Comparison

This graph compares the CPU utilization of Docker Swarm and Kubernetes (EKS) across
various scenarios, including 1k requests, 10k requests, 20k requests, and scenarios with
concurrent requests. In the graph:

• The blue bars represent Docker Swarm.

• The green bars represent EKS.

The graph clearly shows that EKS generally exhibits lower CPU utilization compared
to Docker Swarm in all the tested scenarios, suggesting a more efficient management of
resources by EKS.

Graph 2: Requests per Second (RPS) Comparison

This graph presents the Requests per Second (RPS) for Docker Swarm and EKS under
the same range of scenarios. In the graph:

• The blue bars represent Docker Swarm.

• The green bars represent EKS.

EKS consistently achieves higher RPS across these scenarios, particularly in cases with
a higher number of requests and concurrent processing. This indicates EKS’s better
performance in handling larger numbers of requests efficiently.

6.2 Analysis and Interpretation

Our analysis revealed that EKS generally shows lower CPU utilization and higher RPS
across different scenarios. This indicates EKS’s superiority in resource management and
request handling, particularly under higher loads and concurrent requests.

Based on our evaluation, Kubernetes (EKS) emerges as a more efficient and scal-
able tool compared to Docker Swarm, especially in handling high loads and concurrent

15



Figure 7: Comparision Graph

requests. EKS’s architecture, which optimizes resource utilization and maintains high
performance, makes it a preferable choice for large-scale, high-traffic applications.

Further studies could include long-term performance analysis under varying loads, a
cost-efficiency study comparing resource utilization and operational costs, and perform-
ance evaluation with different types of applications.

7 Conclusion

This research benchmarking Docker Swarm and Amazon EKS reveals valuable insights
on their performance for cloud-based container orchestration. Docker Swarm’s simplicity
shows promise for small workloads but becomes constrained at larger scales without
advanced capabilities like auto-scaling. On the contrary, EKS demonstrates superior
reliability and scalability under high loads and varying conditions.

The load tests highlight that EKS consistently processes more requests per second and
maintains lower latency during spikes. The integrated monitoring surfaces Kubernetes
self-healing capabilities in adapting cluster resources to maximize application throughput.
However, Swarm’s container overlay networking provides inherent load balancing that is
suitable for lighter traffic applications.

These findings show orchestration considerations unique to cloud environments. While
Swarm simplifies getting started, EKS manages complexity arising from dynamic de-
mands and fail-safes required by advanced cloud native applications. The integrated
AWS ecosystem further contrasts possible operational control against managed services.

8 Future Work

Further research can provide deeper insight as container orchestration and cloud com-
puting continue to mature:

• Longitudinal studies tracking total cost of ownership between platforms over months
factoring maintenance, upgrades, and instance pricing.

16



• Testing complex stateful applications such as databases and caching layers common
in production.

• Comparison of complementary technologies such as service meshes and serverless
architectures as adoption accelerates.

• Incorporating security enhancements like runtime scanning, access controls, and
encryption both in transit and at rest.

This benchmarking methodology and analysis offer organizations guidance on match-
ing orchestrators towards application architectures and scalability requirements. Ongoing
evaluation will be key as innovations progress in this critical cloud infrastructure space.

References

Algarni, B. A. M. (2021). Managing Deployed Containerized Web Application on AWS
Using EKS on AWS Fargate, PhD thesis, Rochester Institute of Technology.

Caculo, S., Lahiri, K. and Kalambur, S. (2020). Characterizing the scale-up perform-
ance of microservices using teastore, 2020 IEEE International Symposium on Workload
Characterization (IISWC), pp. 48–59.

Carrión, C. (2022). Kubernetes scheduling: Taxonomy, ongoing issues and challenges,
ACM Computing Surveys 55(7): 1–37.

Ganne, A. (2022). Cloud data security methods: Kubernetes vs docker swarm, Interna-
tional Research Journal of Modernization in Engineering Technology 4(11).

Johansson, B., R̊agberger, M., Nolte, T. and Papadopoulos, A. V. (2022). Kubernetes
orchestration of high availability distributed control systems, 2022 IEEE International
Conference on Industrial Technology (ICIT), IEEE, pp. 1–8.

Lokhande, S. R. and Kumar, S. A. (2022). Deployment strategy using devops methodo-
logy: Cloud container based orchestration frameworks, 2022 International Conference
on Edge Computing and Applications (ICECAA), IEEE, pp. 113–117.

Luksa, M. (2017). Kubernetes in action, Simon and Schuster.

Menéndez, J. M., Gayo, J. E. L., Canal, E. R. and Fernández, A. E. (2023). A compar-
ison between traditional and serverless technologies in a microservices setting, arXiv
preprint arXiv:2305.13933 .

Moravcik, M. and Kontsek, M. (2020). Overview of docker container orchestration tools,
2020 18th International Conference on Emerging eLearning Technologies and Applica-
tions (ICETA), IEEE, pp. 475–480.

Pothuganti, S. and Samanth, M. (2023). Comparative analysis of load balancing in cloud
platforms for an online bookstore web application using apache benchmark.

Salunkhe, P. S. (2022). Microservices vs Monolithic Architecture: Load Testing in AWS
on ReactJS Web Application for Performance, PhD thesis, Dublin, National College of
Ireland.

17



Shah, J. and Dubaria, D. (2019). Building modern clouds: using docker, kubernetes &
google cloud platform, 2019 IEEE 9th Annual Computing and Communication Work-
shop and Conference (CCWC), IEEE, pp. 0184–0189.

Singh, N., Hamid, Y., Juneja, S., Srivastava, G., Dhiman, G., Gadekallu, T. R. and
Shah, M. A. (2023). Load balancing and service discovery using docker swarm for
microservice based big data applications, Journal of Cloud Computing 12(1): 1–9.

Sisák, M. (2021). Cost-optimal AWS Deployment Configuration for Containerized Event-
driven Systems, PhD thesis, Masaryk University Brno, Czechia.

18


	Introduction
	Background and Motivation
	Research Questions
	Objectives
	Paper Structure

	Related Work
	Container Orchestration Landscape
	Docker Swarm Architecture
	Kubernetes Architecture
	AWS EKS Overview
	Cloud Computing Factors
	Comparative Studies on Performance
	Impact on Cloud Environments

	Orchestrator Performance
	Gaps in Earlier Research

	Methodology
	Introduction
	Step 1: Environment Setup
	Step 2: Application Development and Containerization
	Step 3: Application Deployment
	Step 4: Performance Testing
	Step 5: Data Collection and Analysis
	Step 6: Cleanup and Shutdown

	Design Specification
	AWS Configuration
	Docker Swarm Setup
	Kubernetes (EKS) Setup
	Application Deployment

	Implementation
	Environment Setup
	AWS Configuration
	Docker Swarm Implementation
	Kubernetes (EKS) Implementation

	Application Deployment
	Performance Testing
	Data Collection and Analysis

	Evaluation
	Test Scenarios and Results
	Scenario Analysis
	CPU Utilization and Requests Per Second (RPS)

	Analysis and Interpretation

	Conclusion
	Future Work

