
A Comparative Analysis of Kubernetes and
OpenShift based on Workloads using
Different Hardware Architecture

MSc Research Project

Cloud Computing

Anant Sakharam Pednekar
Student ID: 21188947

School of Computing

National College of Ireland

Supervisor: Rejwanul Haque

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Anant Sakharam Pednekar

Student ID: 21188947

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Rejwanul Haque

Submission Due Date: 15/12/2023

Project Title: A Comparative Analysis of Kubernetes and OpenShift based
on Workloads using Different Hardware Architecture

Word Count: XXX

Page Count: 15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 29th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



A Comparative Analysis of Kubernetes and OpenShift
based on Workloads using Different Hardware

Architecture

Anant Sakharam Pednekar
21188947

Abstract

The application deployment and management landscape has undergone a trans-
formative shift with containerization, spearheaded by prominent platforms like
Kubernetes and OpenShift. Despite their widespread adoption, a crucial knowledge
gap persists in understanding the performance nuances and optimization strategies
when deployed on diverse hardware architectures, encompassing x86, IBM ppc64le,
and ARM.

This research attempts to bridge this knowledge gap by conducting thorough
benchmarking and optimization tests tailored for Kubernetes on x86 and ARM and
OpenShift on ppc64le platforms. The evaluation encompasses critical performance
metrics, including CPU and memory utilization and storage performance.

The outcomes of this research are poised to empower businesses and research-
ers in selecting containerization engines that align with their unique hardware and
software requirements. The study aims to improve application performance and op-
erational efficiency in containerized environments by enhancing our understanding
of the performance across diverse architectures.

The evaluations reveal significant findings from the Sysbench and Kbench tests,
showcasing notable differences in performance metrics between x86 and ARM plat-
forms. This research highlights the positive aspects of ARM architecture in terms of
CPU speed and efficiency, making it the preferred choice for high-CPU-usage tasks.
It also emphasizes the importance of considering workload-specific factors when de-
ciding between x86 and ARM. In addition, the study suggests using OpenShift on
ppc64le for situations where performance requirements perfectly match workload
needs. These findings offer valuable insights for making informed decisions when
choosing the most appropriate hardware architecture for containerized applications.

1 Introduction

Over the past few years, the methodology used to develop and deploy cloud computing
applications has experienced a notable shift with the growing use of containerization.
Unlike traditional virtualization methods that use Virtual Machines (VMs), containers
provide a separate runtime environment for running applications directly on the host op-
erating system (OS). This virtualization method improves efficiency and reduces resource
usage.(Felter et al.; 2015; Joy; 2015)

1



The inherent benefits of containerization, including improved scalability and portab-
ility, have significantly contributed to its extensive adoption in various industries. The
increasing adoption of containers requires strong management tools to handle deployment,
scalability, and overall operations effectively. This feature is especially noticeable in ex-
tensive implementations, as demonstrated by Google’s weekly management of billions
of containers using Kubernetes, an internally developed open-source tool for container
orchestration. As a result, the container management industry is experiencing significant
growth and intense competition. 1 2

Docker is widely recognized as the container runtime, while Kubernetes is widely
adopted as the leading container orchestration solution, setting industry standards.

This study aims to analyze the performance characteristics of Kubernetes and Open-
Shift, which are widely used container orchestration platforms, on three different hardware
architectures: x86, ARM, and IBM ppc64le. The investigation seeks to analyze the oper-
ational characteristics of these platforms on these architectures by closely examining key
performance metrics such as throughput, latency, and resource utilization. This research
is crucial for developers and system administrators who aim to enhance the performance
of their containerized applications and make informed choices about the most appropriate
platform for their specific requirements.3

Commencing with a comprehensive overview of Kubernetes and OpenShift and high-
lighting their unique characteristics, this report will explain the research design and
methodology utilized to assess the effectiveness of these platforms on different hardware
architectures. The performance assessments will be adjusted to consider various hard-
ware configurations, including x86, ARM, and IBM ppc64le architectures. The provided
analyses will thoroughly examine the outcomes, offering valuable insights into the per-
formance characteristics of Kubernetes and OpenShift on these hardware platforms. The
report will provide recommendations on the most suitable platform hardware combin-
ations for specific use cases, ultimately concluding with these recommendations. The
following discussion will focus on the practical implications and potential areas for future
research within container orchestration tools and performance evaluation.

2 Literature Review

This literature study examines the current understanding of the performance of Kuber-
netes and OpenShift, two prominent container orchestration platforms, across different
hardware architectures. The subsequent segment encompasses an evaluation of prior
literature.

2.1 Historical Context

The increasing use of containers and container management frameworks has led to in-
creased research and scholarly attention on evaluating these technologies. Container-
based systems were initially set up as faster options compared to hypervisor-based sys-

1Containers at Google: https://cloud.google.com/containers/
2Kubernetes: https://kubernetes.io/
3Pure Storage 2021 Kubernetes Adoption Survey: https://www.purestorage.com/content/dam/

pdf/en/analyst-reports/ar-portworx-pure-storage-2021-kubernetes-adoption-survey.pdf

2

https://cloud.google.com/containers/
https://kubernetes.io/
https://www.purestorage.com/content/dam/pdf/en/analyst-reports/ar-portworx-pure-storage-2021-kubernetes-adoption-survey.pdf
https://www.purestorage.com/content/dam/pdf/en/analyst-reports/ar-portworx-pure-storage-2021-kubernetes-adoption-survey.pdf


tems. However, introducing Docker has increased curiosity about these solutions. Prior
studies have demonstrated that containers offer a more efficient and streamlined altern-
ative to conventional hypervisor-based virtualization.(Merkel et al.; 2014)

The study by Felter et al. (2015) aimed to evaluate the CPU, memory, storage, and
network overheads of Docker containers compared to KVM hypervisors. The findings
demonstrated the greater efficiency of containers compared to virtual machines (VMs)
in many circumstances. Joy (2015) conducted an analogous investigation centered on
container efficiency, assessing the operational capability of a front-end application server
implemented on a container instead of a VM. The results revealed a notable superiority
of Docker containers compared to VMs.

Although containers provide a lightweight and effective method for packaging and
deploying software, handling them on a large scale presents difficulties. To tackle this
issue, container orchestration tools streamline deploying, scaling, and managing contain-
ers, simplifying the management of large-scale containerized systems.

Kubernetes, a widely acclaimed container orchestration technology, is renowned for its
exceptional stability, remarkable scalability, and impressive fault tolerance. Nevertheless,
the functioning of it may necessitate significant resource allocations. Researchers have
created more lightweight alternatives, such as MicroK8s and K3S, to address this issue.
These technologies strive to accelerate the process of deploying and providing support.
However, they may not achieve the same level of performance as Kubernetes. Telenyk
et al. (2021) conducted a performance evaluation of Kubernetes and MicroK8s/K3S,
comparing their resource utilization, cluster startup speed, and time required for orches-
tration activities. Although Kubernetes generally performed better than MicroK8s/K3S,
K3S showed superior disc utilization. The testing revealed that MicroK8s had subpar
performance, emphasizing the benefits of using lightweight platforms in situations with
few resources.

Selecting a container orchestration tool requires careful evaluation of the application’s
requirements. The study conducted by Koziolek and Eskandani (2023) in 2023 examined
four lightweight Kubernetes (K8s) distributions, focusing on resource utilization, control
plane throughput, and data plane performance. The findings revealed a somewhat greater
capacity for managing control plane traffic in k3s and k8s, yet MicroShift exhibited super-
ior performance in handling data plane traffic. Nevertheless, the decision-making process
should also consider considerations such as usability, security, and maintainability. The
results of this study provide helpful guidance for professionals in choosing the most ap-
propriate distribution for their unique requirements.

Evaluating the performance of various orchestration technologies is crucial for identi-
fying the most suitable option for specific applications. Medel et al. (2016) researched to
develop a Reference net-based model for Kubernetes resource management. This model,
constructed using real Kubernetes deployment data, guides the creation of scalable ap-
plications based on Kubernetes. Grounded in the concept of a reference net representing
system interactions, the model was constructed through a benchmark-driven analysis of
Kubernetes’ deployment behavior.

In a study by Reddy et al. (2022), the efficiency of Kubernetes clusters running on

3



OpenStack, VMs, and bare metal was examined. The research compared CPU and
memory utilization of the clusters using a sample program with a microservices archi-
tecture. The study revealed that bare-metal deployment outperformed others for com-
putational and memory-intensive applications. While VMs and OpenStack performed
similarly for computationally intensive tasks, OpenStack excelled in memory-intensive
workloads. The study emphasized the need for a tailored deployment strategy based on
the specific requirements of the application and its operating context.

Pereira Ferreira and Sinnott (2019) evaluated the performance of containers on man-
aged Kubernetes services from Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud Platform (GCP). The study assessed container performance regarding
CPU, memory, disk, and network using benchmarking tools. Findings indicated per-
formance variations based on the cloud provider and resources used. AWS and NeCTAR
performed best for CPU-intensive workloads, while GCP excelled in network perform-
ance. The study emphasized the absence of a one-size-fits-all solution, with the optimal
managed Kubernetes service dependent on the application’s specific requirements and
the chosen cloud provider.

Examining hardware considerations, Gupta and Sharma (2021) conducted a recent
study comparing two prevalent CPU architectures: ARM and x86. ARM processors,
optimized for low power consumption, are increasingly powerful and employed in devices
like laptops, desktop computers, and servers. The authors predict ARM’s dominance
due to rising demand for mobile devices, cloud computing popularity, and advancements
in ARM technology. This transition will significantly impact the software development
industry, potentially leading to new programming languages and frameworks optimized
for ARM processors.

Recent research also compared x86 and IBM POWER processor architectures. While
x86 is common in PCs and servers, IBM POWER is used in high-performance computing
(HPC) systems and is known for scalability and performance with demanding workloads.
With a power-efficient design, IBM POWER systems outperform x86 in HPC benchmarks
due to their complexity-optimized architecture. Despite being costlier, IBM POWER sys-
tems support different operating systems and applications on the same hardware, offering
savings. These systems also outperform x86 in terms of energy efficiency. Nebula’s find-
ings indicate that IBM POWER8 CPUs surpass x86 processors in HPCC and SPECint
benchmarks, emphasizing better scalability, performance, and energy efficiency with IBM
POWER. 4 5 6

2.2 Related Work

Moreover, conducting a comprehensive comparative analysis of orchestration tools is of
most significance, considering their unique capabilities and limitations. Determining the
optimal tool for a given application is based on specific requirements.

4IBM POWER vs. x86 (Precisely Blog): https://www.precisely.com/blog/data-availability/
ibm-power-vs-x86-the-key-differences

5Data Center Efficiency (IBM EX5 BladeCenter): https://www.intel.ie/content/dam/doc/whi

te-paper/data-center-efficiency-ibm-ex5-bladecenter-paper.pdf
6IBM Power8 Outperforms X86 on STAC Benchmarks: https://www.hpcwire.com/2015/06/09/i

bm-power8-outperforms-x86-on-stac-benchmarks

4

 https://www.precisely.com/blog/data-availability/ibm-power-vs-x86-the-key-differences 
 https://www.precisely.com/blog/data-availability/ibm-power-vs-x86-the-key-differences 
 https://www.intel.ie/content/dam/doc/white-paper/data-center-efficiency-ibm-ex5-bladecenter-paper.pdf 
 https://www.intel.ie/content/dam/doc/white-paper/data-center-efficiency-ibm-ex5-bladecenter-paper.pdf 
 https://www.hpcwire.com/2015/06/09/ibm-power8-outperforms-x86-on-stac-benchmarks 
 https://www.hpcwire.com/2015/06/09/ibm-power8-outperforms-x86-on-stac-benchmarks 


In their work, Pan et al. (2019) conducted a thorough comparative analysis of the
current container orchestration platforms, Kubernetes and Docker in Swarm mode. This
scholarly attempt aimed to identify each platform’s distinct advantages and potential
drawbacks, shedding light on the complex functioning details. By employing popular
benchmarking methodologies, the researchers comprehensively assessed the performance
overheads associated with container orchestration tools, thereby identifying their inherent
advantages and disadvantages. The empirical findings suggest that Kubernetes demon-
strated marginally diminished efficiency compared to Docker in Swarm mode. Although
Docker in Swarm mode may exhibit reduced flexibility and strength compared to Kuber-
netes in detailed scenarios, both platforms can administer container clusters and similar
services proficiently, employing distinct technical methodologies. The authors have also
demonstrated the potential variability in the effectiveness of cloud services based on
Kubernetes offered by various providers, emphasizing the importance of additional re-
search in this domain.

In a comprehensive investigation conducted by Malviya and Dwivedi (2022), a com-
parative analysis was performed on four prominent container orchestration tools: Kuber-
netes, Docker Swarm, Mesos, and Redhat OpenShift. The evaluation was based on crucial
parameters encompassing security, deployment efficiency, stability, scalability, cluster in-
stallation proficiency, and the learning curve associated with each tool. Kubernetes has
demonstrated exceptional proficiency in its scheduling capabilities, showcasing its ability
to allocate and manage resources for containerized applications efficiently. On the other
hand, Docker Swarm has garnered recognition for its user-friendly interface and intuitive
features, making it accessible and easy for individuals with varying technical expertise.
The Mesos framework has exhibited commendable scalability, showcasing its ability to
handle increasing workloads and resource demands efficiently. In contrast, OpenShift has
demonstrated remarkable prowess in security, boasting advanced capabilities that surpass
conventional standards. Notwithstanding these variances, Kubernetes has emerged as the
most popular platform. The research underscored the significance of harmonizing the se-
lection of a container orchestration tool with the organization’s unique requirements. In
the pursuit of expanding the scope of evaluation criteria, it becomes imperative to metic-
ulously deliberate upon the efficacy of these tools in diverse hardware architectures. This
study aims to expand upon existing knowledge by conducting a comparative analysis of
Kubernetes and OpenShift on various hardware architectures and workloads. Through
this investigation, we intend to provide a comprehensive understanding of the two plat-
forms, enabling us to make informed recommendations for their deployment in diverse
environments.

The scholarly works of Aly et al. (2018) and Jakkula (2019) encompassed meticu-
lous examinations that sought to compare the operational efficiency of Kubernetes and
OpenShift. Their findings unveiled noteworthy disparities contingent upon the nature
of the workload and the underlying hardware architecture. In their study,Aly et al.
(2018) conducted an empirical investigation to compare the performance of OpenShift
and Kubernetes in distinct workloads on bare metal infrastructure. The findings revealed
that OpenShift performed superior in certain workloads, surpassing Kubernetes. How-
ever, in scale-out scenarios, Kubernetes showcased enhanced efficiency. These results shed
light on the nuanced performance characteristics of these two prominent container orches-
tration platforms, providing valuable insights for practitioners and researchers in the field.

5



In contrast, Jakkula conducted an empirical analysis wherein Kubernetes demonstrated
superior performance in handling CPU-intensive workloads, whereas OpenShift exhib-
ited exceptional proficiency in managing memory-intensive tasks. Both investigations
highlighted the inherent variability in operational effectiveness, contingent upon distinct
workloads and hardware architectures, thereby emphasizing the imperative for additional
scholarly inquiry to grasp the determinants that impact platform performance compre-
hensively.

Given the extensive adoption of these tools and the apparent differences in their
performance on diverse hardware architectures, a noticeable gap exists in the scholarly
discussions regarding an organized evaluation of their performance attributes. Previous
evaluations have utilized various benchmarking techniques, while my approach incor-
porates the evaluation of performance overheads and a comprehensive cross-comparison
across all hardware architectures. The current investigation aims to provide a compre-
hensive understanding of the methodologies, which will be discussed in the following
section. This study outlines an elaborate process for evaluating and comparing the per-
formance of Kubernetes and OpenShift on various hardware architectures, including x86,
ARM, and IBM Power.

3 Research Methods and Specifications

Running benchmarking for Kubernetes and OpenShift on various hardware architectures
requires suitable tools. Employing the correct approach, the setup procedure can be
efficiently controlled, enhancing the accuracy of the generated outcomes. This section
offers a comprehensive summary of the Kubernetes and OpenShift benchmarking process,
covering everything from the initial input to the final results.

3.1 Performance Metrics

To comprehensively analyze and assess container orchestration tools like Kubernetes
and OpenShift, tracking performance metrics that directly influence their efficiency and
scalability is imperative. In this benchmarking process, I will employ two distinct metrics:
control plane/master metrics and data plane/worker metrics. These metrics encompass
four crucial dimensions: CPU, Memory, Disk, and Network.

The CPU metric gauges the central processing unit’s utilization, providing insights
into the container orchestration system’s efficiency in executing computational tasks.
Simultaneously, the Memory metric assesses memory consumption, which is pivotal in
evaluating the system’s adeptness in managing memory resources, mitigating memory
leaks, and optimizing overall performance. The Disk metric focuses on storage per-
formance, ensuring the container orchestration utility adeptly executes read and write
operations to the storage medium. This evaluation guarantees the system’s seamless
interaction with storage resources. Lastly, the Network metric delves into networking
capabilities, encompassing data transmission rates and latency. These parameters dir-
ectly influence container communication and coordination, thereby impacting the overall
effectiveness of the container orchestration system.

The performance evaluation of container orchestration tools will be conducted using
a carefully selected set of open-source benchmarking tools. Different tools exert different
stress levels on the system’s resources, allowing for observing container performance in

6



various conditions. Incorporating control plane/master metrics and data-plane/worker
metrics guarantees a thorough evaluation from various viewpoints, bolstering the strength
and credibility of the assessment outcomes. Table 1 presents a concise summary of the
chosen software, including their versions and the metrics they track. This robust bench-
marking methodology enables an unbiased and comprehensive assessment of container
orchestration systems.

Resource Tools Version
CPU Sysbench 1.0.2
CPU K-bench Master

Memory Sysbench 1.0.2
Memory K-bench Master

Table 1: Benchmarking tools and Metrics

benchmark-operator: The benchmark operator is a powerful tool specifically de-
veloped to evaluate the performance of Kubernetes clusters. This tool is capable of
running a diverse range of micro-benchmarks, including fio and uperf, as well as applic-
ation benchmarks like YCSB and pgbench. Moreover, the benchmark operator enables
users to do benchmarks using tools such as iperf3, sysbench, and byowl, offering useful in-
sights into the performance characteristics of the Kubernetes cluster. It simplifies obtain-
ing benchmark data for cluster classification, assisting in making data-driven decisions
regarding distribution, platform deployment, and storage provisioning. The software
provides a wide range of benchmarking features, allowing users to assess the performance
of networks and storage systems. This data can then be used to make well-informed
decisions.7

Sysbench: Sysbench, a crucial tool in this study, is a flexible software for CPU testing.
Sysbench, which consists of many modules, allows for a comprehensive assessment of dif-
ferent operating system resources. The study utilizes Sysbench to evaluate the CPU and
disc performance in the systems under consideration. The tool’s main purpose is to assess
and compare solutions by emulating the demanding functions of a database management
system, eliminating the requirement for separate installations and configurations. Sys-
bench operates in a manner that is not dependent on any specific platform and can handle
several threads simultaneously. It is particularly effective in doing calculations for prime
numbers, which serves as demanding work for measuring the performance of a CPU. The
Sysbench CPU test precisely measures the performance of a CPU by calculating prime
numbers within a given range. It provides a scalable and accurate assessment of the
CPU’s capabilities, considering the severity of the benchmark. 8

K-Bench: K-Bench is a complete framework specifically developed to evaluate and
compare the performance of the control and data plane components in a Kubernetes
environment. K-Bench offers a customizable method for users to construct and control
Kubernetes resources on a large scale systematically. It also provides performance data

7Benchmark-Operator: https://github.com/cloud-bulldozer/benchmark-operator
8Scriptable database and system performance benchmark (sysbench): https://github.com/akopy

tov/sysbench

7

https://github.com/cloud-bulldozer/benchmark-operator
 https://github.com/akopytov/sysbench 
 https://github.com/akopytov/sysbench 


that are relevant to the target architecture. The framework facilitates various activities
on Kubernetes resources, including Pod, Deployment, Service, and ReplicationController.
This empowers users to manage client-side concurrency, establish workflows, and set
parameters for different operations. K-Bench demonstrates exceptional proficiency in
evaluating control-plane performance by combining server-side timing with a client-side
method, utilising Kubernetes event callback system to achieve greater accuracy. K-Bench
also provides integrated benchmarks for analysing data plane performance, optimising
infrastructure resource utilisation, and facilitating the conversion of Docker Compose
files into Kubernetes specification files. K-Bench is a versatile framework for conducting
thorough performance evaluations of Kubernetes. It can be seamlessly integrated with
monitoring tools such as Prometheus and Wavefront. 9

4 Design Specification

This section outlines the design specs, providing detailed information about software
and hardware components. The topic covers essential aspects such as software versions,
components, and hardware infrastructure, including VMs and architecture. The goal
is to provide a concise yet comprehensive explanation of the system utilized in these
benchmarks.

4.1 Hardware Specification

The benchmarks were conducted on three distinct systems, each with specific configura-
tions:

x86 System:

• Instance Type: t2.2xlarge,

• vCPUs: 8,

• Memory: 32 GiB,

• Architecture: 64-bit (x86)

ARM System:

• Instance Type: t4g.2xlarge,

• vCPUs: 8,

• Memory: 32 GiB,

• Architecture: 64-bit (Arm)

PPC64LE System:

• Architecture: ppc64le,

• CPU(s): 160,

• Cores per Socket: 20,

9vmware-tanzu-k-bench: https://github.com/vmware-tanzu/k-bench

8

https://github.com/vmware-tanzu/k-bench


• Threads per Core: 4,

• Sockets: 2,

• Model: POWER9

4.2 Software Specification

This section describes the details of the software used
x86 System:

• Operating System: Canonical, Ubuntu Server 22.04 LTS (HVM),

• Kubernetes Version: 1.26.10,

• Master Nodes: 1,

• Worker Nodes: 1

ARM System:

• Operating System: Canonical, Ubuntu Server 22.04 LTS (HVM),

• Kubernetes Version: 1.26.10,

• Master Nodes: 1,

• Worker Nodes: 1

ppc64le System:

• Operating System: RHEL 9,

• Openshift Version: 4.11,

• Master Nodes: 3,

• Worker Nodes: 3

benchmarking tools

• K-bench: Master,

• Benchmark Operator (sysbench): 1.0.2

5 Implementation

Over the implementation phase, AWS Cloud EC2 instances served as Kubernetes nodes
for x86 and ARM architectures. Based on the instructions provided in the article by
Kawonise and Olorunfemi 10, a Kubernetes cluster consisting of two EC2 instances was
created. Specifically, the t2.2xlarge instance for x86 architecture and the t4g.2xlarge

10Simplifying Kubernetes Installation on Ubuntu using a Bash Shell Script: https://medium.com/@
olorunfemikawonise_56441/simplifying-kubernetes-installation-on-ubuntu-using-a-bash-s

hell-script-d75fed68a31

9

https://medium.com/@olorunfemikawonise_56441/simplifying-kubernetes-installation-on-ubuntu-using-a-bash-shell-script-d75fed68a31
https://medium.com/@olorunfemikawonise_56441/simplifying-kubernetes-installation-on-ubuntu-using-a-bash-shell-script-d75fed68a31
https://medium.com/@olorunfemikawonise_56441/simplifying-kubernetes-installation-on-ubuntu-using-a-bash-shell-script-d75fed68a31


instance for ARM architecture were used. Every Kubernetes cluster comprises a single
instance designated as the master node and another as the worker node. In contrast,
OpenShift, a proprietary software solution, employed a dedicated cluster hosted by IBM
to conduct the tests. The cluster consisted of three master nodes and three worker nodes.

The K-bench tool evaluated the performance of the container platforms by execut-
ing three different test profiles, namely dp redis, dp redis service, and cp heavy 12client.
The purpose of these test profiles is to assess the CPU and memory efficiency by ex-
amining the delays caused by scheduling pods in Kubernetes and OpenShift systems.
The benchmark operator utilized Sysbench to conduct different test profiles on x86 and
ARM architectures. It is important to mention that Sysbench is currently unavailable
for use on the IBM Power architecture. The K-bench tool enabled an in-depth review of
performance indicators across all three hardware platforms, providing insights into the
effects of scheduling and resource utilization in these containerized systems.

6 Evaluation and discussion

This section provides an in-depth examination of the experimental results, illustrating
the importance and impact of the Sysbench and Kbench tests. The main objective is
to clarify key findings based on statistical analysis and visual representations. Refer to
Tables 6.1 ,6.1, 4.

6.1 Benchmark-Operator: Sysbench Analysis

Figure 1: Prime Number Calculation Test

ARM exhibited substantial performance superiority over x86, achieving a rate of
31507.94 events per second, while x86 only managed 7937.13. The outcome, in conjunc-
tion with CPU speeds and latency measurements, highlights the exceptional processing
capability of ARM. Refer to Table 6.1 and Figure 1.

ARM showcased its efficiency in latency measurements, boasting an average latency
of 0.03 milliseconds, which stands in sharp contrast to x86’s 0.12 milliseconds. Con-

10



Metric x86 ARM
CPU Speed (Events per Second) 7937.13 31507.94

Latency (Average ms) 0.12 0.03
Throughput (MiB/sec) 116.86 31.08

Table 2: Performance Metrics from Prime Number Calculation Test

Figure 2: File I/O Test

sequently, ARM demonstrates outstanding effectiveness in executing tasks quickly and
responsively, rendering it a desirable alternative for applications that demand low latency
in performance.

Metric x86 ARM
Reads/s 946.79 252.23
Writes/s 631.19 168.15
Fsyncs/s 2029.11 541.6

Read Throughput (MiB/s) 14.79 3.94
Write Throughput (MiB/s) 9.86 2.63

Latency (Average ms) 0.28 1.03

Table 3: Performance Metrics from File I/O Test

Analyzing the File I/O test in depth exposes small differences between x86 and ARM.
The throughput and latency displayed by ARM were lower, although these differences
could change depending on the situation, affecting the system’s overall performance.
Refer to Table 6.1 and Figure 2.

6.2 K-bench Analysis

In the context of cp heavy 12client, the performance of ARM exhibited a striking re-
semblance to that of x86 and ppc64le in terms of pod creation throughput and average
latency. This observation implies a similar level of effectiveness in managing demanding
computational tasks among these different architectures. Refer to Table 4 and Figure 3.

11



Kbench Tests
Metric x86 ARM ppc64le

cp heavy 12client Metric
Pod Creation Throughput 113.23 110.88 108.42

Pod Creation Average Latency 2.93 2.96 2.95
Pod Startup Latency (Median) 3356.59 3356.59 3356.59
dp redis kbench Metric
Pod Creation Throughput 8.2 7.66 1.53

Pod Creation Average Latency 7.32 7.83 39.12
Pod Startup Latency (Median) N/A N/A N/A

dp redis service kbench Metric
Pod Creation Throughput 4.37 5.02 2.77

Pod Creation Average Latency 13.71 11.96 21.68
Pod Startup Latency (Median) N/A N/A N/A

Table 4: Performance Metrics from Kbench Tests

Figure 3: Kbench Results

In the case of dp redis kbench, ARM impressively exhibited its prowess in generating
pods with remarkable throughput, exemplifying its ability to manage tasks that demand
substantial data processing capabilities efficiently. Nevertheless, this development had its
drawbacks, as it resulted in an increase in average latency compared to x86. This suggests
that there may be certain trade-offs in latency inherent to the ARM architecture.

Within the context of dp redis service kbench, ARM demonstrated a notable increase
in the rate at which pods are created, indicating a significant performance improvement,
specifically for service-oriented workloads. However, this enhancement was offset by an
increase in average latency compared to x86 architecture. Regrettably, the unavailabil-
ity of median pod startup latency data impairs an accurate assessment of the startup
efficiency of this particular benchmark on ARM architecture.

12



6.3 Discussion

In the case of system selection for specific jobs, various considerations arise. The ARM
architecture is the more suitable selection for computationally demanding tasks owing to
its inherent ability to execute high-speed and efficient processing operations. In situations
where achieving optimal low-latency performance is of utmost importance, the distinct
advantage of ARM architecture in substantially mitigating average latency positions it as
the preferred choice. Implementing file input/output (I/O) operations presents a complex
decision-making framework that demands a cautious assessment of the particular needs.
The selection between x86 and ARM architectures requires a delicate balance between
throughput and latency, requiring thoughtful consideration of trade-offs.

The selection of system architecture within the Kubernetes platform, deployed on
both x86 and ARM, as well as OpenShift, which utilizes ppc64le, is predicated on the
workload’s distinct requirements. Kubernetes deployments on both x86 and ARM ar-
chitectures present an optimal solution for applications that demand enhanced CPU
performance and heightened responsiveness. In addition, the ARM architecture presents
a promising catalyst for optimizing performance in specific workloads within this frame-
work. On the other hand, using OpenShift on ppc64le is particularly suitable for situ-
ations in which the inherent performance attributes of ppc64le harmoniously correspond
to the demands of the workload. Nevertheless, it is imperative to use cautious discussion
when confronted with instances of increased pod starting latency.

7 Conclusion and Future Work

7.1 Conclusion

This evaluation of the ARM, x86, and ppc64le architectures using Sysbench and Kbench
tests provides valuable insights into their performance characteristics. The findings
demonstrate that ARM outperforms CPU speed and efficiency, positioning it as the pre-
ferred option for tasks requiring high CPU usage. Moreover, its superior average latency
makes it highly suitable for low-latency performance applications. Workload require-
ments should determine the selection of x86 or ARM due to subtle variations in File I/O
operations.

The choice of system architecture in Kubernetes (on x86 and ARM) and OpenShift
(on ppc64le) should be based on the specific requirements of the workload. Kubernetes
is suitable for applications that demand strong CPU performance and responsiveness.
It works well on both x86 and ARM architectures, with ARM potentially providing
better efficiency for certain workloads. OpenShift on ppc64le is ideal for situations where
performance requirements match seamlessly with workload needs, but caution is needed
for cases with higher pod startup latency.

7.2 Future Work

For future research, it is imperative to ensure a more standardized environment across
all architectures by using similar hardware nodes and configurations. This would involve
employing homogeneous hardware specifications to eliminate potential biases introduced
by diverse hardware setups. Furthermore, utilizing a common benchmarking tool sup-
ported uniformly across all platforms would enhance the comparability and reliability of

13



results. This would facilitate a more robust evaluation of each architecture’s capabilities
and provide a clearer basis for decision-making in system selection.

Additionally, to further enhance the generalizability of findings, future work should
involve deploying the same workload in identical environments across x86, ARM, and
ppc64le architectures. This approach ensures a fair and direct comparison, enabling a
more accurate assessment of each architecture’s performance under consistent conditions.

By addressing these considerations in future research efforts, we can refine our un-
derstanding of the strengths and limitations of each architecture, providing more subtle
insights for informed decision-making in diverse computing environments.

References

Aly, M., Khomh, F. and Yacout, S. (2018). Kubernetes or openshift? which techno-
logy best suits eclipse hono iot deployments, 2018 IEEE 11th Conference on Service-
Oriented Computing and Applications (SOCA), pp. 113–120.

Felter, W., Ferreira, A., Rajamony, R. and Rubio, J. (2015). An updated performance
comparison of virtual machines and linux containers, 2015 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pp. 171–172.

Gupta, K. and Sharma, T. (2021). Changing trends in computer architecture: A com-
prehensive analysis of arm and x86 processors, International Journal of Scientific Re-
search in Computer Science, Engineering and Information Technology (IJSRCSEIT)
7(3): 619–631. Published in Volume 7 — Issue 3 —May-June 2021. Date of Publication:
2021-06-30. Manuscript Number: CSEIT2173188. Page(s): 619-631.

Jakkula, P. (2019). Container runtime performance evaluation of kubernetes and open-
shift, Researchgate.

Joy, A. M. (2015). Performance comparison between linux containers and virtual ma-
chines, 2015 International Conference on Advances in Computer Engineering and Ap-
plications, pp. 342–346.

Koziolek, H. and Eskandani, N. (2023). Lightweight kubernetes distributions: A perform-
ance comparison of microk8s, k3s, k0s, and microshift, ICPE ’23: Proceedings of the
2023 ACM/SPEC International Conference on Performance Engineering, ICPE ’23,
Association for Computing Machinery, New York, NY, USA, p. 17–29.

Malviya, A. and Dwivedi, R. K. (2022). A comparative analysis of container orchestra-
tion tools in cloud computing, 2022 9th International Conference on Computing for
Sustainable Global Development (INDIACom), pp. 698–703.

Medel, V., Rana, O., Banares, J. A. and Arronategui, U. (2016). Modelling performance
& resource management in kubernetes, 2016 IEEE/ACM 9th International Conference
on Utility and Cloud Computing (UCC), pp. 257–262.

Merkel, D. et al. (2014). Docker: lightweight linux containers for consistent development
and deployment, Linux Journal 239(2): 2.

14



Pan, Y., Chen, I., Brasileiro, F., Jayaputera, G. and Sinnott, R. (2019). A performance
comparison of cloud-based container orchestration tools, 2019 IEEE International Con-
ference on Big Knowledge (ICBK), pp. 191–198.

Pereira Ferreira, A. and Sinnott, R. (2019). A performance evaluation of containers run-
ning on managed kubernetes services, 2019 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 199–208.

Reddy, Y. S. D., Reddy, P. S., Ganesan, N. and Thangaraju, B. (2022). Performance
study of kubernetes cluster deployed on openstack,vms and baremetal, 2022 IEEE
International Conference on Electronics, Computing and Communication Technologies
(CONECCT), pp. 1–5.

Telenyk, S., Sopov, O., Zharikov, E. and Nowakowski, G. (2021). A comparison of kuber-
netes and kubernetes-compatible platforms, 2021 11th IEEE International Conference
on Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), Vol. 1, pp. 313–317.

15


	Introduction
	Literature Review
	Historical Context
	Related Work

	Research Methods and Specifications
	Performance Metrics

	Design Specification
	Hardware Specification
	Software Specification

	Implementation
	Evaluation and discussion
	Benchmark-Operator: Sysbench Analysis
	 K-bench Analysis
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work


