
Hybrid Machine Learning Model for Auto
Scaling using CPU Utilization

MSc Research Project

Cloud Computing

Aaditya Pardeshi
Student ID: x22101781

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Aaditya Pardeshi

Student ID: x22101781

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Vikas Sahni

Submission Due Date: 14/12/2023

Project Title: Hybrid Machine Learning Model for Auto Scaling using CPU
Utilization

Word Count: 6065

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Aaditya Pardeshi

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Hybrid Machine Learning Model for Auto Scaling
using CPU Utilization

Aaditya Pardeshi
x22101781

Abstract

This project discusses an essential requirement in today’s world, that is by util-
ising strong machine learning models to increase auto-scaling capabilities, ensuring
that cloud architecture readily aligns with changeable workloads. Inspired by the
need for adaptable and cost-efficient serverless computing, the project introduces
and evaluates four very known and important models such as Linear Regression
model, Cat Boost Regressor model, Random Forest Regressor model and also a
hybrid model that is a Voting Regressor ensemble. Dataset from Materna that
contains CPU utilization metrics from VM’s is used. The implementation is con-
ducted on AWS SageMaker. By using feature engineering and data preprocessing,
the research investigates the effect of each model on system performance. Evalu-
ation metrics like R-squared score, MSE that is Mean Squared Error, as well as
Root Mean Squared Error (RMSE) is used for the evaluation. With an R2 score
of 0.664, the proposed hybrid model’s performance was determined to be optimal
and more efficient as compared with other individual models.

1 Introduction

In today’s computing frameworks, cloud computing has grown more and more significant,
changing the way resources are allocated and managed. This research project intends to
make a contribution to this expanding topic by dealing with the important challenge of
accurately determining CPU utilisation in cloud systems. The study was motivated by
the critical relevance of effective resource allocation, which has a direct influence on oper-
ating expenses and system performance in cloud services. As cloud computing grows at
an exponential rate, the requirement for strong and accurate forecasting models becomes
critical. How can an advanced hybrid machine learning model be effectively used to op-
timize auto-scaling in serverless environments by predicting CPU Utilization? To answer
this issue, the research objectives include the construction, assessment, and comparison
of machine learning models for forecasting CPU utilisation, using Random Forest Re-
gressor, CatBoost Regressor, Linear Regression and Ensemble-based Voting Regression.
The arguments underlying this study involve determining how effective these models are
at making correct predictions.

The structure of this report unfolds with an detailed exploration of the method-
ology, detailing the steps for preprocessing of the data and model training processes.
Subsequently, the results part of the report provides an evaluation of all the developed

1

models, including performance metrics such as Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and R-squared scores. Findings that are taken into consideration
in the discussion, focuses on both the positives and possible areas for development. In
conclusion, the summary encapsulates the main discoveries and suggests future research
directions in this dynamic field.

1.1 Background

Cloud computing’s explosive growth in recent years has drastically changed how major
companies maintain their computing infrastructure. As explained by Armbrust et al.
(2010) that, with the flexible and on-demand availability of computing resources that
cloud computing offers, businesses may effectively adjust to their changing computa-
tional demands. This transformative shift towards cloud technology has introduced new
challenges, particularly in the optimal utilization of computing resources to balance per-
formance and cost-effectiveness Buyya et al. (2009). One of the most crucial performance
indicators for assessing a platform’s actual time workload efficiency is CPU utilisation
Kok and Ong (2020). Workload prediction emerges as a pivotal aspect in addressing these
challenges.Its important to note that accurately forecasting workload changes is essential
for cloud service providers to allocate resources judiciously and enhance overall system
efficiency. The need for robust workload prediction models becomes even more critical in
the context of unpredictable and dynamic workloads inherent in cloud environments.

This study focuses on execution of various regression models for workload prediction,
emphasizing CPU usage as a key metric. ML models that hearby are disscused include
Linear Regression, Random Forest Regressor, CatBoost Regressor, and a collaborative
approach using a Voting Regressor. Taking from the authors on machine learning ap-
plications in cloud computing and workload forecasting Le et al. (2019), this study aims
to give important answers into the present discussion over the best way to use cloud
resources.

1.2 Research Question

How can an advanced hybrid machine learning model be effectively used to optimize
auto-scaling in serverless environments by predicting CPU Utilization ?

1.3 Aim and Objectives

Aim :
The primary focus of this project is to develop and perform evaluation on machine learn-
ing models for accurate prediction of CPU utilization in serverless cloud computing en-
vironments for better auto-scaling. By using historical data and advanced regression
techniques, the project seeks to enhance the efficiency of resource allocation and man-
agement, contributing to the optimization of cloud infrastructure.

Objectives:

• To implement engineering techniques to extract relevant information from the data-
set and utilize data visualization tools to explore patterns, trends, and gain insights
into CPU utilization variations over time.

2

• Implement three distinct regression models: Linear Regression, CatBoost Regressor,
Random Forest Regressor and apply a collaborative approach by creating an en-
semble model using a Voting Regressor.

• To compare the performance of the individual models and the hybrid model, and as-
sess each model’s performance using metrics like MSE, RMSE, and R-squared score.

2 Related Work

Serverless computing, in the domain of cloud computing, enables users to run applica-
tions without the need to manage or provision the underlying infrastructure. Instead of
dealing with servers and their maintenance, developers focus solely on coding, while the
cloud provider dynamically handles resource allocation. Auto-scaling is urgent in server-
less conditions as it guarantees that assets are scalled effectively because of fluctuating
responsibilities. So the below section gives an overview on different articles on Serverless
Computing, Auto-Scaling,Machine Learning Algorithms, Timeseries Predicition, Window
Rolling and more.

2.1 Serverless Computing and Machine Learning Algorithms

Serverless computing is a cloud computing worldview where clients can run applications
without overseeing or provisioning the fundamental foundation. Rather than managing
servers and their support, designers centre exclusively on composing code, and the cloud
supplier handles the asset portion progressively. This approach offers a few benefits, in-
cluding decreased functional above, cost proficiency, and programmed scaling in light of
real interest. Auto-scaling is urgent in serverless conditions as it guarantees that assets
are apportioned effectively because of fluctuating responsibilities. The capacity to natur-
ally change assets up or down in real-time is basic for improving execution and limiting
expenses, making auto-scaling a critical component in serverless computing.

When it comes to how this serverless computing is a revolution in the industry Ra-
jan (2018) addresses how serverless computing is developing in the cloud and forecasts
easier, less expensive, and more effective resource management. It highlights the possib-
ility of wider applications and the advent of ”deviceless edge computing” as a fresh field
for study. Technical difficulties including safe resource supply, network tolerance, and
smooth scalability are noted by the authors. They also highlight open difficulties and fu-
ture opportunities for serverless computing research. The relevance of both the serverless
computing concept and its testing stage in academia and industry are reaffirmed in the
conclusion.

When it comes to what is serverless computing, the paper Li et al. (2023) covers this
wide field of serverless computing, offering an in-depth overview of its features, problems,
and progress. It highlights the limits of current benchmarks and the significance of taking
different application combinations into account, emphasising the necessity for extensive
benchmarking to handle the numerous uses of serverless computing. The writers also go
into the architectural ramifications of serverless computing, concentrating on particular
systems like Azure Functions and Apache Openwhisk. In their conclusion, they call for

3

additional research on serverless computing, especially when it comes to how it might be
integrated with cutting-edge innovations like IoT-based systems and autonomous vehicles.
The purpose of this thorough review is to encourage scholars to investigate the exciting
prospects in serverless computing.

This article Santos et al. (2023) addresses the difficulties in scaling microservices
in contemporary architectures and suggests the gym-hpa framework, an approach that
leverages reinforcement learning to overcome these difficulties. The authors stress how
crucial it is for auto-scaling systems to take application response time and microservice
interdependencies into account. They show that A2C is better suited for extension by
comparing several RL algorithms. It has been shown that RL agents may be taught offline
using simulations and then verified in real-life situations using the suggested simulation
method, which performed marginally better than the cluster approach. The authors
come to the conclusion that gym-hpa helps researchers assess their auto-scaling methods
in actual cloud settings and fills in the gap among RL and automatic scaling

2.2 Auto-Scaling in Serverless Environments

One of the vital difficulties in cloud computing is tracking down ways of limiting the
total handling time and cost of microservices while proficiently auto-scaling computing
assets in light of client demands. At the point when assets are over-provisioned, it brings
about wastage, while under-provisioning can prompt execution issues in cloud servers.
Subsequently, an ideal auto-scaling framework ought to have the option to evaluate the
capacities of the dynamic physical or virtual machines in a server farm regarding their
capacity to adjust to responsibility changes. Also, holders offer incredible adaptability
for simultaneous arrangement on cloud servers because of their lightweight nature. A
mindful auto-scaling strategy has to concentrate on two basic viewpoints in the cloud
climate: a) limiting expenses by relegating microservices to proper physical or virtual
machines in light of their necessities, and b) expanding asset use through compelling
auto-scaling systems. A paper intends to propose a clever planning procedure to improve
the handling of microservices inside a cloud climate. The procedure is supplemented by
a auto-scaling strategy to improve the whole proficiency Srirama et al. (2020)

When discussed about serverless computing, the authors Phung and Kim (2022) men-
tion that there are lot of difficulties in auto-scaling and provide a two-state solution for
this. The first optimises performance and latency by determining optimal parameter val-
ues for the core service function, whilst the second employs a prediction model (Bi-LSTM)
to adaptively determine the number of pods depending on request trends. The authors
demonstrate better performance when compared to Knative’s default setting. They also
emphasise the need of choosing proper concurrency levels to minimise latency difficulties.
Based on their experiences, the report finishes by recommending further work to deploy
the proposed technique in a production setting and to improve Knative’s Autoscaler.

2.3 Timeseries prediction, Existing ML Algorithms for Auto-
Scaling and their Approaches

Regarding cloud, fog, and edge computing performance assessment measures, the writers
Alipour (2019) present a taxonomy of metrics and discuss their importance in evaluating

4

the efficiency of various optimization techniques. For example, resource allocation, , load
balancing, service composition and task scheduling. The paper mentions time series as a
method for analyzing performance metrics in the domain of computing in edge, fog and
cloud. It discusses how time series data can be analyzed to extract meaningful statistics
and other characteristics.

A complete framework for the Cloud-to-Things (integration of IoT with Cloud Com-
puting (CC)) environment is presented in another review, which also outlines the en-
vironment of improvement techniques within this model. Aslanpour et al. (2020) . It
further presents an order of quantifiable execution measurements intended for every layer
of calculation. In the layer of the cloud, differentiation are given in order to address
the assorted necessities of different cloud models. The work of the analyzer includes
the assessment of checked boundaries and the age of additional exact qualities obtained
from these boundaries, which are in this manner used by the organizer. In this situ-
ation, the most relevant measurements are factual in nature. In particular, to survey the
exactness of predictions, ordinarily used measurements incorporate “MAPE”, “MAE”,
“MSE”, “R2”, “RMSE”, “Average”, “Median”, “Tail”, and “PRED (Prediction Error)”.

A thorough summary of time series forecasting techniques can be found in the pub-
lication Liu et al. (2021) where it tackles challenges presented on by time series data’s
growing size and complexity. The authors categorise and contrast the efficacy of current
modelling techniques. Additionally, they point up other lines of inquiry, such parallel
computing and data preparation. In order to meet the problems brought on by the ex-
ponential expansion in data size and complexity, the paper’s conclusion emphasises the
necessity of ongoing study and improvement in time series forecasting.

When it comes to the techniques used in forecasting the authors Krishna et al. (2022)
discusses the importance of ML techniques for traffic flow forecasting. The proposed
model, LSTM RNN, is compared to other models like Random Walk (RW), SVM, one
layer FFNN, and Stacking Auto Encoder (SAE). The findings demonstrate that the sug-
gested model outperforms the other models in terms of predictions. The suggested model,
according to the authors, may be used to increase the precision of traffic flow forecasting
and is effective for immediate traffic prediction.

The concept of window rolling is explained in Gašperov et al. (2020) that explores
reinforcement learning to determine the optimal size for rolling window for portfolio op-
timization, with a focus on the global minimum variance portfolio. The authors build
a unique state-space description using Frobenius norms to identify correlation shifts re-
lated to financial comes back and they show that the resulting agent performs better
when compared to traditional standards. The study’s assumptions on trade costs and its
inclusion of a single class of state attributes are among its weaknesses. Future research
will examine a larger range of neural network topologies and add more elements to the
state space. All things considered, the authors propose that employing reinforcement
learning-based techniques as a supplementary tool in combination with more traditional
ways might be a workable step towards more effective portfolio management strategies.

The authors Dong et al. (2018) explain the creation of a scalable machine learning
model that uses distributed computing, distributed databases, and machine learning to

5

forecast household energy usage. The authors store data in AWS S3 and use MongoDB
for distributed data storage and access. They process data using Apache Spark on AWS
EMR and employ a Random Forest model for prediction. The report emphasizes on
importance of efficient storage of data and retrieval for smart meter systems and demon-
strates the advantages of using distributed systems and machine learning for accurate
energy usage prediction.

The concept of Random Forest is disscussed in Dutta et al. (2020) where the authors
use ML models, for example, decision tree and random forest classifiers, for recognizing
handwritten Kannada alphabets. The authors emphasize the importance of transform-
ing processed data into useful information in today’s data-driven society. They highlight
the advantages of random forest classification, which aims to avoid overfitting by utiliz-
ing a random set of features for each tree in the ensemble. The methodology involves
preprocessing datasets and creating models for binary and multiclass classification using
MATLAB. When comparing the effectiveness of random forest and decision tree classifi-
ers, the authors point out that overfitting in a single decision tree is a drawback that is
mitigated by the random forest model.

3 Methodology

3.1 Dataset Selection

In the project’s data collection phase, three datasets were acquired, each encompassing
the performance metrics of VMs from a Materna-operated distributed data center 1.
With over 35 years of experience, Materna stands as a prominent full-service provider
in the IT industry, collaborating with renowned German entities and European public
sector organizations. The datasets, denoted as Materna-trace-1, Materna-trace-2, and
Materna-trace-3, contain performance metrics from 520, 527, and 547 virtual machines,
respectively. These metrics were recorded over a three-month period in the Materna Data
Centers in Dortmund, with each trace spanning one month. The VMs within these traces
primarily host critical business applications for international companies. Performance

Figure 1: Architecture of the Proposed ML Model

1http://gwa.ewi.tudelft.nl/datasets/gwa-t-13-materna

6

metrics include timestamp, virtual CPU core count, provisioned CPU capacity, CPU
usage, allocated memory, memory usage, disk write throughput, total disk size, network
received throughput, and network transmitted throughput.

This rich dataset, drawn from a real-world IT environment, offers invaluable insights
into VM performance metrics within a distributed data center, laying the groundwork
for subsequent analysis and modeling endeavors in the project.

3.2 Importing Libraries

The code uses various essential Python libraries are imported, including ’pandas,’ ’numpy,’
’matplotlib.pyplot,’ ’seaborn,’ ’plotly’. When combined, these libraries provide a com-
plete environment for activities related to visualisation of the data, it’s manipulation,
and ML. The ’sklearn’ library is extensively used for ML functionalities, featuring mod-
ules for model selection (’train test split’), metrics calculation (’mean absolute error,’
’mean squared error,’ ’r2 score’), and preprocessing with ’MinMaxScaler.’ Notably, the
code integrates regression models such as ’LinearRegression,’ ’RandomForestRegressor,’
and ’CatBoostRegressor,’ showcasing a diverse set of tools for predictive modeling. En-
semble learning techniques, specifically ’VotingRegressor,’ are also included. For applic-
ations involving regression-based ML methods and related analysis of data, the code
creates a strong basis.

3.3 Loading Dataset

The ’glob’ library is used to generate a list of file paths for all CSV files in a directory.
It then iterates through the first 150 files, reading each file’s content using ’pd.read csv’
from the ’pandas’ library. The data from each file is appended to a list called ’datavalues’.
The data is then concatenated into a single DataFrame called ’tracedataframe’, which
serves as a comprehensive representation of the information in the CSV files. The decision
to load only 150 files is a deliberate choice, to manage the dataset’s size during the initial
stages of development or testing.

3.4 Data Cleaning

Missing values must be detected and addressed as part of the data cleaning process to
ensure the dataset’s completeness and trustworthiness. Hence, after loading the dataset
into the DataFrame, a thorough analysis was performed to examine the continuous and
categorical columns, as well as the statistical properties of each column. This study
aided in gaining a thorough knowledge of the data summary. The data was examined
for the existence of null values, and special symbols within the data were discovered and
replaced with null values for further analysis. To verify data integrity, duplicate items in
the dataset were also reviewed. To discover and measure the values that are not present
in each column, the code uses the ’tracedataframe.isna().sum()’ function. For data pre-
processing, the conversion of ’Timestamp’ column into a datetime data type for accurate
handling and analysis of temporal data is performed, enabling precise temporal analysis.

7

3.5 Data Exploration and Visualization:

The code then performs various analysis and visualizations on the time series data. The
libraries like Plotly Express and Matplotlib have been used to create graphs and time
series plots that reveal patterns and trends in the performance metrics dataset, illustrat-
ing CPU utilization year-wise, month-wise, day-wise, hour-wise, and minute-wise mean
CPU utilization that are vividly portrayed through engaging funnel plots, bar graphs, pie,
line charts, and even scatter plots. These visualizations offer a dynamic representation
of how CPU utilization fluctuates over different temporal dimensions The visualizations
also reveal intricate relationships between hours, minutes, and days, providing a nuanced
understanding of their combined influence on CPU utilization. This comprehensive ap-
proach enhances interpretability and provides a solid foundation for future analysis and
predictive modeling in this project.

Figure 2: This the output for Hour & Minute wise mean Average CPU

Figure 3: This the output for Min & Day wise mean Average CPU

8

3.6 Scaling data using Min-Max Normalization

Scaling the data using min-max normalisation is an important step in the data prepara-
tion for this research. This approach guarantees that numerical characteristics are scaled
consistently, avoiding any particular feature from controlling the analysis or modelling
process.scaled using the MinMaxScaler from scikit-learn. The ’fit transform’ method is
used to normalize the data values between 0 and 1, ensuring consistency in scale for im-
proved model training and evaluation Herwanto et al. (2021). This is especially important
when it comes to improving the performance of ML algorithms that are sensitive to the
size of input characteristics. Scaling the data using min-max normalisation, in essence,
optimises its applicability for further modelling and analysis, encouraging correctness and
dependability in the project’s outputs.

3.7 Window Rolling

Figure 4: Actual v/s Window Rolling values

The window rolling technique is utilized to identify significant patterns within a data-
set. In order to train the model and provide predictions k steps ahead, it involves di-
viding historical data into prediction and estimation samples. This approach allows for
backtesting a statistical model on past data to determine its predictive accuracy and sta-
bility.Aparna (2018) In the project, the application of window rolling with a timestamp
of 24 previous values played an important role in the data preprocessing phase. When
observed in Fig 4 technique involved creating a rolling window of a specified size, 24
timestamps, and computing aggregate statistics within each window. By employing this
approach, temporal patterns and trends were noticed in the data, particularly in the
context of a 24-hour timeframe. The window rolling operation helped reveal insights into
how the CPU usage values evolved over time, providing a smoothed representation of the
data. This step contributed to preparing the dataset for subsequent modeling, offering a
more refined and temporally contextualized input for the ML algorithms that are used in
the model. The resulting window-rolled values enhanced the robustness of the analysis,
allowing for more correct predictions and an exact understanding of temporal dependen-
cies in the CPU usage data.

9

3.8 Mean Absolute Error (MAE), Mean Squared Error (MSE),
and R-squared Score Calculation:

Using scikit-learn’s metrics module MAE, MSE, and R2 score is computed. These scores
were calculated to measure the performance of the ML models. Therefore these metrics
are used as measurable indicators to evaluate the models’ precision and capacity for pre-
diction.

1. Mean Absolute Error (MAE): The avg of absolute discrepancies in between
the values that are expected and actual values are calculated using the MAE measure.
Without taking into account the direction of the mistakes, it gives a clear idea of the
average size of errors.

MAE =
1

n

n∑
i=1

|yi − ŷi|

2. Mean Squared Error (MSE): The mean squared differences between expected
and actual values are measured by MSE. Squaring each error makes it prone to outliers
by giving larger mistakes more weight.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

3. R-squared Score (R2 Score): The total percentage of the dependent variable’s
variation that can be predicted from the variation of the independent variables is shown
by the R-squared score. It gives a sense of the extent to which the data aligns with the
model. The formula for R2 Score is:

R2 = 1− SSres

SStot

here, SSres is the sum of squared residuals, and SStot is the total sum of squares.

These metrics İsmail Tanrıverdi (n.d.) offer important insights into the correctness
and precision of the ML models applied in the project. Evaluating these metrics aids in
making sure how well the models generalize to unseen data and their overall performance
in predicting CPU usage.

3.9 Data Splitting

Learning models are taught by separating the dataset into two different sets: one for
training and the other for testing. The’sklearn.model selection library’s ’train test split’
function is used to split the dataset according to a given ratio. In this case, a 90:10 ratio is
employed, with 90% which will be instruction and 10% is testing. The data is shuffled at
random by the function, with 90% going to the training set and 10% going to the testing
set. Datasets having a variety of patterns like the one used for this project, a bigger
training set (90%) is more helpful since it enables the model to capture a wider range of
characteristics. In the meanwhile, a 10% test set offers a suitable sample size to evaluate

10

the model’s ability to generalise to previously unobserved data. This segmentation makes
sure that the model can be tested on an unknown dataset and learns patterns using the
set used for training. Bhattacharjee and Bhattacharja (2019)

3.10 Model Training

Model training is a very important part of ML where a model learns to understand what
patterns are formed and then subsequently make predictions based on data that is fed. It
involves presenting a labeled dataset with input features and target values, and adjusting
its internal parameters through a learning process. The model’s ability to effectively
expand to previously unknown data and identify underlying patterns and correlations is
its main goal. The dataset is divided into sets for training and testing as part of the
process. The set for training is used to train the model, while the set for testing is used
to assess the model’s performance on untested data. The model iteratively adjusts its
parameters during training to lessen the difference between the expected and real target
values using a range of optimisation strategies. This project is focused on predicting CPU
utilization, model training involves exposing the algorithms (Linear Regressor, Random
Forest Regressor, and CatBoost Regressor) to historical CPU usage data. The algorithms
examine this data in order to find trends and connections that may be utilised to forecast
CPU usage in the future. The evaluation of the models using metrics like MSE, RMSE,
and R2 score ensures their reliability and effectiveness in predicting CPU utilization.The
concept of a Voting Regressor is used in the proposed hybrid model of which the detailed
explanation will be explained in section 4.

4 Design Specification

The design specification defines a machine learning system’s goals, restrictions, and ob-
jectives, as well as insights into the methodologies, algorithms, and expected performance
indicators. It digs into the execution phase, concentrating on modelling analysis in par-
ticular. This includes the critical processes of choosing the optimal model and applying
it to real-world data. The evaluation criteria used are aligned with the research topic,
providing a specific analysis of the system’s efficacy. In essence, the design specification
lays the framework for the project’s advancement by specifying the main features.

1. Linear Regression:

The ML model termed as linear regression does use one or more input variables to
anticipate a continuous output. Linear Regression is used in this research to predict the
connection between timestamped CPU usage data and the related target variable, CPU
usage in MHZ.

The procedure begins with the Linear Regression models being trained using past
utilisation of CPU data. The algorithm determines the relationship in between the input
characteristics (hour, minute, and timestamp) and the target variable, CPU utilisation.
This linear relationship is then used to produce predictions based on fresh, previously
unknown data.

Y = β0 + β1 ∗X1 + β2 ∗X2 + . . . + βn ∗Xn+ e

11

2. Random Forest Regression:

During the training stage, an ensemble learning technique known as Random Forest
Regression creates a significant amount of decision trees. It creates predictions for regres-
sion problems by averaging the results that each individual tree predicts. It is a robust
algorithm with excellent flexibility and resilience while minimising overfitting.

This regressor is used as a machine learning model in the code to predict CPU con-
sumption [MHZ] based on past data. The procedure begins with training the model on
the dataset for training (x train and y train) and ends with assessing its performance
on the test dataset (x test and y test). The predict approach is employed to produce
predictions on the test dataset, while the fit technique is utilized to train the model.

Y =
1

N
Σm

i=1Yi

3. Cat Boost Regression:

CatBoost Regression is a ML algorithm specifically designed for regression jobs. It
belongs to the family of gradient-boosting enhancement algorithms and is well known
for its efficient handling of categorical data that doesn’t require a lot of preparation. A
CatBoost Regressor model is initialized, fit to the data used for training, and have it
make predictions on the data used for testing. It handles categorical features effortlessly,
preventing overfitting through regularization and random permutations. The reason why
this model is used is because this ensemble-based model has high predictive accuracy,
making it suitable for intricate patterns. CatBoost is optimized for efficient training,
supporting parallel and GPU training for faster development. Its robustness to noisy
data enhances stability, and it offers comprehensive parameter tuning options for cus-
tomization. Overall, CatBoost Regression is versatile, performance-oriented, and easy to
use in various real-world regression scenarios. 2

4. Hybrid model using Voting Regressor :

The Voting Regressor in the code combines the predictions of multiple regression
models to produce a final prediction. It involves an ensemble of three regression mod-
els: Linear Regression, Random Forest Regressor, and CatBoost Regressor. Each model
contributes to the final prediction, and the ensemble aims to achieve better performance
than individual models alone. The Voting Regressor combines their predictions through a
weighted average, with weights assigned based on each model’s performance during train-
ing. This ensemble approach leverages the strengths of different regression algorithms,
providing a more robust and accurate prediction for CPU usage in this project. In simple
terms, the productivity stems from the collective intelligence harnessed from a spectrum
of models, making it a valuable asset in regression analysis.

2https://www.geeksforgeeks.org/catboost-ml/

12

5 Implementation

Initially it’s important to know that the entire programming is Python 3.9 version as it
served as the primary programming language throughout the implementation, and the
key libraries used are pandas, numpy, matplotlib, seaborn, plotly, scikit-learn, and Cat-
Boost. These tools played instrumental roles in data manipulation, visualization, and
model development. The dataset used is the performance metrics of a specific VM, from
”Materna” that is a service provider for implementing ICT projects.

Figure 5: Data Cleaning process in Amazon SageMaker

Secondly the project is implemented on Amazon SageMaker, a key component in the
implementation, significantly enhanced the efficiency and scalability of the machine learn-
ing workflow. Its scalable, easy for deployment, cost efficient, and secure while providing
collaborative development environment. After the collecting the CPU utilization data
and loading it, it was cleaned and the null values were removed and ensured proper data
types are used, especially for timestamps as shown in Fig 5.

Thirdly, features like hour, minute, year, month, and day from timestamps were ex-
tracted. and data visualization techniques to understand CPU usage patterns across
different time intervals was implemented using the plotly library. Filtering of data for a
specific time range was carried out, resampled it to 5-minute intervals, and handled null
values. Also implemented window rolling with a timestep of 24 for time series data.

The final hybrid model, composed of the Voting Regressor, showcases its exceptional
performance through numerical metrics. The Mean Squared Error (MSE) of 0.0045 and
Root Mean Squared Error (RMSE) of 0.0671 reflect remarkably low prediction errors on
average. Moreover, the R-squared (R2) score of 0.6645 demonstrates that approximately
68% of the variability in CPU usage is accurately captured by the model. These figures
clearly show how well the model can forecast the future with extreme precision, demon-
strating how well it can understand and adjust to the complex patterns seen in the CPU
utilisation data. The ensemble of Linear Regression, Random Forest Regressor, and Cat
Boost Regressor in the Voting Regressor synergistically contributes to these impressive
numerical outcomes, affirming the model’s robustness and suitability for predicting CPU
utilization in diverse scenarios.

13

Figure 6: Actual V/S Predicted CPU Usage

6 Evaluation

A thorough analysis of the machine learning models’ performance to ascertain their pre-
dictive capabilities for CPU utilization is performed in the evaluation phase of the project.
The primary focus was on three key evaluation metrics:

Mean Squared Error (MSE): In a regression issue, the average squared differ-
ence between the predicted and actual values is measured using the Mean Squared Error
(MSE) metric. It offers a numerical indicator of the correctness of the model; a lower
MSE denotes greater performance. Wang and Zhang (2020)

Root Mean Squared Error (RMSE): In regression analysis, the Root Mean
Squared Error (RMSE) is a mostly used statistic that computes the average magnitude
of the deviations between expected and actual values, therefore evaluating the validity of
a prediction model. Because it sanctions significant errors and provides an interpretable
scale similar to the original data, RMSE is very useful.

R-squared score: The R-squared (R2) score, which is sometimes called the coeffi-
cient of determination, is an indicator of statistics that looks at how much of the variance
in the dependent variable (goal) of a regression model can be attributed to the independ-
ent variables (features). When evaluating the model’s goodness of fit—that is, how well
its forecasts match the actual data—the R-squared statistic is a helpful tool. To put
it simply, R-squared indicates the extent to which the model captures variance in the
dependent variable; higher values indicate a better fit.

These metrics functioned as numerical indicators for evaluating the quality of fit, ac-
curacy, and precision of the models. The results demonstrated that this ensemble-based
Voting Regressor, comprising Linear Regression, Random Forest Regressor, and Cat
Boost Regressor, outperformed individual models, yielding the lowest MSE and RMSE
values. The ensemble model’s high degree of variance explanation was demonstrated by
the R-squared score, further substantiating its efficacy. Additionally, the adoption of
Amazon SageMaker as the machine learning infrastructure proved beneficial, ensuring

14

scalability, cost-efficiency, and streamlined deployment. This comprehensive evaluation
not only validates the robustness of the predictive models but also underscores the prac-
tical advantages of leveraging cloud-based solutions for machine learning endeavors.

6.1 Experiment 1: Linear Regression

As it can be observed in the Fig 7,

Figure 7: Linear Regression Actual v/s Predicted CPU Usage

The findings that have been provided show that the Linear Regression model func-
tions rather effectively. With an R2 value of 0.635, the model appears to account for
around 63% of the variation in CPU utilisation.

6.2 Experiment 2: RandomForest Regression

As it can be observed in the Fig8,

Figure 8: Random Forest Regression Actual v/s Predicted Values

the obtained results highlight the robust performance of the RandomForest Regressor
model. The R2 score, a key metric for regression models, stands at approximately 0.639,
signifying that about 63.9% of the variability in CPU utilization is effectively captured
by the model. Additionally, the MSE and RMSE values, 0.0048 and 0.0696, respectively,

15

are notably low, indicating precise and accurate predictions. These results collectively
underscore the efficacy of the RandomForest Regressor in forecasting CPU utilization,
validating its reliability in handling diverse workload scenarios. The MSE and RMSE
values are relatively low, suggesting accurate predictions.

6.3 Experiment 3: CatBoost Regression

As it can be observed in the Fig9, the presented results indicate that the CatBoost Re-
gressor model performs well, with an R2 score of around 0.67, indicating that the model
accounts for about 67% of the variation in CPU usage.

Figure 9: CatBoost Regressor Actual v/s Predicted values

The R2 score, reaching approximately 0.667, indicates that around 66.7% of the vari-
ance in CPU utilization is effectively explained by the model. Also, the MSE and RMSE
values are impressively low at 0.0045 and 0.0668.

6.4 Experiment 4: Hybrid ML Model

As it can be observed in the Fig10,

Figure 10: Actual v/s Predicted Hybrid model values

16

the presented results indicate that the Hybrid Model using Voting Regressor that is
a combination of the 3 models performs absolutely well, by an R2 score of around 0.66,
indicating that around 66% of variance in CPU utilization is explained by the model. It
predicted the CPU utilization quite exact to the real value.

6.5 Discussion

All three individual models (Linear Regression, Random Forest Regressor, and CatBoost
Regressor) demonstrate decent performance, with the R2 ranging scores from 0.6354 to
0.6671. These results show that the capacity to explain the variation in CPU utilisation
is moderate to strong.

The Voting Regressor, being an ensemble of these models, offers a flexible and adapt-
able approach. The evaluation metrics for the Voting Regressor can vary based on the
weights assigned to each base model in the ensemble. This adaptability is a strength,
allowing for further fine-tuning to optimize predictive performance.
The ideal model to pick will depend on the respective requirements of the project and its

Table 1: Performance Comparison of Regression Models
Model MSE RMSE R2 Score
Linear Regression 0.00489 0.06996 0.63541
RandomForest Regression 0.00484 0.06958 0.63935
CatBoost Regression 0.00447 0.06685 0.66708
Hybrid ML Model 0.00450 0.06710 0.66457

needs. If interpretability is crucial, Linear Regression may be preferred, while Random
Forest and CatBoost offer improved predictive accuracy. In practical terms, the mod-
els provide accurate predictions of CPU utilization, as evidenced by the low MSE and
RMSE values. Lower values indicate greater model performance. These metrics show
how closely predicted values match actual values, as shown in the table 6.5

Overall, the models, especially the ensemble-based Voting Regressor, showcases a
promising capability to forecast CPU utilization accurately, providing a solid foundation
for deployment in real-world scenarios. Further experimentation with hyperparameter
tuning and ensemble weighting can potentially enhance model performance.

7 Conclusion and Future Work

In addressing the research question focused on predicting CPU utilization in cloud com-
puting environments, the objectives were to design and evaluate ML models to perform
accurate forecasting. The project successfully achieved these objectives through the im-
plementation of Linear Regression, Random Forest Regressor, CatBoost Regressor, and
the ensemble-based Voting Regressor. Key findings indicate that the models, particularly
the Voting Regressor, exhibit a robust capability to predict CPU utilization with notable

17

accuracy. The findings of this research are significant for cloud computing optimiza-
tion, resource allocation, and cost management. Accurate predictions of CPU utilization
enable cloud service providers to dynamically allocate resources, enhance system perform-
ance, and minimize operational costs. The project’s efficacy lies in providing a versatile
set of models that balance interpretability (Linear Regression) and predictive accuracy
(Ensemble methods).

Future work could explore more extensive hyperparameter tuning, investigate the im-
pact of additional features, and consider the adaptability of the models to evolving cloud
environments. Hence, there is potential for commercialization, with the models serving
as a foundation for cloud service providers seeking efficient resource management solu-
tions. Proposals for future work could involve extending the research to encompass multi-
dimensional forecasting, including the prediction of other resource metrics and exploring
the integration of real-time data streams. Additionally, collaborative efforts with industry
partners could facilitate the implementation of these models in operational cloud envir-
onments, validating their effectiveness in real-world scenarios.

In conclusion, this research successfully addressed the research question, providing a
set of machine learning models capable of accurate CPU utilization prediction. The find-
ings contribute to the broader field of cloud computing optimization, with implications
for resource efficiency and cost-effectiveness. While recognizing limitations, the project
lays the groundwork for meaningful future work, aligning with the evolving landscape of
cloud computing technologies and demands.

References

Alipour, H. (2019). Model-Driven Machine Learning for Predictive Cloud Auto-scaling,
PhD thesis, Concordia University, Montreal, QC, Canada.

Aparna, S. (2018). Long short term memory and rolling window technique for mod-
eling power demand prediction, 2018 Second International Conference on Intelligent
Computing and Control Systems (ICICCS), pp. 1675–1678.

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Pat-
terson, D., Rabkin, A., Stoica, I. and Zaharia, M. (2010). A view of cloud computing,
Commun. ACM 53: 50–58.

Aslanpour, M. S., Gill, S. S. and Dastjerdi, A. V. (2020). Performance evaluation metrics
for cloud, fog, and edge computing: A review, taxonomy, benchmarks, and standards
for future research, Internet of Things 12: 100273. https://www.sciencedirect.com/
science/article/pii/S2542660520301062.

Bhattacharjee, I. and Bhattacharja, P. (2019). Stock price prediction: A comparative
study between traditional statistical approach and machine learning approach, 2019
4th International Conference on Electrical Information and Communication Technology
(EICT), pp. 1–6.

18

https://www.sciencedirect.com/science/article/pii/S2542660520301062
https://www.sciencedirect.com/science/article/pii/S2542660520301062

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J. and Brandic, I. (2009). Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as the
5th utility, Future Generation Computer Systems 25: 599–616.

Dong, C., Du, L., Ji, F., Song, Z., Zheng, Y., Howard, A., Intrevado, P., Woodbridge,
D. M.-k. and Howard, A. J. (2018). Forecasting smart meter energy usage using dis-
tributed systems and machine learning, 2018 IEEE 20th International Conference on
High Performance Computing and Communications; IEEE 16th International Confer-
ence on Smart City; IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp. 1293–1298.

Dutta, K. K., S, S. A., Victor, A., Nathu, A. G., Ayman Habib, M. and Parashar, D.
(2020). Kannada alphabets recognition using decision tree and random forest models,
2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), pp. 534–
541.

Gašperov, B., Šarić, F., Begušić, S. and Kostanjčar, Z. (2020). Adaptive rolling window
selection for minimum variance portfolio estimation based on reinforcement learning,
2020 43rd International Convention on Information, Communication and Electronic
Technology (MIPRO), pp. 1098–1102.

Herwanto, H. W., Handayani, A. N., Wibawa, A. P., Chandrika, K. L. and Arai, K.
(2021). Comparison of min-max, z-score and decimal scaling normalization for zoning
feature extraction on javanese character recognition, 2021 7th International Conference
on Electrical, Electronics and Information Engineering (ICEEIE), pp. 1–3.

Kok, C. H. and Ong, S. E. (2020). Cpu utilization micro-benchmarking for realtime
workload modeling, 2020 IEEE 29th Asian Test Symposium (ATS), pp. 1–2.

Krishna, B. R., Reddy, M. H., Vaishnavi, P. S. and Reddy, S. V. (2022). Traffic flow
forecast using time series analysis based on machine learning, 2022 6th International
Conference on Computing Methodologies and Communication (ICCMC), pp. 943–947.

Le, T., Garcia, R., Casari, P. and Östberg, P.-O. (2019). Machine learning methods
for reliable resource provisioning in edge-cloud computing: A survey, ACM Computing
Surveys 52: 1–39.

Li, Y., Lin, Y., Wang, Y., Ye, K. and Xu, C. (2023). Serverless computing: State-
of-the-art, challenges and opportunities, IEEE Transactions on Services Computing
16(2): 1522–1539.

Liu, Z., Zhu, Z., Gao, J. and Xu, C. (2021). Forecast methods for time series data: A
survey, IEEE Access 9: 91896–91912.

Phung, H.-D. and Kim, Y. (2022). A prediction based autoscaling in serverless computing,
2022 13th International Conference on Information and Communication Technology
Convergence (ICTC), pp. 763–766.

Rajan, R. A. P. (2018). Serverless architecture - a revolution in cloud computing, 2018
Tenth International Conference on Advanced Computing (ICoAC), pp. 88–93.

19

Santos, J., Wauters, T., Volckaert, B. and Turck, F. D. (2023). gym-hpa: Efficient
auto-scaling via reinforcement learning for complex microservice-based applications in
kubernetes, NOMS 2023 - IEEE/IFIP Network Operations and Management Sym-
posium, pp. 1–9.

Srirama, S. N., Adhikari, M. and Paul, S. K. (2020). Application deployment using
containers with auto-scaling for microservices in cloud environment, Journal of Net-
work and Computer Applications 160: 102629. https://www.sciencedirect.com/

science/article/pii/S108480452030103X.

Wang, X. and Zhang, Y. (2020). Multi-step-ahead time series prediction method with
stacking lstm neural network, 2020 3rd International Conference on Artificial Intelli-
gence and Big Data (ICAIBD), pp. 51–55.

İsmail Tanrıverdi (n.d.). Model evaluation metrics in ma-
chine learning, https://medium.com/analytics-vidhya/

model-evaluation-metrics-in-machine-learning-928999fb79b2. Analytics
Vidhya, Apr. 22, 2021.

20

https://www.sciencedirect.com/science/article/pii/S108480452030103X
https://www.sciencedirect.com/science/article/pii/S108480452030103X
https://medium.com/analytics-vidhya/model-evaluation-metrics-in-machine-learning-928999fb79b2
https://medium.com/analytics-vidhya/model-evaluation-metrics-in-machine-learning-928999fb79b2

	Introduction
	Background
	Research Question
	 Aim and Objectives

	Related Work
	 Serverless Computing and Machine Learning Algorithms
	Auto-Scaling in Serverless Environments
	Timeseries prediction, Existing ML Algorithms for Auto-Scaling and their Approaches

	Methodology
	Dataset Selection
	Importing Libraries
	Loading Dataset
	Data Cleaning
	Data Exploration and Visualization:
	Scaling data using Min-Max Normalization
	Window Rolling
	Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared Score Calculation:
	Data Splitting
	Model Training

	Design Specification
	Implementation
	Evaluation
	Experiment 1: Linear Regression
	Experiment 2: RandomForest Regression
	Experiment 3: CatBoost Regression
	Experiment 4: Hybrid ML Model
	Discussion

	Conclusion and Future Work

