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Metaheuristic approach of scheduling algorithm to
improve execution time in containerized environment

Naseem Sultana
22152261

Abstract

Cloud computing is an elastic, scalable, and cost-effective solution for all organ-
izations irrespective of the nature of their business. Cloud providers like Amazon,
Google, Microsoft, and IBM charge their consumers based on the cloud resources
they use. Software as a service, platform as a service, and infrastructure as a ser-
vice are commonly categorized services provided by them. Recently, container as
a service (CaaS) has also been introduced to deploy container-based cloud applic-
ations to minimize execution time and reduce computational cost, thus increasing
the quality of service of the application.

The report explores various algorithms that are used to address optimization
problems while deploying containers. Containers can either be deployed directly on
the physical machine or data center, or they can be deployed on virtual machines
and then physical machines. The report addresses the two-tier placement technique
or hybrid virtualization on task placement and execution focusing on container
migration, container energy consumption, wait time, start time, and execution time
of the VMs. Examining various algorithms on CloudSim, the results in this paper
reveal that a combination of container allocation policy, host selection policy, and
a metaheuristic algorithm like ACOR (Revised ant colony optimization) helps to
minimize the execution time and energy of the systems while working on extended
workloads.

keywords: Cloud computing, container, virtual machine, CloudSim, execution
time, ACOR

1 Introduction

As technology is evolving, the need for robust, scalable, and secure data processing has
always been a priority across the globe, earlier when applications were built on bare
machines (Linux or any other OS), it was quite difficult to manage and transport these
application files across the companies. That is when the concept of virtualization was
introduced where a hypervisor installed would act as an interface and allow various other
operating systems to be installed so that applications can execute on those virtual op-
erating systems. However, this seemed a bit tiring job as independent virtual machines
needed maintenance.
While the solution to maintain these virtual machines was still being discovered by various
developers, the concept of “cloud computing” as an infrastructure was preferred by most
organizations. This new concept of cloud computing not only helped the applications
to be more scalable and elastic but also focused on providing the service on demand as
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per the needs of the consumer. With the increasing demand for scalability and elasticity,
the developers had to focus on finding a solution that helped them reduce the overall
execution time of the applications across multiple machines.
Each application developed has its dependencies which allow to execute the application
without any error, it was not so easy to run the application across various virtual machines
at once as it not only increased the load but also increased the cost of the application
maintenance on the cloud as it consumed more resources to maintain the health of the
application. Containerization of applications was then introduced as a solution to such
problems. Containers are lightweight packages that package all the dependencies of the
application in nodes and these nodes are placed on a container, an image of the container
is then created and placed on various virtual machines or directly on various operating
systems. Thus, containers are said to be lightweight when compared to virtual machines.
The study of this thesis is based on containers and their orchestration using the existing
placement algorithms and finding the most suitable algorithm which helps to decrease
the total execution time of the application by implementing meta heuristic algorithms
while scheduling virtual machines (VMs) on physical machines (PMs).

1.1 Motivation:

Containers gained immense popularity within a short period due to their ability to build,
deploy, and maintain applications easily across the platform. This revolutionized way
of transporting the application across various platforms was a dream come true for de-
velopers as they had to focus on the dependencies of the applications while deploying.
Now the developers just have to package the dependencies using containers such as docker
and then deploy it without being much bothered about the host operating system of the
end user.
Working with containers is much easier on microservices application architecture which
helps to divide the application based on the containers they are going to be placed in.
However, the placement of containers on virtual machines is not explored widely. With
various container orchestration platforms like Kubernetes, Apache Mesos, and Docker
Swarm, developers can manage to orchestrate containers but a definite solution to min-
imize the execution time is not explored yet as this parameter depends on the various
workload that the container is working on.
A couple of research papers have discussed implementing the existing algorithms to im-
prove container orchestrations across the platform, but only a few research papers have
compared and combined the existing predefined algorithms. In this thesis, the two-
dimensional placement technique is used to place the containers on VMs and then sched-
ule VMs on PMs (Physical machines). CloudSim, a cloud simulator has been used, and
the authors of CloudSim have already defined a set of placement algorithms that help
place the containers on various VMs. This paper focuses on these predefined container
placement algorithms to find out the most effective combination that helps to reduce the
execution time of the containerized applications.

1.2 Research Objective:

Scheduling of containers plays a key role in deciding the overall performance of the ap-
plications. As mentioned earlier, we already have container orchestration tools available
to work on containers. One of the widely used tools is Kubernetes, which is also an open-
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source tool that helps package the dependencies of the application and deploy it across
the platforms. However, it is important to schedule these containers on VMs strategically
to maximize the usage of these tools and minimize the execution time, thus enhancing
the quality of the service of the application.

In this thesis we work on the CloudSim simulator, to study various existing algorithms
within the simulator and understand how containers can be placed on various virtual
machines to minimize execution time. So, the research question of this study is:

How do scheduling algorithms on containers help to minimize the execution time of
extended workloads, so that they enhance the overall quality of service of the application
on the cloud?

1.3 Target Audience:

This work is for cloud computing students who want to understand the scheduling of
algorithms on cloud computing using CloudSim as a simulator. People who have a keen
interest in cloud technologies may also find it as a reference to their studies. This might
also prove to be useful for people working on DevOps.

2 Related Work

Container clusters can be managed using container orchestration systems, commonly
known as container orchestration tools. These tools help to enhance the deployment of the
application in clusters from a single interface, thus, speeding up the deployment activities.
Apache Mesos, Docker Swarm, and Kubernetes are a few container orchestration tools
that help manage container clusters.

Docker Swarm is a user-friendly container orchestration tool that integrates well with
Docker. It supports auto-scaling and load balancing, which is well-suited for smaller-scale
deployments, where simplicity is prioritized over advanced features.

Apache Mesos is another container orchestration tool that is well known for its resource
sharing, multi-tenancy, flexibility, and complexity. This container orchestration tool is
designed to be a distributed systems kernel that abstracts memory, storage, CPU, and
other compute resources. It allows different frameworks to share resources making it
flexible enough to work with, however, due to the requirement of manual configuration
the complexity of this tool increases.

Kubernetes is an extensively used open-source container orchestration tool that provides
high-scalability solutions for applications irrespective of their complex or extended work-
loads. The declarative configuration approach makes it easy for the users to specify the
desired state of their application.

This section of the report briefly describes how various meta-heuristic scheduling
algorithms have been used over the years on different workloads to get optimized results.

2.1 Container Scheduling algorithms:

As the study is based on cloud-based algorithms, the tool used here is Cloudsim, which
is used as a cloud simulator tool to work on various cloud-based algorithms. The au-
thor Piraghaj et al. (2017) in the research paper on container cloudsim has described
briefly how the framework for ContainerCloudSim example has been developed to provide

3



support for simulations of containerized cloud computing environments. To get the op-
timized solution for containerized applications the author has defined various algorithms
like FirstFit, MostFull, LeastFull, and Random algorithms for container placements and
host selection policies as well. In another paper the author Oussama Smimite (2020)
has discussed the need for container migrations and highlighted the importance of hy-
brid virtualization, where containers and VMs can co-exist and interact. The author has
focused on various parameters like CPU usage, disk utilization, power consumption, and
migration time, the study based on this paper proves that energy consumed by the data
center or host is minimal when using containers, as the unused hosts are turned off after
migration.

Singh et al. (2014) in his paper has clearly defined the importance of scheduling tasks
to find the optimal results. The comparative study of algorithms done by Singh et al.
(2014) shows how important it is to schedule the tasks to obtain sustainability, feasibility,
and adaptability of the applications in the cloud environment. Lakra and Yadav (2015)
has also showcased the importance of task scheduling for improving quality-of-service and
optimizing throughput in cloud environments by scheduling tasks in cloud data centers
and the need for implementing multi-objective scheduling algorithms. The author has
focused on improving the quality of service parameters like cost, resource utilization,
and execution time by experimenting with priority scheduling and newer approaches like
multi-objective task scheduling on CloudSim.

Scheduling tasks can be challenging while operating data-intensive applications on
edge systems due to heavy workload. In the article ”Optimized container scheduling
for data-intensive serverless edge computing”, the author Rausch et al. (2021) explains
how serverless computing helps to manage the complexity of decoupling infrastructure
by making heuristic trade-offs between data and computing by task-driven simulations in
different scenarios. The author has also proposed a scheduler that improves the quality
of task placement compared to the state-of-the-art scheduler of Kubernetes.

Author Menouer (2021) has briefly explained how scheduling decisions are taken by
the schedulers. Scheduling decisions such as node conditions, pod priority, affinity and
anti-affinity rules, and resource availability are considered during the scheduling process.
In the research paper, the author explains how a scheduler tries to find the best fit for each
pod based on these factors and balance resource utilization.Menouer (2021) also states
that default schedulers in Kubernetes is extensible, allowing the developers to implement
their own scheduling policies and strategies to make appropriate scheduling decisions.

While there are many cloud simulators, CloudSim is the preferred simulator which
has been used extensively by most researchers. A. V. H Sai Prasad1* (2021) has clearly
explained how scheduling is performed in CloudSim at the node level, while different
scheduling algorithms are implemented at VM level and host level. A. V. H Sai Prasad1*
(2021) has used PSO algorithm to improve task assignment problems and schedule jobs in
grid computing, as per the results mentioned in the paper, an improvement in 49 seconds
of makespan was noted with the integration of the proposed PSO algorithm.

2.2 Various container scheduling algorithms that focus para-
meters like execution time

Integration of meta-heuristic algorithms like Ant Colony Optimization (ACO) can im-
prove the scheduler’s optimality. Kaewkasi and Chuenmuneewong (2017) tried using
ACO on SwarmKit, and, a Docker orchestration engine. The results in the paper high-
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light that ACO performed approximately 15% better on the same host configuration
when compared to the greedy algorithm. Shekar (2019) carried out a similar experiment,
where he carried out experiments on kuberenetes by comparing Ant Colony Optimiza-
tion(ACO) with First Come First Serve (FCFS) and Round Robin in terms of the average
response time of tasks on clusters. He demonstrated that using ACO helped to improve
the performance of the applications in terms of resource utilization, and reduce makespan
and scalability.

Authors Mustapha and Gupta (2024) have proposed a density-based spatial clustering
algorithm for task scheduling to achieve a high quality of service in terms of efficiency.
The authors have compared the proposed model with ACO and PSO algorithms for task
scheduling hence highlighting improvement in execution time, average start time, and
finish time.

Meta-heuristic algorithms like ACO have been used to minimize task completion time
and improve the utilization of idle resources Rugwiro et al. (2019) has proposed a task
scheduling and resource allocation model based on Hybrid Ant Colony Optimization and
Deep Reinforcement Learning in cloud computing environments, where task scheduling
is performed using a Binary In-order Traversal Tree and the resource allocation is done
based on Ant Colony Optimization. Rugwiro et al. (2019) used deep reinforcement learn-
ing to reduce space complexity and split resources into state space and action space.
His evaluation proved the mitigation of problems related to resource availability and
improvement in idle resource utilization.

3 Methodology

This part of the paper discusses various methods that have been followed to experi-
ment, and compare various algorithms, analyze the results, and conclude the findings.
Experiments are carried out on CloudSim, a cloud simulator. It is an infrastructure sim-
ulator for cloud-based applications, many algorithms have already been defined within
the simulator. To follow the two-level optimization techniques, we first focus on container
placements. The author Piraghaj et al. (2017) has already described a few algorithms
in the simulator. These predefined algorithms are tested in this project to find the most
optimal combination of the pre-existing algorithms that helps to execute the real-time
applications at the earliest. Energy consumption of the applications is also one of the
parameters that is focused on while placing containers on the VM. After finding the most
optimal combination of algorithms for containers, the focus is shifted to the algorithms
that help VMs to be placed on physical machines or say host systems.

Various container placement algorithms are defined in the CloudSim architecture,
Piraghaj et al. (2017) has described many algorithms for containers. He has introduced
container placement policies like FirstFit, MostFull, Random, Max Usage and MostCor-
related, which schedule the containers on VMs based on their utilization. Algorithms like
Round Robin Algorithm -, MaxUsage Algorithm and MostCorrelated Algorithms are the
container selection algorithms based on CPU utilization, energy consumption and load
balancing.

Table 1, 2, and 3 are an overview of various container algorithms defined by Piraghaj
et al. (2017) in ContainerCloudSim package. The author Piraghaj et al. (2017) has
already compared container placement algorithms in terms of container migration and
energy consumption in one of his experiments and found the MostFull algorithm as the
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optimal one. Shi et al. (2018) and Tang and Meng (2020) have achieved optimal energy
consumption by introducing other metaheuristic algorithms like NSGA-II and MaxUsage
policy to reduce energy consumption.

Container Placement Algorithm Description
FirstFit Allocates containers on the first avail-

able VM that meets container deploy-
ment requirements.

LeastFull Packs the containers on the least util-
ized VMs

MostFull Places the containers on most utilized
VMs

Random Randomly select VMs to place the con-
tainers

Table 1: Container Placement Policy Algorithms

Host Selection Policy Algorithm Description
FirstFit Select an available host that meets the

resources
LeastFull Select the least utilized host
MostFull Selects the most utilized host
RandomSelection Selects the hosts randomly from avail-

able hosts

Table 2: Host Selection Policy Algorithm

Container Selection Policy Description
MaxUsage Selects the container with highest CPU

utilization for migration to another
host.

MostCorrelated Select the container whose load is the
most correlated with the server hosting
it.

Table 3: Container Selection Policy Algorithms

In this research paper, experiments have been carried out with various combinations
of these pre-existing container algorithms to find the optimal solution in terms of con-
tainer migration and energy consumption. Further implementation of these algorithms
is discussed in the implementation section of the report.

After scheduling the containers, the focus is shifted to scheduling virtual machines
on physical machines using various meta-heuristic algorithms. These metaheuristic al-
gorithms help to decide the optimal solution to execute the given workload within the least
possible time. This report contains a brief discussion of the meta-heuristic algorithms
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used here to compare the algorithms in terms of wait time, start time, finish time and
execution time.

Ant Colony Optimization (ACO)
This algorithm is inspired by the natural behavior of real ants, where the ants deposit

pheromones concentrations on the ground as a communication channel for the other ants
to follow and find their food. It is stated as revised ACOR in the mealpy library after the
version of this algorithm was updated. Author,Shekar (2019) has outlined the importance,
need, and results of ACO in his research paper. As per Shekar (2019) ACO can be used to
solve scheduling problems of virtual machines and cloud computing environments. As a
meta-heuristic algorithm, it can be used to address scheduling and optimizing challenges
faced in real-world industrial problems.

Guanqaun Wu (2021) proposes an improved ant colony optimization policy to address
the shortcomings of the algorithm, the improved ACO uses a scheduling policy to prior-
itize the completion of minimum tasks thus reducing the starting time of the search. He
also introduced a balance factor coordinating local and global pheromones as an updated
mechanism and volatilization co-efficient adjustment mechanism, hence improving the
global search ability of the algorithm.

Ant Lion Optimization (ALO):
This algorithm is inspired by the hunting patterns of ants and lions, while ants leave

pheromones for the other ants to follow, the lion creates a trap to catch its prey. These
nature-inspired multi-objective meta-heuristic algorithms help to find optimal solutions
by reducing makespan, execution time, and total cost.
The author, A. V. H Sai Prasad1* (2021) has studied the ALO algorithm to ensure
the integrity of data in cloud storage adoption, he also experimented by comparing the
algorithm with the PSO algorithm and concluded that ALO performs better than PSO in
terms of schedule length and system success probability, thus proving it to be an effective
approach for optimal scheduling in cloud computing. However, in this paper, we are going
to focus on execution time, start time, wait time, and finish time of the applications on
cloud infrastructure.

Particle Swarm Optimization (PSO)
PSO, another meta-heuristic algorithm inspired by the nature of bird flocking and

fish schooling behavior. As per the study by Al-Olimat et al. (2015), this algorithm does
not require gradient information and can be applied to various optimization problems
like job scheduling, task assignments, scheduling cost reduction, and energy consumption
reduction. It is said to improve and optimize scheduling by minimizing execution time
in cloud computing.
The author Alsaidy et al. (2022) has utilized PSO to allocate tasks to VM in cloud
computing environments to evaluate task scheduling parameters like energy consumption
and total time execution. The authors have compared the PSO with other algorithms
to find that the proposed PSO algorithm performs better than other task-scheduling
algorithms.

4 Design Specification

This report focuses on two level optimization technique to schedule containers on VMs
first and then Vms on PMs, the figure 1 shows the flow of this technique.
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Figure 1: Scheduling Workflow

The examples of Cloudsim are used to implement the technique and find the results.
Results and experiments are discussed in the implementation, evaluation, and results
section of the report.

4.1 Kubernetes Architecture

As the report focuses on containers, it highlights implementation of Kubernetes as well.
Kubernetes (K8s) is a widely used resource management and scheduling system in the
cloud. It is one of the most popular open-source container orchestration platforms that
automates the deployment, scaling, and management of containerized applications. It
consists of a control plane and worker nodes, with various core components responsible
for managing the cluster’s state. Kubernetes is scalable, highly available, and portable,
allowing applications to be deployed consistently regardless of the underlying infrastruc-
ture. However, it is complex to set up and operate, requiring expertise and resources.

It provides different scheduling algorithms for scheduling short-running cloud work-
loads, including artificial intelligence (AI) workloads. The selection of scheduling al-
gorithms has a significant impact on job performance results. However, it is time-
consuming to select the optimal algorithm as it takes a few minutes to complete the
scheduling process for each job.

Figure 2: Optimizing Container Orchestration with Hybrid Virtualization
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The architecture diagram in figure 2 explains how the implementation has been car-
ried out during the research. The diagram depicts the workflow of the experiments where
cloudsim has been chosen due to its ability to model and simulate cloud infrastructure,
data centers, and scheduling policies, providing a realistic environment for evaluating
container placement and scheduling algorithms. Kuberenetes can be integrated as a con-
tainer orchestration tool due to its advanced features of container orchestration, including
scheduling, scaling, and managing containerized workloads, making it a suitable platform
for evaluating container placement policies and metaheuristic algorithms. As a hybrid
virtualization model has been implemented in the experiments, only baseline algorithms
have been considered for container placements. The selection of specific container place-
ment policies, such as FirstFit, MostFull, LeastFull, and Random, was driven by the need
to compare and evaluate different strategies for placing containers on virtual machines
(VMs) within the cloud environment. The rationale behind choosing these placement
policies lies in their distinct approaches to resource allocation and utilization, allowing
for a comparative analysis of their impact on execution time and resource efficiency. After
analyzing the impact on containers, scheduling algorithms were implemented on VMs.

Metaheuristic algorithms, such as Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO), and Revised Ant Colony Optimization (ACOR), were chosen con-
sidering their ability to optimize task scheduling and resource allocation in dynamic and
complex environments.

By using baseline container placement policies and metaheuristic algorithms in the
hybrid virtualization environment, performance metrics such as execution time, resource
utilization, and scalability were measured and compared to evaluate their impact on the
quality of service and overall efficiency of the cloud environment.

4.2 Proposed Algorithm: Revised Ant Colony Optimization
(ACOR)

Metaheuristic algorithms like PSO, ASO and ACOR have been implemented in the exper-
iments during simulation. While a brief description of the algorithms has been mentioned
above, a detailed study on the proposed algorithm helps to understand how the algorithms
help to provide better results when compared to other metaheuristic algorithms.

Ant colony optimization (ACO) is a bio inspired optimization algorithm that mimics
the behavior of ants in finding the shortest path between their nest and the food source.
This algorithm has been widely applied to solve NP-hard combinatorial optimization
problems, where it has shown promising results. Combinatorial optimization problem
refers to a type of problem in which the goal is to find the best solution from a finite
set of possible solutions. It involves making choices from a set of discrete elements and
finding the combination that optimizes a given objective function. Dorigo et al. (2006)
uses the model of a combinatorial optimization problem to define the pheromone model for
ACO, indicating that ACO can be modified and applied to solve different combinatorial
problems.

The revised ant colony optimization (ACO) algorithm focuses on partitioning artifi-
cial ants into two groups: scouts ants and common ants. The common ants follow the
searching process of the basic ACO algorithm, where tasks randomly choose resources
at each step of solution construction and select the resources to be visited based on a
probabilistic decision rule. However, the scout ants have distinct characteristics that set
them apart from the common ants. They calculate the resource capacity of the current
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optimal solution and search around the optimal solution based on the resource capacity.
While the common ants explore resources randomly, the scouts’ ants specifically explore
resources around the optimal solution, by directly visiting the resources in the optimal
solution, rather than relying on probabilistic decision rules. In terms of equation, it can
be explained as follows:

pkij(t) =
τij

α(t) + ηij
β(t)∑

j∈Nk
t

τijα(t)
, j ∈ Nk

t (1)

Here Nk
t is the node adjacent to node i.The impact of pheromone concentration can

be amplified by α, if Nk
t is large, then it will overpower the impact of pheromone, hence,

leads to converging onto a sub-optimal path. Further, when it is (t+1)th iteration of the
ant, then the pheromone concentration of each path becomes:

τij(t+ 1) = (1− β)xτij(t) +
k=1∑
nk

δτ kij (2)

Here, the number of ants is denoted by nk and the pheromone evaporation parameter
by β. According to ACO algorithm, VMs are allocated to the cloudlets in three steps:

Each cloudlet is initialized with special requirements for CPU, memory, and I/O (in-
put/output) resources. These requirements determine the type and number of resources
needed for the task to be executed.And the resources are allocated based on three follow-
ing steps :

• Understanding the user demands

• Initialization of parameters

• Scheduling VMs

Figure 3 illustrates the flowchart of ACO, where each cloudlet is scheduled based
on CPU, memory and I/O. The algorithm explains how the cloudlets are initialized and
scheduled. Each virtual machine (VM) in the cloud environment has a resource predictor,
which is used to search for suitable resources for the cloudlets. The cloudlets aim to find
the best solution Sbest based on their resource’s requirements and available resources in
the VMs.

Updating Pheromone and Resource Capacity
If the cloudlet reaches the optimal solution, they update the pheromone, which is a
chemical substance used by ants to communicate with each other. Then the pheromone
update helps in guiding future tasks to find better solutions. Additionally, the cloud-
lets also search for resources around the optimal solution based on their capacity, which
means that they consider the available resources in the Vms and their suitability for the
cloudlet execution.

Scheduling cloudlets to resources
According to the revised ACO (ACOR) algorithm, the cloudlets are scheduled based
on the available resources. ACOR, takes into account the updated pheromone and the
resource’s capacity to make better scheduling decisions. The scheduled cloudlets are then
shifted into the action space, which refers to the state where the cloudlets are ready to
be executed on the allocated resources.
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Pheromone and Heuristic Constants
Here, in ACOR, Alpha α and Beta β are considered as the two constants. Alpha α is the
pheromone constant, which determines the influence of the pheromone on the cloudlet
scheduling process. While beta β is the heuristic constant, which determines the influence
of the heuristic information (e.g., resource capacity) on the cloudlet scheduling process.

Figure 3: Flow chart scheduling cloudlets
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Algorithm 1 : Pseudocode for ACO

Input: Scheduled Cloudlet T = (T1, T2, . . . , Tn)
Output: T1 → R1

1. Get T = T1, T2, ...Tn

2. Initialize T → (CPU,Mem, I/O)

3. Compute Sbest

4. Update pheromone

5. If
T = Tmax
Get optimal solution

6. Search the solution around optimal solution
Else
Go to step 4

7. End if

8. End

5 Implementation

This section of the report highlights the implementation of the algorithms on the Cloud-
Sim simulator. As project focuses on resolving the optimization problem using a two-level
scheduling technique:

• Scheduling containers on VMs
• Scheduling VMs on PMs (Physical machines)
CloudSim is used to carry out experiments throughout the project.The pre-existing

examples of CloudSim are used as a reference to modify the code as per the require-
ment and integrate meta-heuristic algorithms. ContainerCloudsimExample.java is the
file which is taken as a reference to combine the pre-existing container algorithms, and
CloudSimExample6.java is the file on which the meta-heuristic algorithms are implemen-
ted.

5.1 Implementation on ConatinerCloudSim to schedule con-
tainers on VMs:

Container migration time and energy consumption are recorded by working on Container-
CloudSim files, where a combination of pre-existing algorithms is implemented, compared,
and analyzed to find which of the algorithms helps to reduce energy consumption while
decreasing container migration time.
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Figure 4: Combination of algorithms to find the optimal solution

The above snippet in figure 4 shows a combination of algorithms listed under one file,
where each time one algorithm is changed from the list to check the difference in the
container migration and energy consumption.

5.2 Implementation on CloudSimExample to schedule VMs on
PMs:

Metaheuristic algorithms like ALO and PSO are integrated with the pre-existing Cloud-
Sim example to schedule the VMS on PMS and check the execution time, wait, start and
finish time each algorithm takes while scheduling VMs to PMs.

6 Experiments and result evaluation

CloudSim 4.0, is used for the simulation of these experiments. The simulation is per-
formed by scaling cloudlets from 100 to 1000 on 10 – 20 VMs. 4 data centers are used
in this project with 2 ‘hosts’ each to host VMs. Table 4, refers to the parameters and
values used in the experiment for this research. The experiments are carried out by scal-
ing cloudlets to check the performance of the proposed algorithm. The used workload
models are of PlanetLab, which represents open-source environment-tailored information
for global testbeds Park and Pai (2006).

Parameters Values
Tasks Lengths 500(small) , 1000-2000(medium),

4000(high)
Input file size 300 bytes
Output file size 300 bytes
Fitness function Execution time

Table 4: Configuration parameters of tasks

6.1 Experiment 1

The first experiment focuses on the container’s placements on VMs. The ConatienrCloud-
Sim package is used as a reference to work on combining all the pre-existing algorithms
and find the best combination that could take the least time to migrate the containers
and reduce energy consumption as well.
With a constant set of parameters, container allocation policy and host selection policies
are changed each time to record the results. ContainerAllocationPolicy is a class in the
ConatinerCloudSim package that is used to allocate containers to virtual machines. It
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selects the available VM in the data center that meets the container’s deployment re-
quirements like the container’s memory, storage, and availability Shekar (2019). HostSe-
lectionPolicy determines to select an appropriate host for containers based on various
parameters like resource utilization, load balancing, and optimization of resource alloca-
tion.

According to Boukadi et al. (2017) FirstFit strategy of container allocation policy
is not the best in terms of cost when compared to the Linear program, thus increasing
the energy consumption indirectly. In this report, algorithms mentioned in container
allocation policies like FirstFit, LeastFull, MostFull, and Random are combined with
host selection policies to find the optimal results on a set of containers.

This report focuses on finding the combination of strategies that take less time to
migrate and consume less energy. A combination of container allocation policies and
host selection strategies like FirstFit and FirstFit, LeastFull and LeastFull, and MostFull
and MostFull, are recorded and compared by scaling up the containers each time all the
combinations are recorded. The results clearly show that the combination of MostFull
and MostFull algorithms proved to be a perfect combination as it helped to reduce the
container migration time and thus, reduced energy consumption as well.

Figure 5: Container Migration Results

Figure 5 shows the recorded results for container migration. Here combinations of
VM allocation policy, container selection policy, container allocation policy, host selection
policy, vm selection policy, and container placement policy are executed each time and
compared to record the lowest, highest, and average time a container takes to migrate on
VMs.
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Figure 6: Conatiner Energy Consumption Results

Figure 6 shows the recorded results for container migration. Here the same combina-
tions of algorithms are executed and compared to find the lowest energy consumed while
migrating containers to VMs.

6.2 Experiment 2

CloudSim is a cloud infrastructure that provides rich preexisting code to schedule VMs on
available datacenter host and perform other cloud simulations. Meta heuristic algorithms
are implemented to schedule VMs on available hosts or physical machines (PMs). The
result of each algorithm is recorded while keeping the number of VMs constant and
changing the number of cloudlets each time. The number of VMs used here is 10 while
the cloudlets can be scaled up from 500-2500 to record the results. As mentioned earlier,
this project focuses on nature-inspired meta heuristic algorithms: ACOR, ALO and PSO,
to find the optimal scheduling algorithm.

The number of cloudlets has been scaled periodically in the code, while Vms are
constant and CloudSimExample6.java has been executed to record the results. Each time
the number of cloudlets was changed, the meta-heuristic algorithm generated different
data sets which showcased the execution time each algorithm was taking to schedule VMs
on PMs. Table 5,6,7 and 8, show the results recorded after implementing the experiments.
Figures 7, 8, 9 and 10 showcase the results recorded and the graphs plotted. The results
in figure 10 clearly depict that ACOR is the most optimal algorithm as it has the least
execution time recorded.
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Number of
Cloudlets

ALO PSO ACOR

500 2.08878 3.187398374 3.127656904
1000 2.11795 3.165712831 2.985472689
1500 2.143322215 3.130531697 3.006167832
2000 2.1022 3.196967089 2.985079031
2500 3.195586797 3.195586798 2.989860994

Table 5: Comparison of Average wait time

Figure 7: Comparison of Average wait time

Number of
Cloudlets

ALO PSO ACOR

500 173.82646 116.0661585 103.1658996
1000 310.80462 244.2170876 187.3902626
1500 463.5752168 324.8819836 281.1609441
2000 642.805235 495.2701063 368.3940674
2500 615.7577954 615.7577954 464.1983109

Table 6: Comparison of Average Start time
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Figure 8: Comparison of Average Start time

Number of
Cloudlets

ALO PSO ACOR

500 175.91494 119.2528862 106.2929289
1000 312.92205 247.3823218 190.3750105
1500 465.7180254 328.0119155 284.1663916
2000 644.907055 498.4665924 371.3784194
2500 618.9529707 618.9529707 467.1874389

Table 7: Comparison of Average Finish

Figure 9: Comparison of Average Finish time
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Number of
Cloudlets

ALO PSO ACOR

500 368.2896399 7.2488451 18.4068195819854
1000 693.0347035 114.447603 60.13135099
1500 1263.156192 24.10668635 128.2013986
2000 830.1434226 51.490799667 136.1294034
2500 1206.308688 236.8184888 157.7574985

Table 8: Comparison of Average Execution time

Figure 10: Comparison of Average Execution time

6.3 Discussion

The experiments and results in the report give a comprehensive exploration of the meta-
heuristic algorithms used over the pre-existing container-based algorithms. Examining
various aspects of container scheduling and VM scheduling, the results show that PSO
and ACOR did not show much difference while recording wait time, start time and finish
time. The graphs of these parameters show that ACOR helps to minimize wait time, start
time, and finish time. ACOR also proved to be the optimal algorithm in terms of execu-
tion time of the application. This study focuses on container migration time, container
energy consumption, and execution time. Therefore, based on these parameters, the ob-
tained results suggest ACOR to be the most efficient meta heuristic algorithm which can
be combined with MostFull containerAllocationPolicy and Mostfull HostSelectionPolicy
to minimize the execution time of the extended workload. The literature review and
experiments of this report focus on parameters like migration time and execution time,
but the overall performance of the applications depends on various other parameters like
security, SLAs and computational cost. These parameters can further be tested by using
the same set of algorithms.
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7 Conclusion and Future Work

MostFull strategy of container allocation policy and host selection policy has helped to
reduce the container migration time and energy consumption, while PSO, the meta-
heuristic algorithm helped to schedule VMs to PMs, minimizing the execution time of
the application. This concludes that the research has been carried out as per the ex-
pectations set initially. The aim was to study cloud infrastructure and experiment with
scheduling algorithms which has been fulfilled. However, the research can be extended
further by studying the same algorithms on different quality of service parameters like
cost efficiency and security. Integration of container orchestrations like Kubernetes and
docker swarm can also be considered in the future.
Future works on this research may also include the implementation proposed algorithm
(i.e, a combination of MostFull and ACOR) on Amazon or Google cloud using their
containers as a service. The algorithm’s design and logic dictate how it assesses the cur-
rent state of the system, evaluates resource availability and makes decisions regarding
resource allocation and provisioning. Future work should focus on performance metrics
related to scalability and elasticity, such as scalability ratio, resource utilization efficiency,
and dynamic resource allocation overhead, to quantitatively evaluate the algorithm’s per-
formance in these aspects. By analyzing these metrics under varying workload conditions,
the algorithm’s effectiveness in handling scalability and elasticity can be systematically
assessed on public cloud services like Amazon Web Services (AWS) or Google Cloud
Platform (GCP).
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