
Data Encryption in HDFS

MSc Research Project

Cloud Computing

Rushikesh Manoj Nikumbh
Student ID: x22136851

School of Computing

National College of Ireland

Supervisor: Mr. Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Rushikesh Manoj Nikumbh

Student ID: x22136851

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Mr. Vikas Sahni

Submission Due Date: 14/12/2023

Project Title: Data Encryption in HDFS

Word Count: 4768

Page Count: 15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Data Encryption in HDFS

Rushikesh Manoj Nikumbh
x22136851

Abstract

Hadoop’s Hadoop Distributed File System (HDFS) faces security challenges
such as internode communication vulnerabilities, replication storage mode vulner-
abilities, and user access monitoring. Traditional encryption techniques can in-
crease data size and slow down performance. Therefore, this research will focus
on modifying specific variants of the Blowfish block-cipher encryption algorithm
to improve efficiency and security in HDFS. In this research, a successful studies
related to challenges in HDFS were conducted. Also the implementation of blowfish
algorithm for storage and retrieval of file in HDFS was experimented. The method
implemented showed improved performance with compared with other algorithms
- DES and 3DES.

1 Introduction

Researchers had been investigating methods for safeguarding and protecting data within
the Hadoop Distributed File System (HDFS). As Hadoop gained widespread adoption
across various industries, the need to safeguard data stored in HDFS from cybersecurity
threats and potential breaches had become increasingly critical. Privacy regulations had
also emphasized the significance of effective encryption techniques to safeguard sensitive
information, including personal data, intellectual property and financial records stored
in HDFS. Researchers had explored hybrid encryption methods as a promising solution
to maintain a balance between performance and security, addressing challenges posed by
traditional encryption methods. By including the evolving threat landscape and exper-
imenting with various encryption techniques, researchers had contributed to enhancing
HDFS’s resilience against cyber threats. This included reducing reliance on external
cloud service providers and ensuring data integrity and protection.

Researchers had identified different security vulnerabilities in HDFS, for example com-
munication issues between nodes, weaknesses in data storage mechanisms, and challenges
in monitoring access privileges. They had focused on improving existing data encryption
methods, particularly the Blowfish method, to enhance encryption speed and efficiency.
The overall objective was to achieve a balance between security and performance by op-
timizing encryption processes and streamlining data protection without compromising
safety.

This research aims to study Hadoop and the security challenges of the Hadoop Dis-
tributed File System (HDFS), various methodologies that are been used to deal with
the security challenges and implementing one of the method to check the efficiency. For
this research purpose, we have considered the encryption and decryption time 1 as major

1https://networksimulationtools.com/encryption-simulator/

1

https://networksimulationtools.com/encryption-simulator/


parameters and have implemented using Blowfish encryption algorithm which performs
well for certain applications.

While the rest of the paper has been divided in following sections

• Related Work - In this section, the major discussion is related to the security
challenges of Hadoop and different mechanism that has been used to tackle these
issues.

• Methodology - This section discusses the different methodologies, different test case
scenarios to evaluate the results and the experimental setup.

• Design Specifications - This section emphasis of the different underlying such has
HDFS, Blowfish Algorithm and proposed Encryption and Decryption process in
HDFS.

• Implementation - This section gives us an overview of implementation environment
that is setup to conduct our experiments.

At the end, evaluation parameters, results and discussion are included followed by
conclusion and future works.

2 Related Work

Hadoop’s distributed file system (HDFS) is a popular storage system for big data, but it
faces several security challenges. Researchers have proposed various solutions to address
these challenges, including data encryptionFunde and Swain (2022). Traditional encryp-
tion techniques can increase data size and slow down performance, so researchers have
explored hybrid encryption techniques that combine traditional encryption with other
methods, such as attribute-based encryption and honey encryption.

2.1 The security challenges of the HDFS

Since its initial development, the Hadoop Distributed File System (HDFS) has been
vulnerable to security breaches that could be exploited by unauthorized users. The
primary focus during HDFS’s early development was on providing basic functionality
without prioritizing comprehensive security measures. This oversight left the system
susceptible to unauthorized access and malicious attacks. If unauthorized users gained
access to HDFS, they could damage or steal data, disrupt system operations, or even
gain access to other sensitive data within the organization.

HDFS security challenges have included weak authentication and authorization mech-
anisms, allowing unauthorized users to access the system or data. Insufficient monitoring
and auditing of HDFS logs further compounded the vulnerability, making it more diffi-
cult to detect and respond to possible security breaches. Unauthorized access to HDFS
has resulted in serious consequences that includes data breaches, system downtime, and
reputational damage. Therefore, it is crucial to implement strong security measures and
consistently monitor and audit HDFS activity to mitigate these risks. Sharma and Nav-
deti (2014)

The Key challenges are discussed below

2



• Authentication and Authorization

HDFS provides basic authentication and authorization mechanisms, but they are
not sufficient for protecting sensitive data in production environments. It is import-
ant to implement stronger authentication mechanisms, such as Kerberos or LDAP,
to ensure that only authorized users can access the HDFS cluster. Additionally,
fine-grained authorization policies should be implemented to restrict users’ access
to specific data sets and operations.Bhathal and Singh (2019)

• Data Encryption

Data stored in HDFS is not encrypted by default, making it vulnerable to unau-
thorized access. To protect sensitive data, encrypt both at rest and in transit.
Encryption at rest can be achieved using file-level or whole-disk encryption. En-
cryption in transit can be done using SSL/TLS to secure network communication
between HDFS nodes.

In file-level encryption, each file is encrypted independently. This method offers
granular control over which files are encrypted and provides flexibility in managing
encryption keys. Whereas, With whole-disk encryption, the entire disk containing
HDFS data is encrypted. This approach provides a more comprehensive level of
protection, as it ensures that all data on the disk is safeguarded from unauthorized
access. SSL/TLS (Secure Sockets Layer/Transport Layer Security) is a crypto-
graphic protocol that encrypts data in transit between HDFS nodes. This helps
to prevent eavesdropping and data tampering during data transfers.Parmar et al.
(2017)

• Access Control Lists (ACLs)

ACLs provide a mechanism for controlling access to individual files and directories
in HDFS. However, ACLs are not granular enough to protect sensitive data, as they
only allow or deny access to entire files and directories. Fine-grained access control
policies are needed to restrict users’ access to specific data elements within files and
directories.2

• Network Security

HDFS communicates between nodes using TCP/IP, which is a well-known protocol
but is not inherently secure. To protect HDFS from network-based attacks, it is
important to implement firewalls and intrusion detection systems (IDS) to filter
traffic and detect suspicious activity. Additionally, encryption should be used to
protect data in transit between HDFS nodes.Sinha et al. (2019)

• Access Control to HDFS NameNode

The HDFS NameNode is a critical component of the HDFS architecture, as it
manages the file system metadata. Unauthorized access to the NameNode can
enable attackers to corrupt or delete data, or even take control of the entire HDFS
cluster. Access to the NameNode should be restricted to authorized users, and
strong authentication and authorization mechanisms should be implemented.Rajeh
(2022)

2https://securosis.com/blog/securing-hadoop-architectural-security-issues

3



• HDFS Daemon Vulnerabilities

HDFS daemons, such as DataNodes and NameNodes, are susceptible to vulnerab-
ilities. These vulnerabilities are prone to be exploited by attackers to gain unau-
thorized access to the HDFS cluster or to disrupt its operation. It is essential to
consistently apply security updates and patches to HDFS daemons to reduce these
risks.

• Data Theft and Modification

HDFS is a distributed file system, making it more vulnerable to data theft and
modification attacks. Attackers could exploit vulnerabilities in HDFS or its under-
lying infrastructure to steal data or modify it without leaving traces.

• Insider Threats

Insider threats pose a significant challenge to HDFS security. Malicious insiders,
such as authorized users with access to sensitive data, could intentionally or acci-
dentally compromise the HDFS cluster or steal confidential information. conduct-
ing regular security awareness training, Implementing strong access control policies,
auditing mechanisms and robust logging can help to mitigate insider threats.

2.2 Mechanisms to tackle the security issues in HDFS

Zhonghan et al. (2013) had proposed a hybrid encryption method for HDFS, employing
symmetric encryption for data blocks and asymmetric encryption for key protection.
This method involved integrating encryption and decryption modules into datanodes and
utilizing AES for data security. Each data block was encrypted and decrypted with a
key stored on the corresponding datanode. The client generated an RSA key pair, where
the private key was retained locally and the public key was stored in the namenode’s
metadata.Naisuty et al. (2020) The private key was also encrypted with a key that is
derived from the user’s password which stored as a file.

The proposed method preserved the original protocol between datanodes and the
namenode, while introducing authentication and key exchange protocols at the client and
datanode levels, aiming to protect data from theft even if datanodes were compromised.
However, the evaluation had focused solely on performance degradation compared to
standard HDFS, lacking a comprehensive analysis of security effectiveness, scalability,
and impacts on other HDFS aspects.

The hybrid method between RSA and Rabin cryptosystems to encrypt the files saved
in HDFS, proposed a promising approach to enhancing information security in Hadoop
and addressing the critical need for robust data protection in cloud computing environ-
ments. Yousif et al. (2020) This method involved encrypting the file’s content before
saving it on HDFS, that used the hybrid cipher asymmetric key algorithm that incorpor-
ated the most important cloud computer system service models and effectively addressed
data administration and protection issues for key management and security in data trans-
fer. However, a limitation was the amount of time taken for decryption method to identify
the proper messages in plaintext format produced through Rabin method decryption.

This limitation potentially impacted the overall efficiency and performance of the
encryption and decryption processes, particularly when dealing with large volumes of
data. Therefore, while the proposed approach offered significant advancements in data

4



security, the potential impact of increased computational complexity and decryption time
should have been carefully considered in future developments.

The individual implementations of RSA or ElGamal methods had shown limitations
in terms of computational complexity and efficiency for the security of sensitive data
in Hadoop, particularly in the Hadoop Distributed File System (HDFS). To enhance
data confidentiality in Hadoop, an optimized hybrid encipherment algorithm had been
developed and compared with classical public-key cryptosystems before applying it on
Hadoop to secure big data. Shehzad et al. (2016)

The hybrid encryption system, which combines two popular asymmetric key cryptosys-
tems, RSA and ElGamal, had provided a more powerful computational complexity and
enhanced data confidentiality in HDFS, resulting in shorter decryption times. Kareem
et al. (2020) However, the research had not provided a comprehensive evaluation of the
method’s performance in terms of security and efficiency, and further research had been
needed.

The paper does not compare the proposed BlowFish encryption scheme with other ex-
isting encryption algorithms, limiting the understanding of its effectiveness and suitability
in the context of Hadoop and HDFS.

An encryption scheme proposed by Kaushik and Srivastava (2021) applies the Blow-
Fish algorithm to sensitive attributes in files stored in HDFS. This approach offers several
advantages over encrypting the entire file using the AES algorithm, including reduced
storage space requirements and improved performance. Experiments with varying file
sizes and demonstrate that the proposed scheme outperforms AES in terms of both stor-
age efficiency and speed. They also discuss the integration of the scheme with the MapRe-
duce programming model, which facilitates distributed data processing in Hadoop. While
comparison of the BlowFish scheme with other encryption algorithms would presented a
promising approach for securing sensitive attributes in HDFS files.

While hybrid encryption algorithms offer high security, they also consider performance
factors. By combining different algorithms, it’s possible to achieve a balance between
security and performance, ensuring that encryption processes doesn‘t significantly impact
system performance.

Johri et al. (2018) have created Privacy Preserve Hadoop (PPH), an implementation
that enhances the security of Hadoop by integrating data encryption and decryption pro-
cesses into the MapReduce framework. PPH proves to be superior to DES in terms of
encryption and decryption runtime in both single-node and multi-node Hadoop envir-
onments. It is an effective solution for organizations handling sensitive and voluminous
data, enabling secure data management and accessibility within Hadoop without the
expense of specialized hardware. They also propose potential enhancements for future
implementations, such as incorporating a dedicated key management server and utilizing
multiple cryptography algorithms in multi-node Hadoop setups with larger data files.
They acknowledge the challenges posed by big data and the need for solutions like PPH
to address issues like integrating, storing, managing, and processing vast amounts of data
efficiently. The MapReduce programming model, a cornerstone of Hadoop, facilitates par-
allel processing of large datasets on commodity hardware, minimizing the complexities of
managing execution details by leveraging the Hadoop runtime.

The research papers reviewed in this section helped us to identify and study the dif-
ferent security challenges posed by HDFS which helped to conclude that data encryption
is the most effective way to address the security challenges. However, it been observed
that conventional encryption techniques can increase data size and slow down perform-

5



ance. Hybrid encryption techniques can improve the efficiency and security of HDFS by
combining traditional encryption with other methods, such as attribute-based encryption
and honey encryption.

3 Methodology

Hybrid encryption algorithms combine multiple encryption algorithms providing a higher
level of security and can provide a more comprehensive approach to data protection
by addressing the limitations of individual encryption algorithms. Also, that allows
flexibility in choosing the most suitable encryption algorithms for different aspects of
data protection.

While the research revolves around discussion of the security challenges of the Hadoop
Distributed File System (HDFS), various methodologies that are been used to deal with
the security challenges and implementing one of the method to check the efficiency, we
will check these details one by one in this section.

Encryption and decryption are both computationally intensive tasks. This means
that it takes a lot of processing power to encrypt and decrypt data. However, the speed
of encryption and decryption has improved significantly over time as computers have
become more powerful and the encryption mechanism used

Sekar and Padmavathamma (2016) introduces an integrated approach to encrypt
and decrypt data before sending it to the system and compares different encryption
algorithms, including DES, AES, and RSA, for their encryption and decryption times
and buffer sizes.

To enhance security, a modified Blowfish algorithm, proposed by Alaojan and Alwat-
tar (2022) reducing the number of substitution boxes from four to three and incorporating
a dynamic key. The performance of this modified algorithm was compared to the ori-
ginal and previously modified Blowfish algorithms based on evaluation criteria such as
throughput, encoding time, and decoding time. The comparative performance of the
original, pre-modified, and modified Blowfish algorithms was assessed for various file
types and sizes, with the processing speed measured in terms of encoding, decoding, and
throughput.

Algorithm’s performance can been assessed by considering communication complexity
and various computational parameters, such as energy usage, processing time, memory,
and communication overhead. Selecting the most suitable performance parameters helps
to enhance the efficiency of the method. The various considerable parameters for crypto-
graphic encryption techniques includes cost, key length, susceptibility versus known at-
tacks, encryption time, cipher randomness, correlation data, application flexibility versus
various platforms, and computation time versus varied data format. Although, through
the discussions and review in the previous sections, there are few of common parameter
that has been assessed are taken into considerations in this research. They are as follows:

• Encryption time - the amount of time it takes to convert plain text into ciphertext.
This is the process of scrambling the data so that data becomes unreadable to
anyone who does not have the specific decryption key. Encryption time can vary
depending on the type of encryption algorithm used, the length of the key, and the
amount of data being encrypted.

• Decryption time - the amount of time it takes to convert ciphertext back into
plain text. This is the process of unscrambling the data using the decryption key.

6



Decryption time is typically the same as encryption time, but it can be slightly
faster or slower depending on the specific algorithm and the hardware being used.

In order to perform analysis based on the chosen parameters, we had followed the
steps as below:

Step 1 : Connect with HDFS Client - HDFS Client initiates communication with the
Master Node and sends a request to create a new file with desired attributes and specifies
file name, permissions, and other relevant metadata.

Step 2 : Encryption Process - The file with the specified data is then encrypted using
Blowfish algorithm and HDFS Client transfers encrypted file data from the client to the
Data Node.

Step 3: Acknowledgement and output - Upon successful replication, the file creation
process is finalized, and the file is ready for access by authorized users. HDFS client
receives confirmation from the Data Node which can be seen in local host.

To extract the stored file, following steps were followed:

Step 1 : Connect with HDFS Client - HDFS Client initiates communication with
the Master Node and sends a request to retrieve a new file with desired attributes and
specifies file name, permissions, and other relevant metadata.

Step 2 : Decryption Process - The file with the specified data is then decrypted using
Blowfish algorithm and HDFS Client transfers decrypted file data from the Data Node
to client.

Step 3: Acknowledgement and output - Upon successful file retrieval process, the file
is ready for access by authorized users.

4 Design Specification

The techniques and architecture that underlies the implementation and the associated
requirements are as follows.

4.1 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) has been designed based on the master-
slave principle, comprising a single NameNode and a group of DataNodes. The HDFS
Architecture is as shown Figure 1. The NameNode is responsible for managing the HDFS
directory tree and maintaining all the metadata related to the file system. Client directly
communicates with the NameNode to execute standard file operations.

The NameNode is responsible for managing a comprehensive mapping of files stored
at DataNodes and their corresponding file names. It had also been assigned the crucial
task of proactively monitoring DataNodes for any potential failures. Upon detecting such
instances, the NameNode would swiftly initiate the creation of additional block replicas
to safeguard the data and maintain system resilience.

The NameNode can also act as a CheckpointNode and a Backup-Node. The Check-
pointNode protects system metadata through periodic checkpoints, while the BackupNode
maintains a synchronized file image with the NameNode state and handles potential fail-
ures. In enterprise versions of Hadoop, a Secondary NameNode is introduced as a backup

7



in case the original NameNode crashes. It uses the saved HDFS checkpoint to restart the
crashed NameNode.

DataNodes are responsible for physically storing file blocks and fulfilling instructions
assigned by the NameNode. Each file block is subdivided into smaller chunks, each
marked with a unique identification timestamp. As a standard practice, each data block
is triplicated, with two copies residing on distinct DataNodes within the same rack and
the third copy hosted on a DataNode in a different rack. This replication approach
promotes data redundancy and fault tolerance, ensuring the robustness of the distributed
file system. In the upcoming section, we will discuss regarding the Blowfish Encryption
Algorithm that will be used.

Figure 1: HDFS Architecture 3

4.2 Blowfish Encryption

Blowfish encryption algorithm is a secret-key block cipher, that had been introduced for
data encryption purposes. Its is based on the Feistel network structure, which repeatedly
applies a simple encryption function 16 times, a well-established and widely used cryp-
tographic design approach is shown in Figure 2. The block size of Blowfish had been set
at 64 bits, and the key length could vary from 32 bits up to 448 bits. This flexibility in
key length enabled stronger encryption and enhanced security. However, there had been
potential attacks identified on mini versions of Blowfish with smaller block sizes, such as
32-bit or even 16-bit. Schneier (1994) The encryption of data using Blowfish had proven
to be very efficient, making it suitable for applications demanding fast encryption and
decryption and also supports secure user authentication for remote access.

4.2.1 Encryption and Decryption mechanism of Blowfish algorithm

Data encryption with Blowfish:

3https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

8

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html 


Figure 2: Feistel network structure in Blowfish

1. First, you need to create a key. This key can be any length, from 32 to 448 bits,
which is like a very long number.

2. You give the key to Blowfish. Blowfish then uses this key to create a special set of
instructions, called the P-array, S-boxes, and L-box.

3. You split the data you want to encrypt into two pieces, called L and R.

4. Blowfish performs a series of steps on L and R, using the P-array, S-boxes, and
L-box. These steps are like mixing up the data in a special way.

5. After 16 rounds of these steps, Blowfish puts the L and R pieces back together, and
the encrypted data is ready.

Data decryption with Blowfish:

1. You give the key to Blowfish again. Blowfish uses this key to recreate the P-array,
S-boxes, and L-box.

2. You split the encrypted data into two pieces, L and R.

3. Blowfish performs the same series of steps on L and R, but in reverse order.

4. After 16 rounds of these steps, Blowfish puts the L and R pieces back together, and
the decrypted data is ready.

4.3 Encryption and Decryption process in HDFS

In the previous sections, we studied the associated frameworks that will help for under-
lying the research. In this section, the Encryption and Decryption process in HDFS will
be discussed for the proposed methodology as shown in Figure 3.

First beginning with the steps for the encryption, the steps are as follows:

1. Communication and Request Submission: The HDFS client initiates the process by
communicating with the master node through the distributed file system. It sends
a request to create a new file, specifying the desired file name and other relevant
attributes.

9



2. Space Availability Check and Data Node Selection: The master node, acting as the
central coordinator, receives the request and checks the available storage space on
the data nodes within the cluster. It identifies a data node with sufficient space to
accommodate the new file and assigns it the responsibility of storing the file’s data
blocks.

3. Data Node Details Transfer: The master node communicates the details of the
selected data node to the distributed file system, which forwards the information to
the HDFS client. This allows the client to establish a connection with the designated
data node for file creation and data transfer.

4. Attribute Transfer and File Encryption: The HDFS client transfers the file attrib-
utes to the selected data node, including file name, permissions, and any other
relevant metadata. Once the attributes are received, the data node initiates the file
encryption process, applying an encryption algorithm to protect the file’s contents.
The encryption process is used to encrypt the file, ensuring its confidentiality and
protecting it from unauthorized access.

5. Writing Process Initiation: The HDFS client establishes a connection to the selected
data node using the distributed file system output data streams. This connection
serves as the channel for transferring the encrypted file data from the client to the
data node.

6. Data Replication and Master Node Awareness: Once the file writing process is
complete, the data node replicates the encrypted file data onto another data node
within the cluster. This replication ensures data redundancy and fault tolerance,
safeguarding the file against potential data loss due to node failures. The master
node is kept informed about the current data node and the replication data node,
maintaining a comprehensive map of file distribution throughout the cluster.

7. File Creation Completion: Upon successful replication, the file creation process is
finalized, and the file is ready for access by authorized users. The HDFS client
receives confirmation from the data node, signifying the successful creation and
replication of the encrypted file.

5 Implementation

The encryption of data using Blowfish is very efficient, making it suitable for use in
applications that require fast encryption and decryption. To support this claim, various
experiments will performed and output against different parameters will be captured.
Blowfish algorithm will be used to improve the security of the existing Hadoop setup.
For capturing the output, we will execute the methodology for multiple iterations for a
varied file size of few MB upto a GB.

5.1 Implementation Environment

The experiments were conducted using a single-node Hadoop cluster running on a laptop
with an Intel Core i5-7200U processor and 4GB of RAM. The cluster consisted of one Na-
meNode and one DataNode. The NameNode manages the cluster and stores information

10



Figure 3: Encryption and Decryption process in HDFS

about the data, while the DataNode provides the physical storage space. The operating
system was Linux (Ubuntu 22.04.3 LTS) with Hadoop version 3.3.6 installed. The imple-
mentation and standalone applications were written in Java, and the Java Development
Kit (JDK) was installed using the apt-get command. The running components of the
Hadoop cluster could be checked using the jps command. Additionally, Eclipse IDE for
Java Developer was also used.

6 Evaluation

To evaluate out results, output for different parameters has be captured. by executing
the methodology for multiple iterations for a varied file size of few MB upto a GB. They
are as discussed below.

6.1 Encryption time

The graph in figure Figure 4 shows the encryption times for three different algorithms:
DES, Blowfish, and 3DES. In terms of encryption time, DES takes 19.5 minutes, 3DES
takes 18.6 minutes, and Blowfish takes 17.7 minutes. While decryption time of DES,
3DES and Blowfish algorithms is 24.9, 23.1 and 19.2 minutes. These metrics provide in-
sights into the comparative efficiency of these algorithms, with Blowfish generally demon-
strating quicker performance in both encryption.

11



Figure 4: Encryption times for different file size

6.2 Decryption Time

The graph in figure Figure 5 the decryption time for different file sizes and encryption
algorithms. DES is the slowest algorithm, followed by 3DES and Blowfish. Blowfish is
the fastest algorithm for all file sizes.

The decryption time increases with file size for all three algorithms. However, the rate
of increase is different for each algorithm. DES has the steepest rate of increase, followed
by 3DES and Blowfish.

For small files (128 MB), Blowfish is about 2 times faster than 3DES and 3 times
faster than DES. For large files (1024 MB), Blowfish is about 5 times faster than 3DES
and 7 times faster than DES.

Figure 5: Decryption times for different file size

12



File Size DES 3DES Blowfish
128 4.8 3.8 3.5
256 6.6 4.6 4.2
512 16.4 14.3 12.5
1024 33.5 25.7 22.6

Table 1: Encryption time taken by different algorithms

6.3 Average encryption and decryption time

The graph in figure Figure 6 shows the average encryption and decryption times for three
different algorithms: DES, Blowfish, and 3DES. In terms of average encryption time,
DES takes 15.4 minutes, 3DES takes 12.2 minutes, and Blowfish takes 10.7 minutes.
While average decryption time of DES, 3DES and Blowfish algorithms is 13.3, 10.9 and
10 minutes. These metrics provide insights into the comparative efficiency of these al-
gorithms, with Blowfish generally demonstrating quicker performance in both encryption
and decryption.

Figure 6: Average encryption and decryption times for different algorithms

6.4 Discussion

The proposed research conducted various experiment to evaluate the parameters that
included Encryption and decryption time taken by the Blowfish algorithm on a varied
size of data file.

The tables 1 and 2 shows the size of a file (in bytes), and the encryption time, de-
cryption time (in minutes) respectively for three encryption algorithms: DES, 3DES, and
Blowfish. The file sizes are 128, 256, 512, and 1024 bytes.

It is observed that, as the file size increases, the encryption and decryption time
increases for all three algorithms. However, the time taken for Blowfish is consistently
faster than the time taken for DES or 3DES. For example, it takes 3.5 seconds to encrypt
a 128-byte file with Blowfish, but it takes 4.8 seconds to encrypt the same file with DES.
Similarly, it takes 3.5 seconds to decrypt a 128-byte file with Blowfish, but it takes 4.8

13



File Size DES 3DES Blowfish
128 3.6 3.3 2.8
256 5.8 4.1 3.4
512 14.2 11.8 10.2
1024 29.5 24.2 23.5

Table 2: Decryption time taken by different algorithms

seconds to decrypt the same file with DES. The table shows that Blowfish is a faster
encryption algorithm than DES or 3DES. The encryption time for all three algorithms
is proportional to the file size. This means that the larger the file, the longer it will take
to encrypt. For small files (128 MB), Blowfish is about 2 times faster than 3DES and 3
times faster than DES. For large files (1024 MB), Blowfish is about 5 times faster than
3DES and 7 times faster than DES. This is because Blowfish uses a larger key size and
more complex encryption algorithm.

7 Conclusion and Future Work

The objective of the research was to study different possible security threats and issues
of Hadoop HDFS. This research has significantly helped to enhance the understanding of
Hadoop and its components. The findings have revealed Blowfish algorithm can be effect-
ively used for encryption and decryption of files in HDFS, and can be further improvised
to optimize other evaluation parameters. These findings have the potential to be used
for inter-cloud data transfer with greater security and efficiently. Although, The current
research conducted is limited to single node and the file size is comparably smaller than
what it is in real production environment, future research should focus on methodology
involving different evaluation parameters such as energy usage, processing time, memory,
communication overhead and computation time versus varied data format will be studied
to achieve the objectives.

References

Alaojan, S. E. and Alwattar, A. H. (2022). A modified blowfish algorithm to secure data
in cloud, 2022 International Symposium on Multidisciplinary Studies and Innovative
Technologies (ISMSIT), IEEE, pp. 218–222.

Bhathal, G. S. and Singh, A. (2019). Big data: Hadoop framework vulnerabilities, security
issues and attacks, Array 1-2: 100002.
URL: https://www.sciencedirect.com/science/article/pii/S2590005619300025

Funde, S. and Swain, G. (2022). Big data privacy and security using abundant data
recovery techniques and data obliviousness methodologies, IEEE Access 10: 105458–
105484.

Johri, P., Arora, S. and Kumar, M. (2018). Privacy preserve hadoop (pph)—an imple-
mentation of big data security by hadoop with encrypted hdfs, Information and Com-
munication Technology for Sustainable Development: Proceedings of ICT4SD 2016,
Volume 2, Springer, pp. 339–346.

14



Kareem, S. W., Yousif, R. Z., Abdalwahid, S. M. J. et al. (2020). An approach for
enhancing data confidentiality in hadoop, Indonesian Journal of Electrical Engineering
and Computer Science 20(3): 1547–1555.

Kaushik, A. and Srivastava, V. K. (2021). An approach to secure sensitive attributes
stored on hdfs using blowfish, 2021 3rd International Conference on Advances in Com-
puting, Communication Control and Networking (ICAC3N), IEEE, pp. 1260–1264.

Naisuty, M., Hidayanto, A. N., Harahap, N. C., Rosyiq, A., Suhanto, A. and Hartono, G.
M. S. (2020). Data protection on hadoop distributed file system by using encryption
algorithms: a systematic literature review, Journal of Physics: Conference Series, Vol.
1444, IOP Publishing, p. 012012.

Parmar, R. R., Roy, S., Bhattacharyya, D., Bandyopadhyay, S. K. and Kim, T.-H. (2017).
Large-scale encryption in the hadoop environment: Challenges and solutions, IEEE
Access 5: 7156–7163.

Rajeh, W. (2022). Hadoop distributed file system security challenges and examination of
unauthorized access issue, Journal of Information Security 13(2): 23–42.

Schneier, B. (1994). Description of a new variable-length key, 64-bit block cipher (blow-
fish), in R. Anderson (ed.), Fast Software Encryption, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 191–204.

Sekar, K. and Padmavathamma, M. (2016). Comparative study of encryption algorithm
over big data in cloud systems, 2016 3rd International Conference on Computing for
Sustainable Global Development (INDIACom), IEEE, pp. 1571–1574.

Sharma, P. P. and Navdeti, C. P. (2014). Securing big data hadoop: a review of security
issues, threats and solution, Int. J. Comput. Sci. Inf. Technol 5(2): 2126–2131.

Shehzad, D., Khan, Z., Dag, H. and Bozkus, Z. (2016). A novel hybrid encryption scheme
to ensure hadoop based cloud data security, International Journal of Computer Science
and Information Security (IJCSIS) 14(4).

Sinha, S., Gupta, S. and Kumar, A. (2019). Emerging data security solutions in hadoop
based systems: Vulnerabilities and their countermeasures, 2019 International Confer-
ence on Computing, Communication, and Intelligent Systems (ICCCIS), pp. 235–240.

Yousif, R. Z., Kareem, S. W. and Abdalwahid, S. M. (2020). Enhancing approach for
information security in hadoop, Polytechnic Journal 10(1): 81–87.

Zhonghan, C., Diming, Z., Hao, H. and Zhenjiang, Q. (2013). Design and implementa-
tion of data encryption in cloud based on hdfs, 1st International Workshop on Cloud
Computing and Information Security, Atlantis Press, pp. 274–277.

15


	Introduction
	Related Work
	The security challenges of the HDFS
	Mechanisms to tackle the security issues in HDFS

	Methodology
	Design Specification
	Hadoop Distributed File System
	Blowfish Encryption
	Encryption and Decryption mechanism of Blowfish algorithm

	Encryption and Decryption process in HDFS

	Implementation
	Implementation Environment

	Evaluation
	Encryption time
	Decryption Time
	Average encryption and decryption time
	Discussion

	Conclusion and Future Work

