~

N\ National
College
Ireland

Optimizing AWS Resource Provisioning
Time through Thread-Level Parallelism and
Terraform

MSc Research Project
Cloud Computing

Sanket Patil
Student ID: X21229139

School of Computing
National College of Ireland

Supervisor: Sean Heeney

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sanket Patil
Student ID: X21229139
Programme: Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Sean Heeney
Submission Due Date: 14/12/2023
Project Title: Optimizing AWS Resource Provisioning Time through
Thread-Level Parallelism and Terraform
Word Count: 6562
Page Count: 7]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Optimizing AWS Resource Provisioning Time through
Thread-Level Parallelism and Terraform

Sanket Patil
X21229139

Abstract

This research addresses the critical challenge of optimizing deployment time for
AWS resources by introducing a novel strategy that combines thread-level paral-
lelism and Infrastructure-as-Code (IaC) automation. Thread-level parallelism is a
technique that involves dividing a program into smaller tasks, called threads, which
can be executed concurrently. The core of the study revolves around the use of Py-
thon’s library to implement thread-level parallelism for the simultaneous execution
of multiple Terraform scripts responsible for provisioning key AWS services like S3,
Elastic Beanstalk, and RDS. By using thread-level parallelism, multiple Terraform
scripts can be executed simultaneously, reducing the overall deployment time.

In this research, terraform is used as the IaC tool to automate the provisioning
of AWS resources. Terraform scripts are written in a declarative language that
describes the desired state of the infrastructure. By automating the provisioning
process, the research aims to streamline and optimize the deployment of AWS re-
sources. Jenkins, functioning as the deployment server, retrieves these scripts and
Python code from the GitHub repository, orchestrating the provisioning of AWS
resources based on the pre-defined configuration. The integration of thread-level
parallelism enhances deployment efficiency, enabling concurrent execution of re-
source provisioning tasks for faster and more scalable deployments. To validate
the effectiveness of this proposed system, a web application is developed using the
Django framework in Python. This application leverages AWS resources provi-
sioned through the optimized deployment strategy, showcasing the practical im-
plications of both thread-level parallelism and infrastructure-as-Code automation.
The seamless integration of these technologies not only streamlines the deployment
process but also ensures the reliability and consistency of the deployed infrastruc-
ture. .

The results of the study show a significant difference in the time required for AWS
(Amazon Web Services) resource provisioning when parallel execution is used in-
stead of sequential execution.

This project serves as a valuable demonstration of modern deployment practices,
emphasizing the importance of automation and parallelism in achieving efficient
and scalable AWS resource provisioning for web applications. The presented sys-
tem offers a practical and replicable approach for teams seeking to enhance their
deployment workflows and maximize the benefits of cloud infrastructure.

1 Introduction

In the rapidly evolving landscape of cloud computing, organizations are increasingly lever-
aging the flexibility and scalability offered by platforms such as Amazon Web Services
(AWS) to meet their computational demands. As enterprises embrace cloud-native ar-
chitectures, the efficient provisioning and deployment of AWS resources becomes pivotal
for achieving optimal performance and resource utilization. This is particularly cru-
cial in dynamic environments where the ability to scale resources swiftly can make the
difference between meeting and exceeding business objectives. The rapid and efficient
deployment of resources is paramount for organizations seeking to leverage the benefits
of platforms like Amazon Web Services (AWS). As cloud infrastructures grow in complex-
ity, provisioning various AWS services such as S3, Elastic Beanstalk, and RDS demands
an approach that not only ensures accuracy in resource creation but also minimizes de-
ployment times. The deployment time of AWS resources is a significant issue that cloud
practitioners must deal with since it directly affects an organization’s overall agility. Se-
quential execution is a common feature of traditional resource provisioning techniques,
which may cause bottlenecks and extend deployment times. This paper, recognizing the
need for increased efficiency, presents a novel method to integrate Infrastructure-as-Code
(IaC) automation and Thread-Level Parallelism (TLP) to optimize the deployment time
of AWS resource provisioning. Optimize AWS resource provisioning deployment time
through the integration of Thread-Level Parallelism (TLP) and Infrastructure-as-Code
(IaC) automation. Complementing TLP, Infrastructure-as-Code automation emerges as
a fundamental element in achieving consistency, repeatability, and manageability in cloud
resource provisioning. By representing infrastructure configurations as code, [aC enables
automated, version-controlled, and collaborative management of AWS resources. This
paper explores the constructive collaboration between TLP and IaC, demonstrating how
their integration can lead to a streamlined and accelerated deployment process.

As organizations navigate the intricacies of the cloud, the proposed optimization strategy
holds promise for not only expediting resource deployment but also enhancing resource
utilization and cost-effectiveness. By harnessing the power of parallelism and embracing
automation through Infrastructure-as-Code, enterprises can position themselves to meet
the demands of dynamic business environments with agility and efficiency. This paper
delves into the theoretical underpinnings, practical implementation, and potential bene-
fits of this innovative approach, contributing valuable insights to the evolving landscape
of cloud infrastructure management.

The research coordinates the deployment of AWS services, such as S3, Elastic Beanstalk,
and RDS, using Terraform, an infrastructure-as-code scripting language, to automate
resource deployment. Each AWS resource is arranged into distinct workspaces, or dir-
ectories, through a unique Terraform script. The research focuses on using Python to
implement multi-threading and create a parallel script. This script makes use of the
library’s functions to run multiple threads simultaneously. The ”workspace” variable,
containing a list of Terraform scripts, serves as the basis for parallel execution. The
deploy_environment function encapsulates Terraform commands like "terraform init’ and
‘terraform apply,” supplemented by parameters such as ’-auto-approve’ to circumvent
state lock conditions that might hinder concurrent execution.

1.1 Motivation

Traditional resource provisioning techniques often involve sequential execution as pro-
posed in [Ivanova et al. (2018)), leading to bottlenecks and extended deployment times,
especially as cloud infrastructures grow in complexity. Recognizing the need for increased
efficiency in this context, the motivation for this research stems from the desire to ad-
dress the challenges associated with the deployment time of AWS resources. The paper
aims to explore innovative approaches that go beyond conventional methods, leveraging
Infrastructure-as-Code (IaC) automation and Thread-Level Parallelism (TLP) to optim-
ize AWS resource provisioning deployment time.

1.2 Research Question

How does the integration of Thread-Level Parallelism (TLP) and Infrastructure-as-Code
(IaC) enhance the efficiency of cloud resource deployment, considering both theoretical
foundations and practical implementation?

1.3 Report Structure

This paper proposed the parallel execution approach for executing the terraform scripts to
provisioned AWS resources. Related work is described in section [2 The methodology of
the study is detailed in section [3] Section []and section [5]describes Design specification
and implementation of the proposed research work. Evaluation of the proposed research
work is discussed in section [6] Whereas, section [7] describes Conclusion and future
work.

2 Related Work

In modern IT infrastructure management, the ability to provision cloud resources rapidly
and effectively is critical for organizations to scale their operations, satisfy customer
needs, and optimize costs. This literature study focuses on the present state of research
and techniques for optimizing the deployment time of AWS (Amazon Web Services)
resources. It focuses specifically on the synergistic usage of thread-level parallelism and
Infrastructure-as-Code (IaC) automation.

2.1 Review on Infrastructure-as-Code (IaC)

[aC has drawn a lot of attention since it can use machine-readable scripts to create and
maintain infrastructure. These scripts can be versioned, allowing for easy tracking of
changes and team cooperation. Organizations may achieve consistency and repeatability
in their infrastructure deployments by leveraging [aC, lowering the risk of human error
and guaranteeing that infrastructure is always provided and configured appropriately.
Artac et al. (2017)) conducted research on the benefits and use cases of Infrastructure-as-
Code (IaC) in DevOps. The author discusses various advantages of IaC in the context
of DevOps, such as versioning, which allows for debugging and back-tracking/version
control. It also enables the use of infrastructure design patterns to swiftly assemble solu-
tions, which are pre-defined solutions to common problems. Additionally, Model-driven
engineering can also be utilized to directly derive 1aC specifications from architectural

design and development models. Infrastructure-as-code is an important part of DevOps
since it allows several essential principles that rely heavily on automation. on top of
that, Research by |Guerriero et al. (2019) highlights Adoption, Support, and Challenges
of Infrastructure-as-Code. The report draws on data from 44 semi structured interviews
with senior developers from a variety of firms. The outcomes of this study emphasize
the need for additional research in the field of TaC. The tools for IaC support that are
now available are rather restricted. According to the findings, there is a lack of tools
and procedures that can successfully support the adoption and maintenance of IaC. The
study intends to fill this void. The methodology of this research comprises analyzing (1)
current development practice, (2) the advantages and drawbacks of available tools, and
(3) problems when writing infrastructure code.

Technologies like virtualization, cloud computing, containers, server automation, and
software-defined networking are made to make IT operations easier. The goal of these
technologies is to improve infrastructure and handling of resources for businesses. Many
firms have discovered, nevertheless, that using these technologies frequently results in a
sprawl of unmanageable systems. This implies that these technologies may potentially
increase complexity and manageability rather than simplify processes. Infrastructure as
code can help with this. This notion entails utilizing code, as opposed to human meth-
ods, to manage infrastructure resources. Organizations may increase the efficiency and
manageability of their infrastructure by automating the provisioning, configuration, and
management processes with infrastructure as code. The study [Morris (2016) describes
how to apply the DevOps movement’s tenets, procedures, and patterns to infrastructure
as code in the cloud era. This study is broken up into three sections. The first section
describes the platforms and tools used to create and configure infrastructure components.
Understanding the functionalities and service models of dynamic infrastructure platforms
is part of this. The research’s second section is devoted to patterns for using the instru-
ments and methods. It offers information on how to use infrastructure as code to upgrade
servers that are already in operation, create server templates, and provide servers. The
final section of the article discusses techniques for ensuring that infrastructure as code
functions well in various settings.

Additionally, the study [Ikeshita et al.| (2017) included ways to shorten test durations
and expenses when examining idempotence in target infrastructure code that incorporates
script resources. Research includes earlier investigations that looked at various methods
to determine whether or not the code used in [aC is idempotent. These investigations
relied on two standard methods for determining idempotence in code. But this method
can be cumbersome and unworkable, particularly in the case of intricate infrastructure
configurations. The researcher in lkeshita et al.| (2017)) suggests an effective way to verify
idempotence in IaC code by combining testing and static verification methodologies. The
goal of this study is to minimize the amount of test cases needed, especially for code that
uses external scripts. The technique works well for cutting down on the amount of tests
required to verify idempotence. The approach’s usefulness is demonstrated in the article
through tests, which also indicate that the method had an acceptable execution time and
was successful in lowering the size of the test suite. According to research, this method
provides a more useful and efficient way to verify idempotence in IaC code, assuring the
infrastructure’s stability and dependability.

The study report |de Carvalho and Patricia Favacho de Araujo| (2020)) then examines
several infrastructure management solutions and compares their respective performances.
This study examines many technologies, including Terraform, Heat, CloudFormation, and

Cloudify Brikman| (2022). The analysis’s findings show that only Cloudify and Terraform
are appropriate for the particular needs outlined in this study among all the orchestrators
that were taken into consideration. In this experiment, a Wordpress application’s blue-
print is provisioned across many cloud service providers. The Wordpress application’s
required resources, including virtual machines, network resources, security restrictions,
and routing, are specified in the design. The study’s findings indicate that Terraform
outperformed Cloudify in terms of speed throughout both the provisioning and deprovi-
sioning phases. Terraform took an average of 4.7 minutes to furnish the test environment,
whereas Cloudify took an average of 8.5 minutes. In addition, it was found that com-
pared to Terraform, Cloudify used greater network resources. Terraform used an average
of 1.3 gigabytes of network bandwidth to run its activities during the provisioning phase.
However, Cloudify required nearly twice as much network traffic—2.3 gigabytes on av-
erage—to carry out the identical provisioning task. Disk activity is another criterion
measured in the study, and it was found that Terraform had a modest average disk
activity, gathering data during its operations totaling between 0.1 and 0.2 megabytes.
Cloudify, on the other hand, accumulated data ranging from 1.6 to 2.1 megabytes and
showed increased disk activity. The study concludes that Terraform is probably able to
handle data more effectively than Cloudify since it has less disk activity and concentrates
more on memory, which leads to a shorter execution time.

“) Google Cloud Flatlorm E.‘..--..a.- an Web Senvices
O wardpress-app1 wardpress-app! ‘ wardpress-app 1 . wp-daiabase J5A wortbrass networ WORKNes-2001
e
0 WOripeEss-appd woedprEss-ap
a N
O wo-dakabase Lacal | WO-GNIAD Ase
_ D Tearaoam e Cloucty ———]
G wuriprwss network [] wondpress netwoik

Figure 1: Deployment of multi cloud resources using terraform and cloudifyde Carvalho
and Patricia Favacho de Araujo| (2020)

2.2 Review on Thread-level Parallelism

The capacity of a computer system to run many threads at once is known as thread-level
parallelism. TLP is centered on making advantage of numerous threads to improve a
computer system’s overall performance. Computer systems can get increased through-
put—the quantity of jobs finished in a given amount of time—by utilizing TLP. Re-
searchers in article Aziz et al. (2021) reviewed multiprocessing and parallel processing
in Python . Rather of addressing a huge issue sequentially, parallel and multiprocessing
algorithms break down important numerical problems into smaller sections that may be
tackled simultaneously on separate processors or cores. The computing process may be
sped up considerably with this method. Python and C are two programming languages
that handle it effectively. These languages are seen to be appropriate for "heavy-duty”
computing jobs as they come with the libraries and tools needed to carry out parallel al-
gorithm implementation. Global interpreter lock (GIL), a Python feature that guarantees
only one thread executes Python bytecode at a time, was discussed in Paper |Aziz et al.

(2021)). This indicates that real parallel execution of several threads is not supported to
the fullest extent by Python’s default interpreter. Nonetheless, a wide range of Python
tools and packages have been created throughout time to facilitate multiprocessing and
parallel processing. These libraries allow for the effective parallel execution of jobs and
offer remedies for the GIL’s constraints. The study focuses on Python packages designed
to enable multiprocessing and parallel processing.

A different study Babuji et al.| (2017)) presents Parsl, a Python parallel scripting frame-
work that aids in the creation and implementation of extensive, subject-specific workflows
by academics. A software framework called Parsl enables parallel task execution within a
Python script. Parsl launches asynchronous Apps in place of computing results synchron-
ously (one after the other). The Dataflow Kernel, or DFK for short, is a Parsl component
that controls how a script is executed. The DFK makes sure that the script’s regular
functions are informed about the futures (AppFutures) and their dependencies. These
functions will only run when all required outcomes are available, as their execution is
contingent on the resolution of all dependent futures. This guarantees that the functions’
execution and the results’ availability are in sync. There are now three executors available
in Parsl that may be used to run tasks concurrently. Threads, Swift/T, and IPython-
Parallel are these executors. Standard Python code plus many Apps make up a Parsl
script. Because Parsl Apps are entirely asynchronous, the outcome of an App invocation
is not returned right away. Parsl returns an AppFuture rather than a result directly. An
AppFuture is a construct that holds the exceptions, status, and actual outcome for that
particular asynchronous function call. Parsl offers several ways to inspect the AppFuture,
including status checking, stopping on completion, and result retrieval. Parsl uses the
concurrent.futures package, which is built in Python, to manage the AppFutures in this
Babuji et al.| (2017)) work.

Additionally, the author of article Kim et al.| (2021) conducts a survey and perform-
ance test of Python-based parallel processing packages. These libraries provide ready-
made code that may be used to accomplish specialized tasks like data analysis or machine
learning. The ability to execute numerous tasks at once using the Python-based paral-
lel processing library can greatly accelerate the execution process. Parallel processing,
according to studies, is breaking a task up into smaller subtasks that may be run concur-
rently on several processors or cores, which cuts down on processing time overall. This
methodology facilitates expedited development and seamless integration of disparate soft-
ware components. Kim et al.| (2021]) suggested a study that assessed the performance of
six Python parallel processing libraries, including Ipyparallel. The study’s goal was to see
how successful parallel processing is at improving performance when compared to serial
processing. The researchers used Python libraries to conduct both a practical test and
a theoretical analysis of parallel processing; the testing revealed that parallel processing
enhanced performance by around 71.6% when compared to serial processing. The study
sought to demonstrate the advantages of parallel processing in terms of improved per-
formance. It concludes that parallel processing can greatly improve efficiency and speed.
Parallelism is the ability to perform many tasks at the same time.

The authors of the following paper Galvez et al.| (2018)) describe CharmPy, a par-
allel programming model and framework based on the Python programming language.
CharmPy is a Python-based parallel programming language that works on top of Charm-++s
C++ runtime. CharmPy is a high-level paradigm based on the concept of distributed
migratable objects, which enables things to migrate between parallel processors. The au-
thors of (Galvez et al.| (2018)) show how to create a distributed parallel map function built

on the Master-Worker pattern, with support for asynchronous concurrent jobs, to demon-
strate the simplicity of the CharmPy architecture. The authors also describe results from
executing stencil code (a sort of method used in image processing) and molecular dynam-
ics mini-apps (small programs mimicking molecular activity) written entirely in Python
using CharmPy on the Blue Waters and Cori supercomputers. Whereas, the author of
the following research study |(Chansup Byun (2022) employs pPython for parallel Python
programming. pPython is a programming language that tries to give parallel computing
capabilities while retaining the simplicity of Python programming. It accomplishes this
by layering partitioned global array semantics (PGAS) on top of PythonMPI, a simple
file-based messaging package. The SPMD (single program multiple data) paradigm of
processing is used by pPython, which means that the same program is performed on
several processors, but each processor operates on a distinct section of the data. The pa-
per (Chansup Byun (2022)compares pPython against pMatlab using the HPC Challenge
benchmark suite and offers preliminary results. This report also discusses difficulties and
future work.

2.3 Literature Review Summary

In summary, in this paper Artac et al.| (2017), author discuss discusses the advantages
of Infrastructure-as-Code (IaC) in DevOps, how to leverage Model-driven engineering
to derive IaC specifications from architectural models, and how to employ infrastruc-
ture design patterns for rapid problem-solving. According to |Guerriero et al. (2019),
Infrastructure-as-Code (IaC) requires extra tools and processes to facilitate adoption and
maintenance as the available solutions has limitations and difficulties associated with pro-
ducing infrastructure code. In |Morris (2016]) study describes how to use DevOps ideas
to infrastructure as code in the cloud era. It covers tools and platforms, infrastructure
as code patterns, and methods for making sure the code works in various environments.
Whereas, in [Ikeshita et al| (2017), study propose an approach that reduces the amount
of test cases required to validate idempotence in infrastructure code. The strategy works
well for cutting down the execution time. The comparison of different infrastructure
management solutions including Terraform, Heat, CloudFormation, and Cloudify discuss
in de Carvalho and Patricia Favacho de Araujo (2020), outcome of this study shows,
Terraform outperforms Cloudify in terms of execution time.

In Aziz et al.| (2021), Researchers examined Python’s parallel and multiprocessing
features. It also discusses limitations and alternative for parallel processing. In [Babuji
et al.| (2017), study presents, Parsl — a python based parallel processing framework that
enables parallel task execution using concurrent.futures package. According to a [Kim
et al| (2021), parallel processing outperformed serial processing by about 71.6% when
six Python parallel processing libraries were evaluated. Whereas, in |Galvez et al.| (2018))
and (Chansup Byun (2022), study introduce charmPy and pPython as an another par-
allel Python programming languages. While pPython employs partitioned global array
semantics and evaluates its performance against pMatlab, CharmPy uses a distributed
parallel map function to highlight the simplicity of its architecture.

3 Methodology

The primary objective of this research is to enhance resource provisioning by optimizing
time taken by the execution of terraform script with the help of thread-level parallelism.

7

In this project, Amazon Web Services (AWS) is used to host the resources deployed
through the execution. The initial step of this methodology begins with creating the
terraform script. It contains three different terraform script to deploy AWS RDS, Elastic
Beanstalk and S3. This scripts are stored in different directories under the workspace
directory. These directories will be accessed by the python script stored in the GitHub
repository in order to fetch the terraform script.

This methodology’s Terraform script for RDS service will generate a security group and a
relational database service. The security group created by this script will allow incoming
and outgoing traffic to the RDS database. Another Terraform script will generate an
S3 bucket. This script will also apply S3 bucket policies to newly created buckets. In
contrast, terraform script designed for AWS elastic beanstalk service would generate
elastic beanstalk environment as well as beanstalk application. This script will also
retrieve the web application zip file from the S3 bucket and deploy it to the application.
Furthermore, resource deployment process also includes GitHub repository that used to
store the terraform scripts along with the python script and Jenkins file. The structure
of the GitHub repository is shown in the Figure [2l Jenkins is used in this project as a
deployment server. Jenkins server is configured to access the Jenkins file stored in the
GitHub repository. Jenkins file contains bat command that used to execute the python
script.

GitHub Repo

[Workspaces
Jenkinsfile l l l

Python TLP script Workspacel Workspace2 Workspace3

\ \ \

Terraform script for Terraform script for Terraform scrij
AWS RDS AWS EB AWS S3

pt for

Figure 2: Architecture of the Git Repository

3.1 Execution Workflow

Whenever, pipeline created in Jenkins server will get execute, it will access the Jenkins
file stored in the GitHub repository. Bat command stored in that file will run the py-
thon script. after executing the bat command python script will access the terraform
script stored in the workspace directory and it will run terraform command on it. con-
current.futures library used in the python script will assign the execution of terraform
script to individual thread to perform concurrent execution of resource deployment. As
a result, this execution process will create three different AWS resources such as AWS
RDS, Elastic Beanstalk and S3 in minimal time.

3.2 Demonstration Setup

The proposed work in this research is to verify and confirm the improvement in deploy-
ment time achieved through parallel deployment methods. This is done by evaluating
performance metrics such as deployment time and comparing them with metrics obtained

from other deployment methods. For evaluation purpose, methodology proposed in this
research work incorporates three different approaches for hosting the AWS services.

3.2.1 Traditional Approach

In the traditional approach, a python script will not be used to automate the execution
of the terraform scripts; instead, each terraform script will be executed one by one using
multiple Jenkins pipelines. This method does not guarantee concurrent execution of
Terraform scripts.

3.2.2 Sequential Approach

The python programming language will be utilized in this technique to automate the
execution process of terraform scripts. The python script built in this approach will fetch
the terraform script and execute it sequentially. This method also does not ensure that
the terraform scripts run concurrently.

3.2.3 Parallel Approach

This method employs Thread-Level Parallelism (TLP), which will be implemented using
a Python script. The Python script used in this case will retrieve the Terraform script
from the workspace directory and assign it to the separate thread for execution. This
thread will run the Terraform script in parallel.

4 Design Specification

The research proposed on integration of thread-level parallelism (TLP) with Infrastructure-
as-Code (IaC) is designed to optimize AWS resource provisioning by minimizing the ex-
ecution time. This section outlines the design specifications for the proposed research
work. This research includes various technical aspects required for the provisioning of
AWS resources such as terraform, Jenkins, GitHub, etc. To implement Thread-level
parallelism python 3.8 is incorporated in this research.

4.1 Proposed architecture:

EEEEEEEE

4
GitHub

Amazon RDS

Figure 3: Proposed architecture design for enhance resource deployment

As shown in Figure [3] this research includes GitHub repository as a source control
management. In proposed work GitHub repository is used to store the terraform script
and python code. GitHub repository used in this proposed work contains three different
terraform scripts that stored in three different directories under parent directory. Each
terraform script is used to create three different AWS resources such as AWS RDS, Elastic
Beanstalk and S3. GitHub repository also contains Jenkins file that used by the Jenkins
deployment server to run the python script. Jenkins file stored in the GitHub contains
bat command that trigger the python script when Jenkins run the new build. After
successful build Jenkins will spin up three resources that is AWS RDS, Elastic Beanstalk
and S3 in AWS subscription.

4.2 Python TLP Architecture

Main idea of this research work is focused on the Python script that used to implement
thread-level parallelism(TLP). The python script divides into three logical section. First
section of the script contains workspace variable with list data type. This variable stores
the terraform workspace directories that stores terraform script. This section also contains
max_workers variable which used to specify number of threads used during the execution.
Second section of the script contains deploy_environment () function. This function con-
tains terraform command along with additional parameter such as auto-approve, lock,
etc. to avoid state lock condition while executing multiple terraform command simultan-
eously. Terraform commands include in this function are terraform init (used to initialize
terraform script) and terraform apply (used to provision resources as per configuration).
It also contains script_dir variable that reads path of terraform script specified in work-
spaces variable in first section. In final section of the script ThreadPoolExecutor method
of concurrent.futures library is used which is the core component of the script used to
implement thread-level parallelism. This method maps the each terraform script with
terraform command and assign it to the individual thread for parallel execution

Workspaces
(_ WORKSPACE1) (" WORKSPACE2) (" WORKSPACE3)

st) (_saer J e J

|

- |
\ PYTHON SCRIPT |

Figure 4: Pyhton Thread-Level Parallelism Code Architecture

As shown in Figure [d] On execution of the script, python will run terraform init com-
mand on all terraform script and after successful completion of terraform init command it

10

will start executing terraform apply command on all terraform script. It will execute both
command on all terraform script simultaneously by assigning execution of the terraform
script to individual thread.

5 Implementation

Objective in this research is to optimize deployment time of AWS resource provisioning
with the help of thread level parallelism. This can be done with the help of execut-
ing multiple thread simultaneously with the help ‘concurrent.futures’ library of python
programming language. for the demonstration purpose, AWS services like S3, elastic
beanstalk and RDS has been created. For provisioning of this resources terraform is
used. Terraform is a scripting language also known as Infrastructure-as-a-Code that en-
abled automation in resource deployment. In this project, as shown in Figure[2] for every
resource separate terraform script has been written and stored into the separate direct-
ory. These directories are renaming as workspace. So, each workspace contains separate
terraform script. Each terraform script in this project stored AWS credentials that is
required in order to deploy the resources using IaC method.

5.1 Thread-Level Parallelism (TLP) Implementation

To implement multi-threading with the help of thread-level parallelism, python program-
ming language is used. By using python programming language, python TLP (Thread-
level parallelism) script has been developed. This script contains a ‘workspaces’ vari-
able with data type as a list that fetch and stored all terraform script. Whereas, ‘de-
ploy_environment’ function included into script contains terraform command such as ‘ter-
raform init” and ‘terraform apply’ along with other parameter such as ‘-auto-approve’” and
‘-lock=false’ to avoid state lock condition in terraform. state lock condition in terraform
restrict execution of multiple terraform script by locking the state of currently executing
terraform script

The TLP script developed in this project also includes ‘max_workers’ parameter which
used to define maximum number of concurrent threads to be utilized during the execution
of deployment process. Number of workers are depending on the system capabilities.
Finally, ‘ThreadPoolExecutor’ and ‘as_completed’ function of ‘concurrent.futures’ library
is used that enables parallel execution of the terraform script. This function maps ter-
raform command with individual workspace and assign it to the separate thread. These
threads execute terraform command on every workspace in parallel manner.

5.2 Interaction with Terraform

Proposed implementation includes terraform as a scripting language that used to auto-
mate deployment process of AWS resources such as RDS, Elastic Beanstalk and S3. Each
scripts developed in this implementation includes multiple terraform module as per re-
quirement. This section includes details of the all three terraform scripts proposed in this
implementation.

11

5.2.1 Relational Database service with Terraform

In this script ‘aws_db_instance’ and ‘aws_security_group’ resource blocks of terraform is
used. ‘aws_db_instance’ block used to create database instance. This block includes re-
quired and optional attribute such as allocated storage, db_name, engine, engine_version,
etc. In this implementation, this block is used to create MYSQL 5.7 database instance
along with storage of 20GB, t3.micro class instance, username and password to access the
database. On other hand, ‘aws_security_group’ block included in the script is used to cre-
ate security group with name ‘parallel-mysql-sgl’ that allow network traffic on port 3306.
Security group created in this resource block is configured in ‘vpc_security_group_ids’
attribute of ‘aws_db_instance’ resource block.

5.2.2 Elastic Beanstalk with Terraform

The script defined for elastic beanstalk in this implementation includes three resource
blocks such as ‘aws_elastic_beanstalk_application’, ‘aws_elastic_beanstalk_environment’ and
‘aws_elastic_beanstalk_application_version’. In this implementation, aws_elastic_beanstalk_
application’ block is used to create elastic beanstalk application with name ‘parallel-
research-ElasticBeanstalkApp’. Whereas, ‘aws_elastic_beanstalk_environment’ block is
used to create beanstalk environment with name ‘parallel-research-Environment’. This
blocks include other required parameter such as application name, solution stack name
and version label. Last block includes in this script that is ‘aws_elastic_beanstalk_application
_version’ is used to deploy web application on created elastic beanstalk environment. This
block required attribute such as application name on which web application will be de-
ployed, location and name of web application zip file.

5.2.3 S3 with Terraform

Final script included in this implementation is to provisioned AWS S3 resources which
includes ‘aws_s3_bucket’, ‘aws_s3_bucket_public_access_block’ and ‘aws_s3_bucket_policy’
resource blocks. ‘aws_s3_bucket’ resource block used in this implementation is to create S3
bucket which takes ‘bucket’ attribute to specify name of the bucket. Whereas, remaining
two blocks are used to specify the bucket access. ‘aws_s3_bucket_policy’” block contains
S3 object policy in JSON format that enable read and write access to the S3 bucket.

5.3 Proposed Approach Implementation
5.3.1 Traditional Execution

Traditional approach will execute terraform separately by using multiple Jenkins pipeline.
In this approach terraform scripts are stored in different repository and they are executed
with the help of different Jenkins pipeline. The execution of those scripts are automated
by inter-linking Jenkins pipeline that execute next pipeline after completion of previ-
ous one. Each pipeline executes terraform init and apply command on each terraform
scripts. This approach does not include python programming language for automating
the execution process.

12

5.3.2 Sequential Execution

Sequential approach for implementing the AWS resource with the help of terraform is
same as parallel execution approach. This approach also incorporates python 3.8 to
automate resource deployment process but this approach does not implement Thread-
Level Parallelism to ensure concurrency in execution. In this approach also, Jenkins
pipeline is used to trigger the python script. After triggering, python script will fetch the
terraform script but it will execute this scripts one after other that implement sequential
execution of terraform scripts.

5.3.3 Parallel Execution

The implementation of parallel execution approach includes python programming lan-
guage that enables Thread-Level Parallelism (TLP) in the resource provisioning pro-
cess. Python script defined in this approach triggered remotely with the help of Jenkins
pipeline. After triggering, python script retrieves the terraform scripts from GitHub and
assigned it to the individual thread for concurrent execution. Each thread in the execu-
tion process will execute the terraform init command on all terraform scripts to initialize
and after completion it will start execution of terraform apply command to implement
changes.

5.4 Implementation of GitHub and Jenkins

In this project, GitHub and Jenkins also has been used. GitHub is used as a source
control repository that stored python script that enable parallel execution and work-
space directory that contain terraform script used to provision AWS resources. Whereas,
Jenkins used as a deployment server that fetch terraform script and python code form
GitHub repository and provision the resources as per configuration.

sanket0770 Update s3.1f 3b644ad 2 days ago ¥E) 55 commits
workspace Update s3.tf 2 days ago
[j Jenkinsfile Update Jenkinsfile last week
[pscriptpy Update pscript.py last week

Figure 5: Jenkins stored in GitHub

As shown in the Figure [f, Jenkins file is created in a same GitHub repository that
contains terraform scripts. Whenever a pipeline built in Jenkins is executed, the python
command stored in the Jenkins file will also get executed.

On complete execution, terraform scripts stored in the GitHub repositories will be ex-
ecuted. This execution will create AWS resources that are specified in configuration such
as AWS RDS, Elastic beanstalk and S3 as shown in Figure [6]

13

parallel-research-Environment w. c Upload and deploy.

Environment overview Platform

parallel-research-s3-bucket we

parallel-research-rds1 (o] [roam

Figure 6: Deployed AWS resources

5.5 Web Application Implementation

For the demonstration purpose, as shown in Figure [7] this project contains one web
application that utilize AWS resources which was created during the deployment process.
This web application is created using Django framework of python programming language
and will be deployed on AWS elastic beanstalk environment which was created during
execution of parallel code. Also, this web application incorporates AWS S3 bucket and
RDS which was created during execution that allow web application to store Data and
images uploaded by the user.

& 5 C {Y A Notsecure | parallel-research-environment.eba-t53nutkh.eu-west-2.elasticbeanstalk.com a v 00O :

Login

Recipe Book

"Your Gateway to 2 Werld of Delectable Recipes”

Figure 7: Django-based Web Application

6 Evaluation

The evaluation of the research is critical in determining the efficacy of the suggested
methodology for optimizing AWS resource provisioning deployment time using thread-
level parallelism. This section provides a thorough examination of the outcomes received
from three test cases. The performance analysis of proposed research work was conducted
based on three different approach for executing terraform script. First approach performs
parallel execution of the terraform script. Second approach performs sequential execution
that is non-parallel execution of the terraform scripts. In both approaches, python script
is used for executing terraform scripts. Whereas, In the third approach, the terraform
scripts were running one after the other utilizing several Jenkins pipelines rather than
python scripts. In this approach, total execution time is measured as the sum of all
Jenkins pipeline execution times used during the deployment.

The evaluation of each approach primarily focuses on the time taken by the approaches
for deploying the AWS resources. Furthermore, it also evaluates additional metrics such

14

as CPU utilization and network utilization. In all three approaches same AWS resources
were provisioned using GitHub, Jenkins and terraform. AWS resources provisioned in
this approaches are AWS relational Database Service (RDS), AWS Elastic Beanstalk and
AWS S3.

6.1 Experiment 1: Traditional Execution

In traditional execution, instead of using python script, multiple Jenkins pipelines were
configured for executing the terraform scripts. These pipelines were set up in such a way
that it would start the following pipeline after the previous one finished successfully.

6.1.1 Execution Time

In this approach, multiple Jenkins pipelines were executed for deploying AWS RDS,
Elastic Beanstalk and AWS S3, hence the total execution time for the deployment of AWS
resources was calculated as the sum of all pipeline execution times. After provisioning all
AWS resources with GitHub and Terraform, as illustrated in Figure [8|, it was discovered
that total execution takes around 7 minutes and 23 seconds.

S w Name Last Success 1 Last Failure Last Duration

® OFOexecution Tday3hr #6 N/A 21sec &
® OFOexecution_eb Tday3hr #4 N/A 2 min 43 sec b2
@ OFOexecution_rds 1day3hr #2 N/A 4 min 19 sec |>

Figure 8: Pipeline for traditional execution along with deployment time

6.1.2 CPU Utilization

During the execution of multiple Jenkins pipeline for provisioning AWS resources in tra-
ditional execution approach, continuity of the spikes was observed in CPU utilization.
As shown in Figure [0 during the execution it was observed highest spike with 43.59%
CPU utilization.

030 1055 UTE+00:00
Percentage CPU (Ma)
o

435900

Figure 9: CPU utilization for traditional execution

15

6.1.3 Network Utilization

In addition to CPU utilization, it detects continual spikes in incoming and outgoing
network utilization. The graph shown in Figure demonstrates maximum network
utilization, with a maximum of 332.4Kib of incoming data and 802.6Kib of outgoing
data.

Network In Total (Max)] Networ Out Total (M)
m tesm

3324 18026w

Figure 10: Network utilization for traditional execution

6.2 Experiment 2: Sequential (Non-parallel) Execution

For sequential execution, python code used for execution of the terraform script does
not include any module to facilitate thread-level parallelism. In this approach, terraform
scripts were executed one after other in sequential manner.

6.2.1 Execution Time

After provisioning AWS resources using terraform scripts and sequential python code
with the help of GitHub and Jenkins, as shown in Figure[11], it was observed that it takes
around 12 minutes for complete execution of all terraform.

5 w Name 1 Last Success Last Failure Last Duration

@ Nonparallel-script 19 min #7 N/A 12 min [

Figure 11: Pipeline for sequential execution along with deployment time

6.2.2 CPU Utilization

It was noted that rapid variations in CPU utilization occurred while performing the
Jenkins pipeline for deploying AWS resources utilizing sequential python code and Ter-
raform. As shown in Figure the highest spike in CPU utilization was observed, with
a maximum of 74.42% CPU utilization.

74,4200

Figure 12: CPU utilization for sequential execution

16

6.2.3 Network Utilization

It also noticed an immense rise in both incoming and outgoing network traffic through-
out the execution, indicating significant data transfer activity. The graph in Figure
displays both incoming and outgoing network traffic. The largest rise was noticed in
inbound network traffic with 555.9KiB utilization, followed by outbound network traffic
with 1.6MiB consumption.

1120 112 1130 UTC+00:00

Network In Total (Max)] Network Out Total ibax)
m tesnm

5559 D1.6us

Figure 13: Network utilization for sequential execution

6.3 Experiment 3: Parallel Execution

In parallel execution, python code used for execution of terraform scripts includes con-
current.futures library that provides thread-level parallelism. In this approach, library
function assigns terraform execution to the individual thread that carried out execution
task in parallel manner.

6.3.1 Execution Time

After provisioning AWS resources using terraform script and parallel python code with
the help of GitHub and Jenkins, as shown in Figure [14] it was noticed that it takes ap-
proximately 5 minutes and 9 seconds which is faster than sequential as well as traditional
execution approach.

S w Name 1 Last Success Last Failure Last Duration

@ parallel-script Thr3min #71 3days23hr #56 5 min 9 sec (2

Figure 14: Pipeline for parallel execution along with deployment time

6.3.2 CPU Utilization

During the execution of terraform scripts concurrently with the help of Thread-Level
Parallelism employing python script, a sudden increase in CPU utilization was noted.as
shown in Figure [15] It observed maximum CPU use with a highest spike of 65.44%.

17

TR EEEEFE

UTC+00:00

Figure 15: CPU utilization for parallel execution

6.3.3 Network Utilization

Simultaneously, it detected substantial network use activity, suggesting incoming and
outgoing data traffic over the network. The graph in Figure [16|shows both incoming and

outgoing network traffic, with a maximum of 758.7Kib of incoming data and 1.3Mib of
outgoing data

15Mi8

UTC+00:00
InToal (Maxy | Metwerk Out Total (M)
testym

| i
758.7 e 1.3 e

Figure 16: Network utilization for parallel execution

6.4 Discussion

The graph below represents the differences between CPU utilization, Network utilization
and execution time taken by each proposed approach to provision AWS resources by
running terraform scripts with the help of GitHub and Jenkins.

Difference between execution times
in seconds

Traditional Execution Sequential Execution Parallel Execution

Figure 17: Difference between execution times in seconds

18

As shown in Figure the traditional execution of terraform scripts took 7 minutes
and 23 seconds that is approximately 443 seconds. Whereas, sequential execution took
12 minutes to complete the execution that is equals to 720 seconds and parallel execution
took 5 minutes and 9 seconds which is 309 seconds for the execution. After analysing the
graph shown in Figure[17]it is noticeable that the parallel execution of terraform scripts for
provisioning AWS resources such as AWS RDS, Elastic Beanstalk, and AWS S3 described
in this study consumed less time than the traditional and sequential execution approaches

Difference Between CPU Utilization in

Percentage
B0
70
60
50
40
30
20
10
0
Traditional Seguential Parallel Execution
Execution Execution

Figure 18: Difference between CPU utilization in percentage

In case of CPU utilization, it observed different values while implementing different
approach for deploying resources using terraform. as shown in Figure it noticed that,
traditional approach utilized 43.59% CPU whereas, sequential approach utilized 74.42%
CPU and parallel execution approach utilized 65.44% while executing terraform scripts
that is lower than sequential execution and higher than traditional execution.

Difference Between Network Utilization in KiB

5§ Nevorou
s3
£E e |
25 vevoron [
T
£8 vevorcn |
25 vevoron |G
=5
b=
F3 neworn |
0 200 400 600 BOD 1000 1200 1400 1600 1800

Figure 19: Difference between network utilization in KiB

Furthermore, in terms of network utilization as shown in Figure traditional ex-

19

ecution consumed less network bandwidth. Whereas, sequential and parallel execution
demonstrate equal network utilization while execution of the terraform scripts using Git-
Hub and Jenkins pipeline.

As a result, it concludes that, the methodology proposed in this research work is
successful to achieve optimization in the AWS resource deployment using terraform. It is
proved that parallel deployment of terraform script takes less execution time as compared
to the sequential and traditional execution.

7 Conclusion and Future Work

In the proposed work, the integration of thread-level parallelism with Infrastructure-as-
Code (IaC) for AWS resource provisioning presents a promising approach to optimize
execution time and enhance the efficiency of the deployment process. The proposed
system architecture, utilizing GitHub for source control, Jenkins for automation, and
Python 3.8 for implementing thread-level parallelism, demonstrates a structured and
scalable solution.

In conclusion, the proposed methodology in this research work showcase significant
optimization in AWS resource deployment by integrating terraform with Thread-Level
Parallelism (TLP). Through extensive experiment and analysis, the parallel execution
proposed in this methodology demonstrates advantages over the sequential and traditional
execution of AWS resource deployment.

As the system evolves, future work should focus on optimization, scalability, error
handling, monitoring, security, and cross-cloud compatibility. By addressing these as-
pects, the research can contribute to the development of a robust and versatile solution
for efficient infrastructure provisioning in cloud environments. The continuous refinement
of this approach will be crucial in meeting the evolving demands of modern cloud-based
applications and services.

References

Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M. and Tamburri, D. A. (2017).
Devops: Introducing infrastructure-as-code, 2017 IEEE/ACM 39th International Con-
ference on Software Engineering Companion (ICSE-C), pp. 497-498.

Aziz, 7. A., Abdulqader, D. N.; Sallow, A. B. and Omer, H. K. (2021). Python paral-
lel processing and multiprocessing: A rivew, Academic Journal of Nawroz University
10(3): 345-354.

Babuji, Y., Brizius, A., Chard, K., Foster, 1., Katz, D. S., Wilde, M. and Wozniak, J.
(2017). Introducing parsl: a python parallel scripting library, Zenodo2017 .

Brikman, Y. (2022). Terraform: Up and Running, ” O’Reilly Media, Inc.”.

Chansup Byun, William Arcand, D. B. B. B. V. G. M. H. M. H. H. J. M. J. K. K. A.
K. P. M. L. M. G. M. J. M. A. P. AL R. A.R.S.S. C.Y. J. K. (2022). ppython:
Implementing partitioned global array semantics in python for parallel programming,
Massachusetts Institute of Technology .

20

de Carvalho, L. R. and Patricia Favacho de Araujo, A. (2020). Performance comparison
of terraform and cloudify as multicloud orchestrators, 2020 20th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp. 380-389.

Galvez, J. J., Senthil, K. and Kale, L. (2018). Charmpy: A python parallel program-
ming model, 2018 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 423-433.

Guerriero, M., Garriga, M., Tamburri, D. A. and Palomba, F. (2019). Adoption, support,
and challenges of infrastructure-as-code: Insights from industry, 2019 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pp. 580-589.

Ikeshita, K., Ishikawa, F. and Honiden, S. (2017). Test suite reduction in idempotence
testing of infrastructure as code, Tests and Proofs: 11th International Conference, TAP
2017, Held as Part of STAF 2017, Marburg, Germany, July 19-20, 2017, Proceedings
11, Springer, pp. 98-115.

Ivanova, D., Borovska, P. and Zahov, S. (2018). Development of paas using aws and
terraform for medical imaging analytics, AIP Conference Proceedings, Vol. 2048, AIP
Publishing.

Kim, T., Cha, Y., Shin, B. and Cha, B. (2021). Survey and performance test of python-
based libraries for parallel processing, The 9th International Conference on Smart Me-
dia and Applications, SMA 2020, Association for Computing Machinery, New York,
NY, USA, p. 154-157.

URL: https://doi.org/10.1145/3426020.3426057

Morris, K. (2016). Infrastructure as code: managing servers in the cloud, 7 O’Reilly
Media, Inc.”.

21

	Introduction
	Motivation
	Research Question
	Report Structure

	Related Work
	Review on Infrastructure-as-Code (IaC)
	Review on Thread-level Parallelism
	Literature Review Summary

	Methodology
	Execution Workflow
	Demonstration Setup
	Traditional Approach
	Sequential Approach
	Parallel Approach

	Design Specification
	Proposed architecture:
	Python TLP Architecture

	Implementation
	Thread-Level Parallelism (TLP) Implementation
	Interaction with Terraform
	Relational Database service with Terraform
	Elastic Beanstalk with Terraform
	S3 with Terraform

	Proposed Approach Implementation
	Traditional Execution
	Sequential Execution
	Parallel Execution

	Implementation of GitHub and Jenkins
	Web Application Implementation

	Evaluation
	Experiment 1: Traditional Execution
	Execution Time
	CPU Utilization
	Network Utilization

	Experiment 2: Sequential (Non-parallel) Execution
	Execution Time
	CPU Utilization
	Network Utilization

	Experiment 3: Parallel Execution
	Execution Time
	CPU Utilization
	Network Utilization

	Discussion

	Conclusion and Future Work

