
Configuration Manual

MSc Research Project

Cloud Computing

Rahul Dhanapal Narawade
Student ID: 22144943

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Rahul Dhanapal Narawade

Student ID: 22144943

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Vikas Sahni

Submission Due Date: 14/12/2023

Project Title: Configuration Manual

Word Count: 3424

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Rahul Dhanapal Narawade

Date: 13th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Rahul Dhanapal Narawade
22144943

1 Introduction

This configuration manual provides guidance on the implementation of scheduling al-
gorithm enhancements of KubeEdge with EdgeMesh for research to optimize cluster per-
formance. This contains the prerequisites and specifications for building the experimental
setup. The guide also includes a detailed, step-by-step implementation plan for the pro-
posed solution that could be useful for others looking to replicate the work completed as
part of the research project. This configuration manual provides technical information
for other researchers regarding the methodologies used in the research.

1.1 Prerequisites

The project requires the following prerequisites

Computing system: A system that can support multiple virtual machines (VMs). Re-
searcher has used MacBook M1 Pro (MacOS Sanoma Version 14.0) with 16 GB memory.
This system provides sufficient resources for running multiple VMs and developing and
testing the project code.

IDE: An integrated development environment (IDE) for implementing and building
the code Microsoft Visual Studio Code (VS Code Version: 1.82.3) or a similar well-suited
IDE for developing Golang applications.Visual Studio Code (2023)

GO Language: Familiarity or access to the Go language’s syntax, data structures,
and built-in functions. Some basic knowledge of the Go programming language recom-
mended. (go version go1.18.1 linux/arm64) The Go Programming Language (2023)

Docker Hub: Access to and understanding of Docker Hub, a public registry for
storing and sharing Docker images. Basic familiarity with Docker Hub concepts, such as
creating repositories, pushing, and pulling images. (Docker Hub Desktop version 4.24.2)
(Install Docker Desktop on Mac, 2023) Docker Documentation (2023)

Version controlling: Basic knowledge of version control systems, such as Git. Ex-
posure to Github for versioning and basic git commands. Downloading Package (2023)

Kubernetes: Understanding of container orchestration platform Kubernetes. Ex-
posure to basic workflow and Kubernetes concepts, such as pods, deployments, services,
and clusters. (v 1.21.1) Kubernetes Documentation (2023)

KubEdge: Information on KubEdge architecture, its components, and its integration
with Kubernetes. (v 1.12.1) KubeEdge (2023a)

1

2 Environment Setup

This section guides about the environment setup.

2.1 Creating VM on MacOS

• Step 1: Download Ubuntu Image from the official website: https://ubuntu.com/
download/server/arm (Version 4.2.5) Ubuntu (2023)

• Step 2: Download UTM from the official website: https://mac.getutm.app/

UTM (2023)

• Step 3: Run UTM and follow these sub-steps:

1. Click on the ”+” button in the top left corner of the UTM window.

2. Select ”Virtualize” from the menu.

3. Select ”Linux” from the list of available operating systems.

4. Click on the ”Browse” button and select the Ubuntu ISO image that was
downloaded in Step 1.

5. Choose the amount of Memory and CPU cores that you want to allocate to
the virtual machine. For this reserach memory was 1 GB and CPU was 1.

6. Click on the ”Create” button.

• Step 3: Similarly create three more VM’s by follwong steps 1-3 in total 4VMs.

Figure 1: UTM Window

2

https://ubuntu.com/download/server/arm
https://ubuntu.com/download/server/arm
https://mac.getutm.app/

2.2 Setting up Master node – CloudCore

At the master node, we need to install Kubernetes and KubeEdge Cloud core. Follow
the below steps to get these both installed (Nair; 2023; Gaponcic; 2023; KubeEdgeGit;
2023; KubeEdge; 2023b; EdgeMesh; 2023).

1. Step 1: Login to VM1. For illustration purposes, VM1 is considered the master
node.

2. Step 2: Change user to root and disable swap with the following commands:

1 swapoff -a

2 sudo sed -i ’/ swap / s/^\(.*\)$/#\1/g’ /etc/fstab

3 sudo sed -i ’/ swap / s/^\(.*\)$/\#\1/g’ /etc/fstab

3. Step 3: Install Docker and containerd with the following command:

1 sudo apt -get install docker -ce docker -ce -cli containerd.

io docker -buildx -plugin docker -compose -plugin

4. Step 4: Install GO language. Optionally, a specific version for KubdEdge can be
downloaded and installed. For research purposes, the repo was downloaded, so GO
is required to build.

1 sudo apt install golang -go

2 export GOOS=linux

3 export GOARCH=arm64

4 source ~/. bashrc

5 export PATH=$PATH :/snap/bin:/usr/go/bin
6 export GOPATH =/usr/go

7 export GOBIN=$GOPATH/bin
8 export PATH=$PATH:$GOBIN:$GOROOT/bin

5. Step 5: Clone KubeEdge and make a build:

1 git clone https :// github.com/kubeedge/kubeedge $GOPATH/
src/github.com/kubeedge/kubeedge

2 cd $GOPATH/src/github.com/kubeedge/kubeedge
3 git checkout release -1.11

4 apt install make

5 make all WHAT=keadm

6. Step 6: Install Kubernetes and CNI:

1 sudo apt -get install -y kubelet =1.21.1 -00 kubeadm

=1.21.1 -00 kubectl =1.21.1 -00

2 kubeadm init --pod -network -cidr =10.244.0.0/16 --apiserver

-advertise -address =192.168.0.208

3 mkdir -p $HOME /.kube
4 sudo cp -i /etc/kubernetes/admin.conf $HOME /.kube/config
5 sudo chown $(id -u):$(id -g) $HOME /.kube/config

3

6 kubectl taint nodes --all node -role.kubernetes.io/master -

7 kubectl apply -f https :// docs.projectcalico.org/v3.11/

manifests/calico.yaml

8 kubectl get nodes

7. Step 7: Copy KubeEdge build to the user path:

1 cd /root

2 $GOPATH/src/github.com/kubeedge/kubeedge
3 cp ./ _output/local/bin/keadm /usr/bin/

8. Step 8: Initialize KubeEdge (change the IP to the IP of the Master node):

1 keadm init --advertise -address ="192.168.67.2" --profile

version=v1 .12.1 --kube -config =/root/.kube/config --set

cloudCore.modules.dynamicController.enable=true

9. Step 9: EdgeMesh for Master nodes:

1 kubectl label services kubernetes service.edgemesh.

kubeedge.io/service -proxy -name =""

2 git clone https :// github.com/kubeedge/edgemesh.git

3 cd edgemesh

4 kubectl apply -f build/crds/istio/

5 kubectl apply -f build/agent/resources/

6 kubectl get nodes --all -namespaces

7 kubectl get all -n kubeedge -o wide

Figure 2: Get all nodes

10. Step 10: Install EdgeMesh Gateway:

1 kubectl apply -f build/gateway/resources

11. Step 11: Generate a token from Master nodes for edge nodes to connect and copy
the token:

1 keadm gettoken

4

Figure 3: Get all pods

2.3 Setting Up EdgeNode(s) - Edgecore

Unlike Master node, Kubernetes is not required on edge nodes. Follow the below steps to
setup multiple edge nodes. For research purpose, Three edge nodes are connected to the
master.(Nair; 2023; Gaponcic; 2023; KubeEdgeGit; 2023; KubeEdge; 2023b; EdgeMesh;
2023).

1. Step 1: Login to VM1. For illustration purposes, VM1 is considered the master
node.

2. Step 2: Change user to root and disable swap with the following commands:

1 swapoff -a

2 sudo sed -i ’/ swap / s/^\(.*\)$/#\1/g’ /etc/fstab

3 sudo sed -i ’/ swap / s/^\(.*\)$/\#\1/g’ /etc/fstab

3. Step 3: Install Docker and containerd with the following commands:

1 sudo apt -get install docker -ce docker -ce -cli containerd.

io docker -buildx -plugin docker -compose -plugin

2 sudo cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf

3 net.bridge.bridge -nf-call -ip6tables = 1

4 net.bridge.bridge -nf-call -iptables = 1

5 EOF

4. Step 4: Install GO language. Optionally, a specific version for KubdEdge can be
downloaded and installed. For research purposes, the repo was downloaded, so GO
is required to build.

1 sudo apt install golang -go

2 export GOOS=linux

3 export GOARCH=arm64

4 source ~/. bashrc

5 export PATH=$PATH :/snap/bin:/usr/go/bin
6 export GOPATH =/usr/go

7 export GOBIN=$GOPATH/bin
8 export PATH=$PATH:$GOBIN:$GOROOT/bin

5

5. Step 5: Clone KubeEdge and make a build:

1 git clone https :// github.com/kubeedge/kubeedge $GOPATH/
src/github.com/kubeedge/kubeedge

2 cd $GOPATH/src/github.com/kubeedge/kubeedge
3 git checkout release -1.11

4 apt install make

5 make all WHAT=keadm

6. Step 7: Copy KubeEdge build to the user path:

1 cd /root

2 $GOPATH/src/github.com/kubeedge/kubeedge
3 cp ./ _output/local/bin/keadm /usr/bin/

7. Step 8: Connect to the cloud. Change the IP of the master and copy the token
from the master:

1 keadm join --cloudcore -ipport =192.168.67.2:10000 --token

="Token Generated from Master"

8. Step 9: Update the YAML file (vi /etc/kubeedge/config/cloudcore.yaml):

(a) EdgeMesh to false

Figure 4: EdgeMesh YAML change 1

(b) Enable Metamanager

Figure 5: EdgeMesh YAML change 2

(c) Update cluster DNS

.

6

Figure 6: EdgeMesh YAML change 3

9. Step 10: Restart edgecore services using the following commands:

1 systemctl restart edgecore.service

2 systemctl status edgecore.service

10. Step 11: Perform curl with the following command, expecting a response and not
an error EdgeMesh (2023)

1 curl 127.0.0.1:10550/ api/v1/services

2.4 Gateway Setup at Master node

Run the below commands at Master node.

1 cd edgemesh

2 kubectl apply -f build/crds/istio/

3 kubectl apply -f build/agent/resources/

4 kubectl apply -f build/gateway/resources

5 kubectl get all -n kubeedge -o wide

6 kubectl get pods --all -namespaces

2.5 Deploy Sample Application

1. Step 1: At the master node, deploy the sample application using the following
commands:

1 cd edgmesh

2 vi examples/hostname -lb-random -gateway.yaml

Update the replicas to 6. Note: There are 3 nodes, so each will get two pods.

Figure 7: Sample App Host Modified

2. Step 2: Run the following command to deploy pods. EdgeMesh (2023)

1 kubectl apply -f examples/hostname -lb -random -gateway.yaml

7

Figure 8: Deploy Sample App

3. Step 3: Verify that the sample application works using the following commands.
The IP address is the master node’s exposed IP displayed in the output of the
following command:

1 kubectl get pods --all -namespaces -o wide

2 curl 192.168.67.2:23333

4. Step 4: As this is a sample test application, it returns the pod name from where
the request got served.

Figure 9: Test Sample App URL

5. Step 5: The image below shows the final cluster details.

Figure 10: Cluster all pods

.

8

3 Implementation

1. Step 1: Download or clone the Git repository for EdgeMesh from GitHub. Use
the following command in your terminal:

1 git clone https :// github.com/kubeedge/edgemesh

Figure 11: Git Repo

2. Step 2: Open the downloaded repository in your preferred Integrated Development
Environment (IDE).

Figure 12: Open Repo

3.1 Load balancer policy Implementation

Open file /github/EdgeMesh/edgemesh/pkg/loadbalancer/policy.go In this file the
default load balancing policies are exists. Each of the policy has predefined code starting

9

with its ‘struct’, and methods such as ‘policyname’, ‘update’, ‘pick’, ‘sync’ and ‘Release’.
Out of these methods depending upon the research the struct and pick function are
expected to be updated. The said research updates the existing methods only, as an
example the struct updated as below.

1. Step 1: Update the existing random policy or write a new one. In this research
updated existing.

Figure 13: Struct of new policy

2. Step 2: The ’NewRandomPolicy’ method creates a new instance of the ’Random-
Policy’ struct. This method initializes the ’RandomPolicy’ struct with predefined
endpoint latencies, weights, and an empty request count map.

Figure 14: Struct of new policy

3. Step 3: The ’Name’ and ’Update’ methods are empty declarations by default.
The ’Name’ method returns the name associated with the policy. The ’Update’
method updates the ’RandomPolicy’ based on old and new istioapi.DestinationRule
instances and does not perform any specific update.

4. Step 4: The ’Pick’ method selects an endpoint based on logic written for selection.
The method selects endpoints with the lowest latency, and if multiple endpoints
exist, the method selects one endpoint based on weights and the lowest request
counter. The method increments the request count and returns the selected en-
dpoint. Below is the code snippet. Initially, the small code can be changed like
scheduling all requests locally Kim and Kim (2023).

5. Step 5: The ’selectLowestLatencyEndpoints’ method sorts the endpoints based
on latency and returns the first three with the lowest latency. Below is the code
snippet.

10

Figure 15: Pick method new policy

Figure 16: Select Lowest Method

6. Step 6: The ’selectWeightedEndpoint’ method calculates the weighted requests for
each endpoint by dividing the request count by weights. Then the method sorts
the endpoints based on weighted requests and only returns the one with the lowest
weighted request. This method makes sure that the nodes are not overloaded and
distributes the requests based on weights. Below is the code snippet.

Figure 17: Select Highest weighed with lowest process counter

7. Step 7: The ’Sync’ method synchronizes the policy, but here it is empty and does
not perform any specific synchronization for the policy.

8. Step 8: The ’Release’ method releases any resources associated with the ’Random-
Policy,’ but here it’s empty and does not perform any specific release action for the

11

policy.

9. Step 9: Comment the contents of ’github/EdgeMesh/edgemesh/Makefile’ and up-
date ’github/EdgeMesh/edgemesh/Makefile’ as below. This ensures that you can
build your projects locally.

3.2 Docker files

1. Step 1: Update the EdgeMesh agent Dockerfile located at /github/EdgeMesh/edgemesh/build/agent/Dockerfile
as shown below. This ensures that the changes performed are included while making
the build.

Figure 18: Docker file update for Agent

2. Step 2: Update the EdgeMesh gateway Dockerfile located at /github/EdgeMesh/edgemesh/build/gateway/Dockerfile
as below. This ensures that the changes performed are included while making the
build.

Figure 19: Docker file update for Gateway

3.3 Docker Hub

Sign up for the https://hub.docker.com/signup for the docker hub repo if not already.
This repo username will be required for the next section. Docker Documentation (2023)

3.4 Build file changes (make file)

Open github/EdgeMesh/edgemesh/Makefile and update below. This file helps to create
the build locally and contains the location of the remote docker hub repo where we will
be updating the successful build. The ‘rnarawade’ is the docker hub repo name.

Figure 20: Make file Change 1

12

Figure 21: Make file Change 2

3.5 YAML File at local system and Master node

Update the two YAML files below into local system where we are updating the code and
update the same files onto Master node where we have cloned the EdgeMesh repo as a
part of environment setup. These files helps us to get the latest build from docket hub.

1. Step 1: Update the YAML file located at
github/EdgeMesh/edgemesh/build/agent/resources/05-daemonset.yaml at both
master and local as below:

Figure 22: YAML changes for Agent

2. Step 2: Update the YAML file located at
github/EdgeMesh/edgemesh/build/gateway/resources/05-deployment.yaml at
both master and local as below:

Figure 23: YAML changes for Gateway

13

4 Build and Deployment

This section explains the build creation and deployment process for EdgeMesh.

4.1 Creating build – Make Images

Once all the changes mentioned in section 3 are completed, at the command of IDE
execute the command ‘make images’ this will trigger the build for EdgeMesh Agent and
Edgmesh Gateway both at the local system.

Figure 24: Make Images

4.2 Pushing build to docker hub

Once the image creation is successful as shown in 4.1 Execute below commands to push
the docker builds for Edgmesh Agent and Gateway individually.

1 docker push rnarawade/edgemesh -agent:latest

2 docker push rnarawade/edgemesh -gateway:latest

The outcome of these commands is that the newest EdgeMesh builds for agent and gate-
way gets uploaded to the Docker hub. The successful operation is shown below. The
prerequisite for this is that the docker hub application login exists on the local system.

14

Figure 25: Docker Push Results

Uploaded and downloaded count of these images shown below on Docker Hub.

Figure 26: Docker Push Results

4.3 Deployment of EdgeMesh on Master

Section 3.5 3 has explains for the YAML files changes for deployment at the master node.
As the start of the deployment process, we need to clean the previous deployments. To
clean and apply new changes execute the following commands on the master node after
navigating to the /edgemesh directory:

1. Step 1: Delete EdgeMesh Agnet

1 kubectl delete -f build/agent/resources /05- daemonset.yaml

Figure 27: Delete Agent

2. Step 2: Delete EdgeMesh Gateway:

1 kubectl delete -f build/gateway/resources /05- deployment.

yaml

15

Figure 28: deleet Gateway

3. Step 3: Delete Application:

1 kubectl delete -f examples/hostname -lb -random -gateway.

yaml

Figure 29: Deleet test application

4. Step 4: Apply new build for Agent

1 kubectl apply -f build/agent/resources/

2 kubectl apply -f build/gateway/resources/

3 kubectl apply -f examples/hostname -lb -random -gateway.yaml

Figure 30: Deploy new agent

Figure 31: Deploy New Gateway

Figure 32: Deploy Test application again

5. Step 5: Get information about the pods in all namespaces:

1 kubectl get pods --all -namespaces -o wide

.

16

Figure 33: All pods after deployment

Figure 34: Verify test application works

6. Step 6: Perform a curl command to test the deployment:

1 curl 192.168.67.2:23333

.

17

5 Evaluation Setup

This section describes the steps to test the evaluation.

1. Step 1: Test if the URL is accessible outside of the VMs.

Figure 35: Verify test application works from Local system

2. Step 2: Install the Hey Tool using the following command.Dogan (2023)

1 brew install hey

Figure 36: Install Hey tool on local system

.

18

3. Step 3: Run a sample test using the Hey Tool with the following command:

1 hey -n 200 -c 100 http ://192.168.67.2:23333/

Figure 37: Sample Hey tool test

.

19

References

Docker Documentation (2023). Install docker desktop on mac, https://docs.docker.
com/desktop/install/mac-install/. Accessed: December 11, 2023.

Dogan, J. B. (2023). Hey: Http load testing and benchmarking tool, https://github.
com/rakyll/hey. Accessed: December 11, 2023.

Downloading Package (2023). https://git-scm.com/download/mac. Accessed: Decem-
ber 11, 2023.

EdgeMesh, P. (2023). Edgemesh documentation: Edge gateway. Accessed: December 11,
2023.
URL: https://edgemesh.netlify.app/guide/edge-gateway.html

Gaponcic, D. (2023). Getting started with kubeedge on virtual machines, Medium .
Accessed: December 11, 2023.

Kim, S. H. and Kim, T. (2023). Local scheduling in kubeedge-based edge computing
environment, Sensors 23(3): 1522.

KubeEdge (2023a). https://kubeedge.io/. Accessed: December 11, 2023.

KubeEdge, P. (2023b). Edgemesh: A high-performance and light-weight edge computing
mesh, https://github.com/kubeedge/edgemesh. Accessed: December 11, 2023.

KubeEdgeGit, P. (2023). Kubeedge: Kubernetes native edge computing framework,
https://github.com/kubeedge/kubeedge. Accessed: December 11, 2023.

Kubernetes Documentation (2023). https://kubernetes.io/docs/home/. Accessed:
December 11, 2023.

Nair, A. B. (2023). Edge computing in kubernetes using kubeedge, Medium . Accessed:
December 11, 2023.

The Go Programming Language (2023). https://go.dev/. Accessed: December 11,
2023.

Ubuntu (2023). Download ubuntu server for arm. Accessed: [Insert Access Date Here].
URL: https://ubuntu.com/download/server/arm

UTM (2023). https://mac.getutm.app/. Accessed: December 11, 2023.

Visual Studio Code (2023). Download visual studio code - mac, linux, windows, https:
//code.visualstudio.com/download. Accessed: December 11, 2023.

20

https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/desktop/install/mac-install/
https://github.com/rakyll/hey
https://github.com/rakyll/hey
https://git-scm.com/download/mac
https://kubeedge.io/
https://github.com/kubeedge/edgemesh
https://github.com/kubeedge/kubeedge
https://kubernetes.io/docs/home/
https://go.dev/
https://mac.getutm.app/
https://code.visualstudio.com/download
https://code.visualstudio.com/download

	Introduction
	Prerequisites

	Environment Setup
	Creating VM on MacOS
	Setting up Master node – CloudCore
	Setting Up EdgeNode(s) - Edgecore
	Gateway Setup at Master node
	Deploy Sample Application

	Implementation
	Load balancer policy Implementation
	Docker files
	Docker Hub
	Build file changes (make file)
	YAML File at local system and Master node

	Build and Deployment
	Creating build – Make Images
	Pushing build to docker hub
	Deployment of EdgeMesh on Master

	Evaluation Setup

